JPS63199844A - Chromium alloy for target of sputtering and its production - Google Patents
Chromium alloy for target of sputtering and its productionInfo
- Publication number
- JPS63199844A JPS63199844A JP3055787A JP3055787A JPS63199844A JP S63199844 A JPS63199844 A JP S63199844A JP 3055787 A JP3055787 A JP 3055787A JP 3055787 A JP3055787 A JP 3055787A JP S63199844 A JPS63199844 A JP S63199844A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- chromium
- sputtering
- target
- ingot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 229910000599 Cr alloy Inorganic materials 0.000 title claims abstract description 11
- 239000000788 chromium alloy Substances 0.000 title claims description 8
- 238000004544 sputter deposition Methods 0.000 title abstract description 26
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 38
- 229910052742 iron Inorganic materials 0.000 claims abstract description 24
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 18
- 239000000956 alloy Substances 0.000 claims abstract description 18
- 230000008018 melting Effects 0.000 claims abstract description 17
- 238000002844 melting Methods 0.000 claims abstract description 16
- 238000005266 casting Methods 0.000 claims abstract description 12
- 239000011261 inert gas Substances 0.000 claims abstract description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 46
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 37
- 239000011651 chromium Substances 0.000 claims description 37
- 238000005477 sputtering target Methods 0.000 claims description 5
- 239000004033 plastic Substances 0.000 claims description 4
- 229920003023 plastic Polymers 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims 2
- 238000003754 machining Methods 0.000 claims 1
- 239000000758 substrate Substances 0.000 description 12
- 229910019589 Cr—Fe Inorganic materials 0.000 description 8
- 229910017052 cobalt Inorganic materials 0.000 description 7
- 239000010941 cobalt Substances 0.000 description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 229910000531 Co alloy Inorganic materials 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000001755 magnetron sputter deposition Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はスパッタリングのターゲットとして使用される
クロム合金及びその製造方法に関するもので、特にクロ
ムに鉄を添加すゑことによって製造コストを低下させた
クロム合金及びその製造方法に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a chromium alloy used as a sputtering target and a method for producing the same, and particularly relates to a chromium alloy that reduces production costs by adding iron to chromium. This article relates to alloys and their manufacturing methods.
(従来の技術)
最近磁気記録媒体等に使用される薄膜の作製技術として
スパッタリングが各方面で使用されている。而して上記
スパッタリングは通常第1図にその1例を示す様なスパ
ッタリング装置によって行なわれている。即ち、その内
部にターゲット1、アルミニウム基板2、銅プレート3
、磁石4a、4b、を有する真空容器5中にArガスを
導入してグロー放電を起させ、該放電によって得られた
Arの陽イオンを○極であるターゲットに衝突させ、そ
の運動エネルギーによってターゲット金属の原子を真空
中に蒸発させ、■極である基板上に沈着させることによ
ってスパッタリングが行なわれる。(Prior Art) Recently, sputtering has been used in various fields as a technique for producing thin films used in magnetic recording media and the like. The above sputtering is usually carried out using a sputtering apparatus, an example of which is shown in FIG. That is, there is a target 1, an aluminum substrate 2, and a copper plate 3 inside it.
, magnets 4a, 4b, Ar gas is introduced into the vacuum container 5 to cause a glow discharge, and the Ar cations obtained by the discharge are made to collide with the target, which is the ○ pole, and the kinetic energy causes the target to Sputtering is performed by evaporating metal atoms in a vacuum and depositing them on a substrate, which is the pole.
