JPS63199870A - Diamond coated sintered hard tool material - Google Patents
Diamond coated sintered hard tool materialInfo
- Publication number
- JPS63199870A JPS63199870A JP3273587A JP3273587A JPS63199870A JP S63199870 A JPS63199870 A JP S63199870A JP 3273587 A JP3273587 A JP 3273587A JP 3273587 A JP3273587 A JP 3273587A JP S63199870 A JPS63199870 A JP S63199870A
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- base material
- coated
- sic
- tool material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 48
- 239000010432 diamond Substances 0.000 title claims abstract description 48
- 239000000463 material Substances 0.000 title claims abstract description 47
- 229910009043 WC-Co Inorganic materials 0.000 claims abstract description 7
- 238000000576 coating method Methods 0.000 claims description 19
- 239000011248 coating agent Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 abstract description 8
- 238000004544 sputter deposition Methods 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 3
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 abstract description 2
- 238000005868 electrolysis reaction Methods 0.000 abstract description 2
- 238000007733 ion plating Methods 0.000 abstract description 2
- 230000002378 acidificating effect Effects 0.000 abstract 1
- 238000005520 cutting process Methods 0.000 description 13
- 239000010410 layer Substances 0.000 description 10
- 238000005498 polishing Methods 0.000 description 7
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 241001330002 Bambuseae Species 0.000 description 1
- 101100243951 Caenorhabditis elegans pie-1 gene Proteins 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 241000270295 Serpentes Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000004050 hot filament vapor deposition Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、CVDダイヤモンドによって面を被覆した、
切削工具等に好適なダイ1モンド被覆超硬工具材に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides
This invention relates to a diamond-coated carbide tool material suitable for cutting tools and the like.
ダイヤモンドは最も硬い物質で、切削工具の刃として広
く使用されている。Diamond is the hardest substance and is widely used as cutting tool blades.
従来、精度の高い加工を行なう場合には、中結晶のダイ
ヤモンドを取付けた単行バイト、或いはダイヤモンドを
G等で焼結した焼結チップ(例えば米国GE社製、商品
名ユニパックス等)を取付けたバイト等が用いられてい
る。Conventionally, when performing high-precision machining, a single cutting tool with a medium-crystal diamond attached, or a sintered tip made of diamond sintered with G, etc. (for example, manufactured by GE in the United States, product name Unipax, etc.) was attached. Byte etc. are used.
しかし、最近CVD法によってダイヤモンド被覆が容易
にできるようになり、(1)バイス鋼に直接ダイヤモン
ド被覆を行なう方法、(2)WC−C。However, recently it has become easier to coat with diamond using the CVD method, including (1) directly coating diamond on vise steel, and (2) WC-C.
等の超硬物質に直接ダイヤモンド被覆を行なう方法、(
3)超硬物質の表面らを溶出除去して、この面にダイヤ
モンド被覆を行なう方法、等基材面にCVDダイA7モ
ンド被覆を施して、安価にダイヤモンド工具材を作成す
ることが試みられている。A method of directly coating diamond on superhard materials such as (
3) Attempts have been made to create diamond tool materials at low cost by applying CVD diamond coating to the base material surface, such as by eluting and removing the surface of the superhard material and coating this surface with diamond. There is.
しかし、上記(1) (2)の方法では、基材中にグラ
ファイトからダイヤモンドをつくる際の合成触媒である
鉄属が金石されてJ3す、ダイヤモンドがグラファイト
に逆転模するため被覆することが出来ず、(3)の方法
では、ダイヤモンド被覆することは出来るが、形成され
る被覆層は、微粒状のダイ八7モンドの集合体とはなら
ず、切削中に脱落し易く、切削工具材としては不適当で
あった。However, in the methods (1) and (2) above, iron metal, which is a synthesis catalyst for making diamond from graphite, is added to the base material and cannot be coated because diamond imitates graphite inversely. First, with method (3), it is possible to coat diamond, but the coating layer that is formed does not form an aggregate of fine diamond particles and easily falls off during cutting, making it difficult to use as a cutting tool material. was inappropriate.