前記ターゲットとしては、得ようとする薄膜の用途に応
じて純金属、合金、セラミックス等各種の材料が使用さ
れているが、特にクロム薄膜は磁気記録媒体における下
地層用として最近注目されている。即ちアルミニウム基
板上にコバルト又はコバルト合金磁性薄膜を有する磁気
記録媒体において、コバルト又はコバルト合金の下地層
としてクロムをスパッタリングすると、クロム結晶(体
心立方格子)の(110)面が基板に平行に成長し、こ
の面上に磁性体としてのコバルト又はコバルト合金をス
パッタリングすることにより、コバルト又はコバルト合
金(稠密六方格子)の容易磁化軸であるC軸が基板面に
平行になるようにエピタキシャル成長し、前記磁気記録
媒体の基板面内での磁気特性が向上する。Various materials such as pure metals, alloys, and ceramics are used as the target depending on the purpose of the thin film to be obtained, and chromium thin films have recently been attracting attention in particular for use as underlayers in magnetic recording media. That is, in a magnetic recording medium having a cobalt or cobalt alloy magnetic thin film on an aluminum substrate, when chromium is sputtered as a cobalt or cobalt alloy underlayer, the (110) plane of the chromium crystal (body-centered cubic lattice) grows parallel to the substrate. By sputtering cobalt or a cobalt alloy as a magnetic material onto this surface, epitaxial growth occurs such that the C axis, which is the axis of easy magnetization of cobalt or cobalt alloy (close-packed hexagonal lattice), is parallel to the substrate surface. Magnetic properties within the substrate plane of the magnetic recording medium are improved.
前記クロムターゲットによるスパッタリングは、更に、
ビルの窓ガラスにおける熱線遮蔽、カミソリの刃の長寿
命化、装飾品即ち玩具、インテリア等のプラスチックへ
のメタライジング等各種の用途に中広(利用されており
、材料の表面特性向上に大きく寄与している。The sputtering using the chromium target further includes:
It is used in various applications such as heat ray shielding in building window glass, extending the life of razor blades, metalizing plastics for decorative items such as toys and interior decoration, and greatly contributes to improving the surface properties of materials. are doing.
この様なスパッタリングのターゲット用クロムとして、
従来は、粉末焼結法で製造した純クロムを使用していた
。As a chromium target for sputtering,
Conventionally, pure chromium produced using a powder sintering method was used.
以上に述べた様に、スパッタリングのターゲット用とし
てのクロムは各種の用途に巾広く利用され、材料の磁気
特性、表面特性等の向上に大きく寄与しているが、従来
使用されてきた純クロムは融点が高くかつ脆いために、
溶解鋳造時に割れが入り易く、熱間加工も困難であって
、従来粉末焼結法で製造していた。従ってターゲット自
体の価格が高価であり、低コストなりロムターゲットの
開発が望まれていた。As mentioned above, chromium for sputtering targets is widely used for various purposes and contributes greatly to improving the magnetic properties and surface properties of materials, but pure chromium, which has been used conventionally, Due to its high melting point and brittleness,
It is prone to cracking during melting and casting, and hot working is difficult, so conventionally it has been manufactured using a powder sintering method. Therefore, the target itself is expensive, and it has been desired to develop a low-cost ROM target.
本発明は上記の点に鑑みなされたものであり、その目的
とするところは、クロムの融点を下げると共に靭性を向
上させて、溶解、鋳造によるクロムターゲットの製造を
可能にし、該クロムターゲットの製造コストを低下させ
ることである。即ち本発明は、鉄3.0〜30.0wt
%、残部クロムからなることを特徴とするスパッタリン
グのターゲット用クロム合金及びその製造方法である。The present invention was made in view of the above points, and its purpose is to lower the melting point of chromium and improve its toughness, thereby making it possible to manufacture a chromium target by melting and casting. The goal is to reduce costs. That is, the present invention uses 3.0 to 30.0 wt of iron.
%, the balance being chromium, and a method for producing the same.
本発明者は、クロムの結晶構造を余り変えることがなく
、クロムの融点を下げると共に靭性を増大させ得るよう
な添加元素を種々探索した結果、鉄が最も優れているこ
とを見出した。The present inventor searched for various additive elements that could lower the melting point of chromium and increase its toughness without significantly changing the crystal structure of chromium, and found that iron was the best.
即ちクロムに鉄を添加することにより、クロムの融点が
下ると共に靭性が増大して、溶解、鋳造時に割れが入ら
なくなり、健全なインゴットを得ることが可能になる。That is, by adding iron to chromium, the melting point of chromium is lowered and its toughness is increased, so that cracks do not occur during melting and casting, making it possible to obtain a sound ingot.
又クロムの靭性が増加するので、上記溶解、鋳造により
製造したインゴットの熱間塑性加工を容易に行なうこと
が出来る。更にクロムに鉄を添加したCr−Fe合金と
することにより、ターゲツト材の靭性を増大することが
出来、スパッタリング速度を上げてもターゲットに割れ
が入らなく、従って磁気記録媒体の生産性を大巾に向上
させることが出来る。又鉄は常温でクロムと同じ体心立
方格子を有し、格子定数も遂ぼ同じであり、Cr−Fe
合金の下地上にコバルト系材料をスパッタリングする際
に、コバルトのC軸が基板面に平行になる様にエピタキ
シャル成長するのを阻害しなく、純クロムの上にコバル
ト系材料をスパッタリングした場合とほぼ同等の磁気特
性が得られる。Furthermore, since the toughness of chromium is increased, hot plastic working of the ingot produced by the above-mentioned melting and casting process can be easily carried out. Furthermore, by using a Cr-Fe alloy in which iron is added to chromium, the toughness of the target material can be increased, and even if the sputtering speed is increased, the target will not crack, thus greatly increasing the productivity of magnetic recording media. can be improved. Also, iron has the same body-centered cubic lattice as chromium at room temperature, and the lattice constants are almost the same, so Cr-Fe
When sputtering a cobalt-based material onto an alloy substrate, epitaxial growth is not inhibited so that the C-axis of cobalt is parallel to the substrate surface, which is almost equivalent to sputtering a cobalt-based material onto pure chromium. magnetic properties can be obtained.
本発明において、ターゲット用Cr−Fe合金の鉄添加
量を3.0〜30.0wt%の範囲内に限定したのは、
3.0wt%未満では融点の低下及び靭性の増大が不充
分で、檀解、鋳造にjり健全なインゴットを得ることが
困難であり、又30 、 Ow t%を超えると磁気記
録媒体における下地層として使用した際に、クロム合金
が磁性を帯びてノイズ等の原因となるからである。In the present invention, the amount of iron added to the Cr-Fe alloy for targets is limited to within the range of 3.0 to 30.0 wt% because
If it is less than 3.0 wt%, the melting point will be insufficiently lowered and the toughness will be increased insufficiently, making it difficult to obtain a sound ingot during demolding or casting. This is because when used as a geological formation, the chromium alloy becomes magnetic and causes noise.
本発明のCr−Fe合金は、クロム及び鉄の酸化を防止
するためAr等の不活性ガス中で溶解する必要があるが
、鋳造は通常の水冷鋳型により行なうことが出来る。又
本発明のCr−Fe合金は圧延、鍛造等で熱間塑性加工
することが可能であるが、熱間圧延時に割れが入ること
があるので、鋼板例えばステンレス鋼板等で被覆して圧
延することが望ましい。The Cr--Fe alloy of the present invention needs to be melted in an inert gas such as Ar to prevent oxidation of chromium and iron, but casting can be carried out using an ordinary water-cooled mold. Further, the Cr-Fe alloy of the present invention can be subjected to hot plastic working by rolling, forging, etc., but cracks may occur during hot rolling, so it is recommended to cover the alloy with a steel plate, such as a stainless steel plate, before rolling. is desirable.
〔実施例1〕 以下に本発明の実施例について説明する。[Example 1] Examples of the present invention will be described below.
第1表に示す様にクロムに鉄を0〜35w t%添加し
て、065気圧のArガス中で高周波溶解後鉄製の金型
に鋳造し、厚さ15mm、中220鵬、長さ220燗の
インゴットを得た。これらのインゴットについて、表面
に観察される割れの長さの合計を測定した結果を第1表
に示した。次にこれらのインゴットを機械加工により、
厚さ6ffi11、直径200mmの円板に仕上げ、第
1図に示すマグネトロンスパッタリング装置にセットし
てターゲットとして使用した。第1図において、lはタ
ーゲット、2はアルミニウム基板、3は綱プレート、4
as 4bは磁石、5は真空容器である。直径5 、2
’5 inのアルミニウム基板2を鏡面研磨後第−次下
地層としてN1−P無電解メッキを施し、その上に第二
次下地層として前記Cr−Fe合金のターゲット1を用
いて、0、1.wスパツタリングした。その際ターゲッ
トに割れが発生することなくスパッタリングが行なえた
最高のスパッタリング速度を第1表に併記した。As shown in Table 1, iron was added to chromium in an amount of 0 to 35 wt%, and after high-frequency melting in Ar gas at 0.65 atm, the product was cast into an iron mold, 15 mm thick, 220 mm thick, and 220 mm long. Obtained an ingot. Table 1 shows the results of measuring the total length of cracks observed on the surface of these ingots. Next, these ingots are machined to
A disk having a thickness of 6ffi11 and a diameter of 200 mm was finished, and it was set in a magnetron sputtering apparatus shown in FIG. 1 and used as a target. In Figure 1, l is the target, 2 is the aluminum substrate, 3 is the rope plate, 4
as 4b is a magnet, and 5 is a vacuum container. Diameter 5, 2
After mirror-polishing a 5-inch aluminum substrate 2, N1-P electroless plating was applied as a first base layer, and the Cr-Fe alloy target 1 was used as a second base layer on top of the plate. .. I was sputtering. The highest sputtering speed at which sputtering could be performed without cracking the target is also listed in Table 1.