これは、基材とダイヤモンド層との接着強度が低く、被
覆したダイヤモンド層が厚くなるとダイヤモンド面の凹
凸が大きくなるとともに、基材との熱膨張率の差によっ
て、熱応力が増大し、剥離してしまうためである。This is because the adhesion strength between the base material and the diamond layer is low, and as the coated diamond layer becomes thicker, the diamond surface becomes more uneven, and the difference in thermal expansion coefficient with the base material increases thermal stress, resulting in peeling. This is because the
本発明省等は上記の問題点を解決すべく鋭意研究した結
果、SiCにCVD法によってダイヤントコーティング
を行なうと、ダイヤモンド成長時の核発生密度が高く、
うすいダイヤモンド層が形成され、しかも相互の接着強
度が高いことを発見した。The Ministry of Invention and others conducted intensive research to solve the above problems, and found that when diamond coating is applied to SiC by the CVD method, the density of nucleation during diamond growth is high.
It was discovered that a thin diamond layer was formed and that the mutual adhesion strength was high.
本発明は上記の発見に基づいてなされたもので、バイト
シャンク等に取付けられる安価で寿命の長いダイヤモン
ド被覆超硬工具材を提供することを目的とする。The present invention was made based on the above discovery, and an object of the present invention is to provide a diamond-coated carbide tool material that is inexpensive and has a long life, which can be attached to a cutting tool shank or the like.
本発明は上記の目的を達成すべくなされたもので、その
要旨は、WC−Co系超硬物質の成形体上にSiCのt
uffを介在させてCVDダイヤモンドを被覆してなる
ダイヤモンド被覆超硬工具材にある。The present invention has been made to achieve the above object, and the gist thereof is to apply SiC on a molded body of WC-Co-based superhard material.
This diamond-coated carbide tool material is formed by coating CVD diamond with uff interposed therebetween.
本発明のダイヤモンド被M超硬工具材は1、WC−Co
系超硬物質およびCVDダイヤモンド被覆との間に、両
者に対する接合力が強く、しかもCVD法によってダイ
ヤモンドを析出させる際、核発生密度が極めて大きくな
るSiCを介在させるので、基材面に強固に接合された
薄いダイヤモンド被覆を有する工具材となる。 一
本発明に係る工具材のダイヤモンド被覆は表面に凹凸が
なく、厚みが均一で薄いものがよく、その製法の好まし
い態様を示せば次のようになる。The diamond-covered M carbide tool material of the present invention is 1, WC-Co
SiC is interposed between the superhard material and the CVD diamond coating, which has a strong bonding force to both, and which has an extremely high nucleation density when diamond is precipitated by the CVD method, so it can be firmly bonded to the base material surface. This results in a tool material with a thin diamond coating. The diamond coating of the tool material according to the present invention should preferably be thin and uniform in thickness with no unevenness on the surface, and a preferred embodiment of its manufacturing method is as follows.
(1)先ず、基材となるWC−Co系超硬物質成形体の
ダイヤモンド被覆を行なう面を鏡面研摩する。(1) First, the surface of the WC-Co based cemented carbide molded body to be coated with diamond is mirror-polished.
(2)この鏡面rIl111Lだ面に強固に接合したS
iC層を形成するには、表面に露出する6を除去するこ
とが好ましい。6の除去は、例えばCO3O42wt%
のR竹溶液中で、Ion^/ci程度の電流密度で電解
することによって行なわれる。この際、ら除去が不足し
、露出する6の残Qが多いと、SiCとの接合強度が低
くなり、過剰となるとピンホールが発生する。望ましい
6除去部分の厚みは3〜10μmである。(2) S firmly bonded to this mirror surface rIl111L
To form the iC layer, it is preferable to remove 6 exposed on the surface. For example, the removal of CO3O42wt%
This is done by electrolyzing in a R bamboo solution at a current density of about Ion^/ci. At this time, if the removal is insufficient and a large amount of the remaining Q of 6 is exposed, the bonding strength with SiC will be low, and if it is excessive, pinholes will occur. The thickness of the 6 removed portion is preferably 3 to 10 μm.
(3)この電解した面にSiCをコーティングする。(3) Coating SiC on this electrolyzed surface.