而して前記クロム合金下地層の上にCo 30at%
N + −7,5at%Cr合金をO,1mスパッタリ
ングし、更に保護膜としてCをO,aS−スパッタリン
グして磁気記録媒体とした。該磁気記録媒体について最
外周トラックの2.5KHzにおける再住出カを測定し
た結果を第1表に併記した。Then, on the chromium alloy base layer, 30 at% of Co was added.
A magnetic recording medium was obtained by sputtering N + -7,5 at% Cr alloy with O, 1 m, and then sputtering C as a protective film with O, aS-. Table 1 also shows the results of measuring the relocation force of the magnetic recording medium at 2.5 KHz on the outermost track.
第1表
第1表から明らかなように、鉄を3.0〜30.0wt
%含有するCr−Fe合金を溶解鋳造した本発明例Nα
1〜7は、溶解鋳造時にインゴットに割れをほとんど生
じないが、純クロム及び鉄添加量が本発明の請求範囲よ
りも少ないCr−Fe合金を溶解鋳造した比較例隘8.
9はインゴットに大きな割れを生じている。Table 1 As is clear from Table 1, 3.0 to 30.0 wt of iron is
Inventive example Nα in which a Cr-Fe alloy containing % was melted and cast.
Nos. 1 to 7 are comparative examples in which Cr-Fe alloys were melted and cast, which hardly caused cracks in the ingot during melting and casting, but the amounts of pure chromium and iron added were smaller than the claimed range of the present invention.
No. 9 has large cracks in the ingot.
又鉄を3.0〜30.0wt%含有するCr−Fe合金
をターゲットとして使用した本発明例Nα1〜7におい
ては、純クロムの鋳造品を使用した比較例Nα8、純ク
ロムより粉末焼結法によりターゲットを製造した漱11
(従来例)に比べて、アルミニウム基板上へのスパッタ
リング速度が著しく速くなっている。又上記Nα1〜7
は純クロムをスパッタリングしたNα11とほとんど変
らない再生出力を示しており、磁気特性も従来例とほぼ
同等である。一方鉄添加量が本発明の請求範囲よりも少
ない比較例阻9は、従来例N(Lllに比べてスパッタ
リング速度が速くなっていなく、また鉄添加量が本発明
の範囲よりも多い比較例Nα10は、Nα11に比べて
スバツタリング速度は速くなっているが、再生出力が低
下している。In addition, in the present invention examples Nα1 to 7 in which a Cr-Fe alloy containing 3.0 to 30.0 wt% iron was used as a target, in the comparative example Nα8 in which a pure chromium casting was used, and in the powder sintering method from pure chromium, Sou 11, whose target was manufactured by
Compared to the conventional example, the sputtering speed on the aluminum substrate is significantly faster. In addition, the above Nα1 to 7
shows a reproduction output that is almost the same as Nα11 made by sputtering pure chromium, and its magnetic properties are also almost the same as those of the conventional example. On the other hand, Comparative Example Nα10, in which the amount of iron added is smaller than the claimed range of the present invention, has a sputtering rate not higher than that of conventional example N Compared to Nα11, the sputtering speed is faster, but the reproduction output is lower.
〔実施例2〕
クロムに鉄を5%及び25%添加して、0.5気圧のA
rガス中で高周波溶解後黒鉛の水冷鋳型に鋳造し、直径
200+ma、長さ700aIのインゴットにしたとこ
ろ、該インゴット表面に割れの発生は見られなかった。[Example 2] Adding 5% and 25% iron to chromium and adding 5% and 25% iron to 0.5 atm A
After high-frequency melting in r gas, the ingot was cast into a graphite water-cooled mold to form an ingot with a diameter of 200+ma and a length of 700aI, and no cracks were observed on the surface of the ingot.
又上記インゴットを機械加工により、厚さ6III11
、直径200Mの円板に仕上げ、実施例1と同様な方法
でマグネトロンスパッタリング装置にセットしてターゲ
ットとして使用したところ、従来の純クロムのターゲッ
ト(粉末焼結晶)を使用した場合よりもスパッタリング
速度が速く、しかも再生出力は従来と同程度であった。In addition, the above ingot was machined to a thickness of 6III11.
When a disk with a diameter of 200M was finished and used as a target by setting it in a magnetron sputtering device in the same manner as in Example 1, the sputtering speed was higher than when using a conventional pure chromium target (sintered crystal powder). It was fast, and the playback output was about the same as before.
〔実施例3〕
クロムに鉄を3%及び20%添加して、0.5気圧のA
rガス中で高周波溶解後黒鉛の水冷鋳型に、鋳造し、厚
さ10hw、巾25011111%長さ700mのイン
ゴットにしたところ、該インゴット表面に割れの発生は
見られなかった。次に該インゴットを厚さ1rmのステ
ンレス鋼板で被覆し、950°Cで24hr均質化焼鈍
を行なった後、厚さLow迄熱間圧延した。[Example 3] Adding 3% and 20% iron to chromium and adding 3% and 20% iron to 0.5 atm A
After high-frequency melting in r gas, it was cast into a graphite water-cooled mold to form an ingot with a thickness of 10 hw and a width of 25011111% and a length of 700 m. No cracks were observed on the surface of the ingot. Next, the ingot was covered with a stainless steel plate having a thickness of 1 rm, homogenized annealed at 950° C. for 24 hours, and then hot rolled to a low thickness.
上記熱延板を片面約0.31ミーリング加工して、前記
ステンレス鋼板の被覆層を除去したところ、熱延板表面
に割れ等の欠陥は認められなかった。When the above-mentioned hot-rolled sheet was milled by about 0.31 mm on one side and the coating layer of the stainless steel sheet was removed, no defects such as cracks were observed on the surface of the hot-rolled sheet.
該熱延板を巾200m、長さ200gに切断し、実施例
1と同様な方法でマグネトロンスパッタリング装置にセ
ットしてターゲットとして使用したところ、従来の純ク
ロムのターゲット(粉末焼結晶)を使用した場合よりも
スパッタリング速度が速く、しかも再生出力は従来と同
程度であつた。The hot-rolled plate was cut into pieces 200 m wide and 200 g long, set in a magnetron sputtering device in the same manner as in Example 1, and used as a target. The sputtering speed was faster than in the conventional case, and the reproduction output was about the same as that of the conventional method.
以上のようにクロムに鉄着添加することにより、溶解鋳
造によるクロムターゲットの製造が可能になり、該クロ
ムターゲットの製造コストを低下させることが出来る。By adding iron to chromium as described above, it becomes possible to manufacture a chromium target by melting and casting, and the manufacturing cost of the chromium target can be reduced.
更にクロムに鉄を添加したCr−Fe合金とすることに
より、クロムをスパッタリングする際のスパッタリング
速度を著しく上げることが出来、磁気記録媒体等の生産
性が大巾に向上する。Furthermore, by using a Cr--Fe alloy in which iron is added to chromium, the sputtering speed when sputtering chromium can be significantly increased, and the productivity of magnetic recording media and the like is greatly improved.
第1図は本発明に用いたマグネトロンスパッタリング装
置の断面図である。
l・・・ターゲット 2・・・アルミニウム基板3・
・・銅プレート4a・・・磁石 4b・・・磁石5・
・・真空容器FIG. 1 is a sectional view of a magnetron sputtering apparatus used in the present invention. l...Target 2...Aluminum substrate 3.
...Copper plate 4a...Magnet 4b...Magnet 5.
・・Vacuum container
Claims (3)
ことを特徴とするスパッタリングのターゲット用クロム
合金。(1) A chromium alloy for use in sputtering targets, characterized by comprising 3.0 to 30.0 wt% iron and the balance chromium.