その方法としては、公知のスパッター、イオンプレイテ
ィングなどが使用出来る。また、 SL蒸着によってS
Lをコーティングした後、これを炭化水素系雰囲気中で
炭化してSiCとしてもよい。As the method, known sputtering, ion plating, etc. can be used. In addition, S
After coating L, it may be carbonized in a hydrocarbon atmosphere to form SiC.
この5i1i!lは、厚みが0.01〜1μmの範囲が
適し、特に0.05〜0.5μmの範囲が好ましい。厚
みが0.01μm未満では、基材とダイヤモンド層とを
接続する接合強度が低くなり、1μ7rLを越えると、
SiCは脆いので破損の原因となる。This 5i1i! The thickness of l is suitably in the range of 0.01 to 1 μm, particularly preferably in the range of 0.05 to 0.5 μm. If the thickness is less than 0.01μm, the bonding strength connecting the base material and the diamond layer will be low, and if it exceeds 1μ7rL,
SiC is brittle and may cause damage.
(4)次いで、上記コーティングされたSiCの面にC
VDダイVモンドを被覆する。その被覆方法は、従来C
VDダイヤモンドを製造する際に用いられる、公知のマ
イクロウェーブCVDI、ホットフィラメントCVD法
が用いられる。CVD法によって形成されたダイヤモン
ド被覆は通常表面に凹凸があるので平滑に研摩されるが
、研摩後のダイヤモンド被覆の厚みは0.3〜2.0μ
mの範囲で、特に0.5〜1μmの範囲が好ましい。(4) Next, C on the surface of the coated SiC.
Cover the VD die. The coating method is conventionally C
The well-known microwave CVDI and hot filament CVD methods used in manufacturing VD diamond are used. Diamond coatings formed by the CVD method usually have uneven surfaces and are polished smooth, but the thickness of the diamond coating after polishing is 0.3 to 2.0μ.
m range, particularly preferably a range of 0.5 to 1 μm.
ダイせモンド被覆の厚みが0.3μm未満では、研削刃
として用いた場合、摩耗によって寿命が短く、2μmよ
り厚いと、欠損し易くなる。If the thickness of the Dai Semond coating is less than 0.3 μm, the life will be shortened due to wear when used as a grinding blade, and if it is thicker than 2 μm, it will easily break.
上記の工程によってつくられた第1図に示す基材1の表
面にS;CJM2を介してCVDダイA7モンド被覆3
が設けられた超硬工具材4は、所定の寸法に明所され、
第2図に示すように、例えばバイトシャンク5の先端部
にろう付け6によって固定され、バイト7がつくられる
。このバイトは切れ味がよく、極めて寿命が長い。The surface of the base material 1 shown in FIG. 1 produced by the above process is coated with CVD diamond A7 through S;
The carbide tool material 4 provided with the
As shown in FIG. 2, it is fixed, for example, to the tip of a cutting tool shank 5 by brazing 6 to form a cutting tool 7. This bit is sharp and has an extremely long lifespan.
実施例1
6を6wt%含有するWC−Co超硬物質の板状成形体
よりなる基材1の面を鏡面研摩し、この鏡面を硫酸コバ
ルト2wt%の酸性溶液を用い10111A/dの電流
密度で5分間電解して、表面に露出している巳を除去し
た。らの除去の深さは表面から約5μmである。Example 1 The surface of the base material 1 made of a plate-shaped molded body of WC-Co cemented carbide containing 6 wt% of 6 was mirror-polished, and the mirror surface was polished using an acidic solution containing 2 wt% of cobalt sulfate at a current density of 10111 A/d. Electrolysis was carried out for 5 minutes to remove the snakes exposed on the surface. The depth of removal is approximately 5 μm from the surface.