ムからなる合金であって、不活性ガス中で溶解鋳造によ
りインゴットを製造し、該インゴットを機械加工により
仕上げることを特徴とするスパッタリングのターゲット
用クロム合金の製造方法。(2) An alloy having an alloy composition of 3.0 to 30.0 wt% iron and the balance chromium, characterized by producing an ingot by melting and casting in an inert gas, and finishing the ingot by machining. A method for producing a chromium alloy for sputtering targets.
ロムからなる合金であって、不活性ガス中で溶解鋳造に
よりインゴットを製造し、該インゴットを熱間塑性加工
することを特徴とするスパッタリングのターゲット用ク
ロム合金の製造方法。(3) An alloy with an alloy composition of 3.0 to 30.0 wt% iron and the balance chromium, characterized by producing an ingot by melting and casting in an inert gas, and subjecting the ingot to hot plastic working. A method for producing a chromium alloy for sputtering targets.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3055787A JPS63199844A (en) | 1987-02-12 | 1987-02-12 | Chromium alloy for target of sputtering and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3055787A JPS63199844A (en) | 1987-02-12 | 1987-02-12 | Chromium alloy for target of sputtering and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63199844A true JPS63199844A (en) | 1988-08-18 |
Family
ID=12307104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3055787A Pending JPS63199844A (en) | 1987-02-12 | 1987-02-12 | Chromium alloy for target of sputtering and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63199844A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0570933A (en) * | 1991-03-19 | 1993-03-23 | Mitsubishi Materials Corp | Manufacture of slender bar-like raw material for vapor-deposition |
US5288228A (en) * | 1989-11-17 | 1994-02-22 | Kubota Corporation | Heat-resistant materials |
CN110079773A (en) * | 2019-04-09 | 2019-08-02 | 华南理工大学 | A kind of Cr-Fe alloy target material of Dai Ge (VI) coating and preparation and application |
-
1987
- 1987-02-12 JP JP3055787A patent/JPS63199844A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5288228A (en) * | 1989-11-17 | 1994-02-22 | Kubota Corporation | Heat-resistant materials |
JPH0570933A (en) * | 1991-03-19 | 1993-03-23 | Mitsubishi Materials Corp | Manufacture of slender bar-like raw material for vapor-deposition |
CN110079773A (en) * | 2019-04-09 | 2019-08-02 | 华南理工大学 | A kind of Cr-Fe alloy target material of Dai Ge (VI) coating and preparation and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5337331B2 (en) | Method for producing sputtering target material | |
US4830685A (en) | Wear-resistant alloy of high permeability and method of producing the same | |
JP5467641B2 (en) | Method for producing sputtering target material | |
JP2777319B2 (en) | Wear-resistant high-permeability alloy, method for producing the same, and magnetic recording / reproducing head | |
JPS625972B2 (en) | ||
JP6231035B2 (en) | Manufacturing method of sputtering target for magnetic recording medium | |
EP1235946B1 (en) | Method for producing cobalt-based alloy sputter target | |
JPS63199844A (en) | Chromium alloy for target of sputtering and its production | |
JPS6212296B2 (en) | ||
JPS6312936B2 (en) | ||
JP4573381B2 (en) | Manufacturing method of sputtering target | |
JP4698779B2 (en) | Magnetic sputtering target and manufacturing method thereof | |
US20050183797A1 (en) | Fine grained sputtering targets of cobalt and nickel base alloys made via casting in metal molds followed by hot forging and annealing and methods of making same | |
JP2002226970A (en) | Co TARGET AND PRODUCTION METHOD THEREFOR | |
JPS5922782B2 (en) | High permeability alloy for iron-based magnetic head and magnetic recording/reproducing head | |
JPS6216444B2 (en) | ||
JPS6339128A (en) | Magnetic recording medium | |
JP2006307345A (en) | Sputtering target | |
KR100190681B1 (en) | METHOD FOR PRODUCING Mn-Al THIN FILMS | |
JP2802852B2 (en) | Target material and method for producing the same | |
JP2802851B2 (en) | Target material and method for producing the same | |
JPH0518899B2 (en) | ||
JPH0641734A (en) | Target member and its production | |
CN119736587A (en) | A Co-Fe-W-Nb alloy sputtering target and preparation method thereof | |
JP2802850B2 (en) | Target material and method for producing the same |