この基材1を第3図に示すマグネトロンスパッター装置
11内に研;7面を下方に向けてセットした。マグネッ
ト12の上に、通電台13を介してSiC板1板金4置
し、容器15をガス導入口15aより少量のアルゴンを
導入しながら吸引口15bより真空に引き、容器15内
を1O−3Torrの不活性雰囲気に保持した。次いで
、ヒータ16によって基材1を700℃に加熱するとと
もに、基材1とSiC板1板上4間に13.56HII
z 、 1.5に−を印加した。この操作によってS
iC板1板上4板2の間にプラズマ17が発生し、5分
間の処理によって基材1の面には、厚み0.1μmのS
iC層2が形成された。処理中、C114を分圧にして
10−’Torr分供給した。その目的は析出層がSし
Cの原子比よりCが不足するのをC114の分解により
Cを析出させることにより補なうためである。この5L
CF’:i2が固着された基材1を第4図に示す公知の
マイクロウェーブCVD装置21にセットした。This base material 1 was set in a magnetron sputtering device 11 shown in FIG. 3 with the polished surface facing downward. A SiC plate 1 and 4 metal plates are placed on top of the magnet 12 via an energizing table 13, and while introducing a small amount of argon from the gas inlet 15a, the container 15 is evacuated from the suction port 15b, and the inside of the container 15 is heated to 1O-3 Torr. was maintained in an inert atmosphere. Next, the base material 1 is heated to 700° C. by the heater 16, and 13.56 HII is heated between the base material 1 and the SiC plate 1.
- was applied to z, 1.5. With this operation, S
Plasma 17 is generated between the upper and lower iC plates 1 and 2, and after 5 minutes of treatment, a 0.1 μm thick S layer is formed on the surface of the base material 1.
An iC layer 2 was formed. During the treatment, C114 was supplied at a partial pressure of 10-'Torr. The purpose of this is to compensate for the lack of C in the atomic ratio of S and C in the precipitated layer by precipitating C by decomposing C114. This 5L
The base material 1 to which CF':i2 was fixed was set in a known microwave CVD apparatus 21 shown in FIG.
図中22は容器、22aはガス導入口、22bは吸引口
、23はマイクロウェーブ(MW)発生器である。ガス
導入口よりC1140,5vo1%含有する112を導
入しながら、容器21内を5 Q Torrに減圧し、
基材1を800℃に保持するとともにMWを発生させた
。反応時間30分で基材1のSiC層2の面に、約1μ
mのCVDダイヤモンド被覆3が形成され、超硬工具材
4が得られた。In the figure, 22 is a container, 22a is a gas inlet, 22b is a suction port, and 23 is a microwave (MW) generator. While introducing C1140, 112 containing 5vol% from the gas inlet, the pressure inside the container 21 was reduced to 5 Q Torr,
While maintaining the base material 1 at 800° C., MW was generated. Approximately 1μ was deposited on the surface of the SiC layer 2 of the base material 1 after a reaction time of 30 minutes.
A CVD diamond coating 3 of m was formed and a cemented carbide tool material 4 was obtained.
この超硬工具材4のダイヤモンド被覆3の面を第5図に
示す研摩機31にセットした。図中、32は容器、32
aは■2導入口、32bは吸引[1,33は回転駆動さ
れるη鉄FC25よりなる研摩板、34はヒータ、35
は回転駆動される工具材4の支持体である。上記H23
g人口32aよりH2を導入しながら、吸引口32bよ
り吸引し、容器32内を10’0Torrに減圧すると
ともに、研摩板33をヒータ34によって800℃に加
熱し、研摩を行ない、ダイヤモンド被覆3を0.5μm
に研摩した。この研摩した工具材4のダイヤモンド面の
粗さはRmaxで0.05μ肌であった。The diamond-coated surface 3 of this carbide tool material 4 was set in a polishing machine 31 shown in FIG. In the figure, 32 is a container;
a is ■2 introduction port, 32b is suction [1, 33 is a polishing plate made of η iron FC25 that is rotationally driven, 34 is a heater, 35
is a support body for the tool material 4 which is rotationally driven. H23 above
While introducing H2 from the suction port 32b, the pressure inside the container 32 is reduced to 10'0 Torr, and at the same time, the polishing plate 33 is heated to 800° C. by the heater 34 to perform polishing and polish the diamond coating 3. 0.5μm
Polished. The roughness of the diamond surface of this polished tool material 4 was 0.05μ in Rmax.
この工具材4をシャンクにろう付けしてパイ1〜とし、
コンピュータ・ハードディスク用のN板を、WOrk回
転速度400Orpm、刃の送り40μTrL/Rev
の条件で切削したところ、1500枚のN板を加工した
後の、加工N板面のRmaxは0.05μm以下であっ
た。This tool material 4 is brazed to the shank to form pie 1~,
N plate for computer hard disk, WOrk rotation speed 400Orpm, blade feed 40μTrL/Rev
When cutting was performed under the following conditions, Rmax of the processed N plate surface after processing 1500 N plates was 0.05 μm or less.
実施例2
SiC)77をイオンブレーティング法で0.1μmつ
けた以外は実施例1と同じにして工具材をつくり、ハー
ドディスク用N板の切削試験を行なった。Example 2 A tool material was prepared in the same manner as in Example 1 except that SiC) 77 was applied to a thickness of 0.1 μm by the ion blating method, and a cutting test was conducted on an N plate for a hard disk.
イオンブレーティング条件は
放 電:13. 56HHs Rf(1,0KW
)圧 カニ 10−’Torr
温 度: 800℃
SL恭発:磁場偏向型電子鏡
4、 KV、 20 On+A
CI+4 :これを流すことによって10−’Tor
rにする
によって行なった。Ion blating conditions are discharge: 13. 56HHs Rf (1,0KW
) Pressure 10-'Torr Temperature: 800℃ SL-based: Magnetic field deflection type electronic mirror 4, KV, 20 On+A CI+4: By flowing this, 10-'Torr
This was done by changing to r.
その結果、1500枚加工後のN板面の粗さはRmax
は0.05μm以下テアツタ。As a result, the roughness of the N plate surface after processing 1500 sheets is Rmax
Tear less than 0.05 μm.
以上述べたように、本発明に係る超硬工具材は、切削刃
部分が、基材に強固に接合されたCVDダイヤモンドに
よって形成されているので、これを取イ」()た工具は
従来のダイヤモンド工具に比して、容易かつ安価にB4
1でき、しかも、生石ダイヤモンド工具とほぼ同様な切
削精度が得られ、また、14命も長いので、産業界に寄
与することが極めて大きいものである。As described above, in the carbide tool material according to the present invention, the cutting edge portion is formed of CVD diamond firmly bonded to the base material. B4 is easier and cheaper than diamond tools.
1, can achieve cutting accuracy almost the same as a raw diamond tool, and has a long life of 14 years, so it will make an extremely large contribution to industry.
第1図は本発明に係る超硬工具材の側面図、第2図は第
1図の工具材をとりつけたバイトの側面図、第3図ない
し第5図は、本発明の工具材を製造する方法の一例を示
す略図で、第3図はスパッター装置の図、第4図はマイ
クロウェーブCVD法装置の図、第5図は研II機の図
である。
1・・・基材、2・・・Sj層、3・・・CVDダイヤ
モンド被覆、4・・・超硬工具材(工具材)、5・・・
バイトシャンク、6・・・ろう付け、7・・・バイト、
11・・・マグネトロンスパッター装置、12・・・マ
グネット、13・・・通電台、14・・・SiC板、1
5・・・容器、15a・・・ガス導入口、15b・・・
吸引口、16・・・ヒータ、17・・・プラズマ、21
・・・マイクロウェーブCVD装置(MW)、22・・
・容器、22a・・・ガス導入口、22b・・・吸引口
、23・・・MW発生器、31・・・研摩機、32・・
・容器、32a・・・+12導入口、32b・・・吸引
口、33・・・研摩板、34・・・ヒータ、35・・・
支持体。Fig. 1 is a side view of a carbide tool material according to the present invention, Fig. 2 is a side view of a cutting tool to which the tool material of Fig. 1 is attached, and Figs. FIG. 3 is a diagram of a sputtering device, FIG. 4 is a diagram of a microwave CVD method device, and FIG. 5 is a diagram of a polishing machine II. DESCRIPTION OF SYMBOLS 1... Base material, 2... Sj layer, 3... CVD diamond coating, 4... Carbide tool material (tool material), 5...
Bit shank, 6... Brazing, 7... Bit,
DESCRIPTION OF SYMBOLS 11...Magnetron sputtering device, 12...Magnet, 13...Electricity stand, 14...SiC board, 1
5... Container, 15a... Gas inlet, 15b...
Suction port, 16... Heater, 17... Plasma, 21
...Microwave CVD equipment (MW), 22...
- Container, 22a... Gas inlet, 22b... Suction port, 23... MW generator, 31... Polisher, 32...
- Container, 32a...+12 introduction port, 32b... suction port, 33... polishing plate, 34... heater, 35...
support.
Claims (1)
在させてCVDダイヤモンドを被覆してなるダイヤモン
ド被覆超硬工具材。A diamond-coated cemented carbide tool material formed by coating a CVD diamond on a compact of WC-Co based superhard material with a thin layer of SiC interposed therebetween.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3273587A JPS63199870A (en) | 1987-02-16 | 1987-02-16 | Diamond coated sintered hard tool material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3273587A JPS63199870A (en) | 1987-02-16 | 1987-02-16 | Diamond coated sintered hard tool material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63199870A true JPS63199870A (en) | 1988-08-18 |
Family
ID=12367093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3273587A Pending JPS63199870A (en) | 1987-02-16 | 1987-02-16 | Diamond coated sintered hard tool material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63199870A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01246118A (en) * | 1988-03-26 | 1989-10-02 | Semiconductor Energy Lab Co Ltd | Composite carbon coating film having high heat-resistance and production thereof |
WO1991004353A1 (en) * | 1989-09-22 | 1991-04-04 | Showa Denko Kabushiki Kaisha | Vapor deposited diamond synthesizing method on electrochemically treated substrate |
JPH03115571A (en) * | 1989-09-28 | 1991-05-16 | Toshiba Tungaloy Co Ltd | Diamond-coated sintered alloy excellent in adhesive strength and its production |
JPH03146663A (en) * | 1989-11-01 | 1991-06-21 | Toyo Kohan Co Ltd | Production of diamond-coated sintered hard alloy member |
JPH03146668A (en) * | 1989-10-30 | 1991-06-21 | Toshiba Tungaloy Co Ltd | Coated sintered hard alloy having controlled surface roughness and its production |
EP0504424A1 (en) * | 1990-10-05 | 1992-09-23 | Sumitomo Electric Industries, Ltd. | Hard material clad with diamond, throwaway chip, and method of making said material and chip |
JPH05311443A (en) * | 1991-03-26 | 1993-11-22 | Semiconductor Energy Lab Co Ltd | Production of diamond coated member |
US5498480A (en) * | 1991-06-04 | 1996-03-12 | Tank; Klaus | Composite diamond abrasive compact |
US5585176A (en) * | 1993-11-30 | 1996-12-17 | Kennametal Inc. | Diamond coated tools and wear parts |
US5716170A (en) * | 1996-05-15 | 1998-02-10 | Kennametal Inc. | Diamond coated cutting member and method of making the same |
US6087025A (en) * | 1994-03-29 | 2000-07-11 | Southwest Research Institute | Application of diamond-like carbon coatings to cutting surfaces of metal cutting tools |
US6660329B2 (en) | 2001-09-05 | 2003-12-09 | Kennametal Inc. | Method for making diamond coated cutting tool |
-
1987
- 1987-02-16 JP JP3273587A patent/JPS63199870A/en active Pending
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01246118A (en) * | 1988-03-26 | 1989-10-02 | Semiconductor Energy Lab Co Ltd | Composite carbon coating film having high heat-resistance and production thereof |
US5164051A (en) * | 1989-09-22 | 1992-11-17 | Showa Denko K. K. | Method for vapor phase synthesis of diamond on electrochemically treated substrate |
WO1991004353A1 (en) * | 1989-09-22 | 1991-04-04 | Showa Denko Kabushiki Kaisha | Vapor deposited diamond synthesizing method on electrochemically treated substrate |
JPH03115571A (en) * | 1989-09-28 | 1991-05-16 | Toshiba Tungaloy Co Ltd | Diamond-coated sintered alloy excellent in adhesive strength and its production |
JPH03146668A (en) * | 1989-10-30 | 1991-06-21 | Toshiba Tungaloy Co Ltd | Coated sintered hard alloy having controlled surface roughness and its production |
JPH03146663A (en) * | 1989-11-01 | 1991-06-21 | Toyo Kohan Co Ltd | Production of diamond-coated sintered hard alloy member |
EP0504424A4 (en) * | 1990-10-05 | 1994-08-17 | Sumitomo Electric Industries | Hard material clad with diamond, throwaway chip, and method of making said material and chip |
EP0504424A1 (en) * | 1990-10-05 | 1992-09-23 | Sumitomo Electric Industries, Ltd. | Hard material clad with diamond, throwaway chip, and method of making said material and chip |
JPH05311443A (en) * | 1991-03-26 | 1993-11-22 | Semiconductor Energy Lab Co Ltd | Production of diamond coated member |
US5498480A (en) * | 1991-06-04 | 1996-03-12 | Tank; Klaus | Composite diamond abrasive compact |
US5585176A (en) * | 1993-11-30 | 1996-12-17 | Kennametal Inc. | Diamond coated tools and wear parts |
US5648119A (en) * | 1993-11-30 | 1997-07-15 | Kennametal Inc. | Process for making diamond coated tools and wear parts |
US6287682B1 (en) | 1993-11-30 | 2001-09-11 | Kennametal Pc Inc. | Diamond coated tools and process for making |
US6087025A (en) * | 1994-03-29 | 2000-07-11 | Southwest Research Institute | Application of diamond-like carbon coatings to cutting surfaces of metal cutting tools |
US5716170A (en) * | 1996-05-15 | 1998-02-10 | Kennametal Inc. | Diamond coated cutting member and method of making the same |
US6660329B2 (en) | 2001-09-05 | 2003-12-09 | Kennametal Inc. | Method for making diamond coated cutting tool |
US6890655B2 (en) | 2001-09-05 | 2005-05-10 | Kennametal Inc. | Diamond coated cutting tool and method for making the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2111846C1 (en) | Diamond-plated tool and method of its manufacture | |
JP3590579B2 (en) | Diamond coated member and method of manufacturing the same | |
US5855974A (en) | Method of producing CVD diamond coated scribing wheels | |
EP0445305A1 (en) | Vapor deposited diamond synthesizing method on electrochemically treated substrate | |
CN109397549B (en) | Diamond-coated silicon nitride ceramic monolithic tool and its preparation method and application of the tool in graphite | |
JPH01153228A (en) | Vapor phase composite method for producing diamond tool | |
JPS63199870A (en) | Diamond coated sintered hard tool material | |
WO1998016347A1 (en) | Semiconductor substrate polishing pad dresser, method of manufacturing the same, and chemicomechanical polishing method using the same dresser | |
JP5469676B2 (en) | Method for producing a diamond composite material | |
CN107513696B (en) | Diamond coatings brill/milling cutter grinds pretreated method | |
JP2000246512A (en) | Diamond coating cutting tool | |
JPS61124573A (en) | Diamond-coated base material and its production | |
JP2651947B2 (en) | Diamond thin film coating member and diamond thin film coating method | |
CN106835133A (en) | A kind of workpiece with titanium diboride diamond composite coating and preparation method thereof | |
CN111041448B (en) | Method for preparing diamond coating on surface of cobalt-containing hard alloy and tool and die with diamond coating | |
EP0931177B1 (en) | Post treated diamond coated body | |
CN111910168B (en) | A kind of CVD diamond thick film-ceramic composite sheet brazing tool and preparation method thereof | |
CN108728816A (en) | Wire-drawing die and preparation method thereof with a variety of coatings | |
JPH0621360B2 (en) | Diamond-coated sintered bond excellent in peel resistance and method for producing the same | |
JP7360202B2 (en) | Manufacturing method of diamond coated silicon nitride ceramic whole tool | |
JPS6267174A (en) | Manufacturing method of hard carbon film coated cemented carbide | |
JP3353239B2 (en) | Method for producing diamond-coated member | |
JP2734157B2 (en) | Manufacturing method of diamond coated tungsten carbide based cemented carbide cutting tool | |
JPH1158106A (en) | Diamond-coated cutting tool and its manufacture | |
JPH0920590A (en) | Production of cemented carbide base material having diamond film |