JPS63199236A - Low-stress and heat-resistant resin - Google Patents
Low-stress and heat-resistant resinInfo
- Publication number
- JPS63199236A JPS63199236A JP2959287A JP2959287A JPS63199236A JP S63199236 A JPS63199236 A JP S63199236A JP 2959287 A JP2959287 A JP 2959287A JP 2959287 A JP2959287 A JP 2959287A JP S63199236 A JPS63199236 A JP S63199236A
- Authority
- JP
- Japan
- Prior art keywords
- diamine
- polyimide
- derivative
- thermal expansion
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920006015 heat resistant resin Polymers 0.000 title abstract 2
- 229920001721 polyimide Polymers 0.000 claims abstract description 44
- 239000009719 polyimide resin Substances 0.000 claims abstract description 7
- 239000000126 substance Substances 0.000 claims abstract description 7
- 150000004985 diamines Chemical class 0.000 abstract description 24
- 239000000463 material Substances 0.000 abstract description 21
- 238000000576 coating method Methods 0.000 abstract description 17
- 239000011248 coating agent Substances 0.000 abstract description 16
- 229920005575 poly(amic acid) Polymers 0.000 abstract description 11
- -1 molding Substances 0.000 abstract description 7
- 150000000000 tetracarboxylic acids Chemical class 0.000 abstract description 6
- 238000012545 processing Methods 0.000 abstract description 5
- 238000000465 moulding Methods 0.000 abstract description 4
- 239000012776 electronic material Substances 0.000 abstract description 3
- 238000006358 imidation reaction Methods 0.000 abstract 1
- 230000002194 synthesizing effect Effects 0.000 abstract 1
- 229920001187 thermosetting polymer Polymers 0.000 abstract 1
- 239000004642 Polyimide Substances 0.000 description 35
- 230000015572 biosynthetic process Effects 0.000 description 35
- 238000003786 synthesis reaction Methods 0.000 description 34
- 239000010408 film Substances 0.000 description 18
- 238000000034 method Methods 0.000 description 17
- 229920000642 polymer Polymers 0.000 description 17
- 235000012431 wafers Nutrition 0.000 description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 14
- 229910052710 silicon Inorganic materials 0.000 description 14
- 239000010703 silicon Substances 0.000 description 14
- 230000035882 stress Effects 0.000 description 13
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 12
- 238000005259 measurement Methods 0.000 description 10
- 239000002243 precursor Substances 0.000 description 9
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 8
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 8
- 238000001816 cooling Methods 0.000 description 7
- 238000001723 curing Methods 0.000 description 7
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical group NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000013007 heat curing Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229920000620 organic polymer Polymers 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- INQDDHNZXOAFFD-UHFFFAOYSA-N 2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOC(=O)C=C INQDDHNZXOAFFD-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 2
- 150000005690 diesters Chemical class 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 150000004986 phenylenediamines Chemical group 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- NUIURNJTPRWVAP-UHFFFAOYSA-N 3,3'-Dimethylbenzidine Chemical compound C1=C(N)C(C)=CC(C=2C=C(C)C(N)=CC=2)=C1 NUIURNJTPRWVAP-UHFFFAOYSA-N 0.000 description 1
- ROSGJZYJHLVCJU-UHFFFAOYSA-N 3-(dimethoxymethylsilyl)propan-1-amine Chemical compound COC(OC)[SiH2]CCCN ROSGJZYJHLVCJU-UHFFFAOYSA-N 0.000 description 1
- VBGLAHNCYJVFHL-UHFFFAOYSA-N 4,6-dicarbamoylbenzene-1,3-dicarboxylic acid Chemical compound OC(=N)C1=CC(C(O)=N)=C(C(O)=O)C=C1C(O)=O VBGLAHNCYJVFHL-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000000710 polymer precipitation Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000006798 ring closing metathesis reaction Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 125000006158 tetracarboxylic acid group Chemical group 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は特定の化学構造を有するポリイミド樹脂に関す
るものであり、電気、電子材料に好適な高い耐熱性、良
好な機械強度及び低い熱膨張係数をあわせ持つ有用な新
しい材料を提供するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a polyimide resin having a specific chemical structure, which has high heat resistance, good mechanical strength, and low coefficient of thermal expansion suitable for electrical and electronic materials. This provides a useful new material that has the following properties.
有機ポリマーの熱膨張係数(線膨張係数)は、ガラス転
移温度以下の温度領域においても、はとんどのものが4
X10’に’以上であり、金属や無機物に比べてはるか
に大きな値を有する。有機物の線膨張係数がこのように
大きいため、多くの問題が発生する。極言すれば有機ポ
リマーの用途展開が思うように進行しないのもこのため
とさえいえるのである。例えば非常に高い耐熱性を持ち
、近年LSIやICの保護膜として使われ始めているポ
リイミド樹脂の場合においても、熱膨張係数がポリイミ
ドより小さい金属板や無la賀材の上に塗布すると、膨
張係数の差に起因する熱応力によって、変形、膜のクラ
ック、はくり、基材の破壊などが起こることがあり、こ
のためLSIやICの保護膜としてシリコンウェハー上
にコート膜を形成すると、ウェハーが反って、パターニ
ングのためのフォトリソグラフィができなかったり、あ
るいは解像度が極めて悪くなるという問題や、熱応力が
大ぎい場合、パッシベーション膜を剥離したり、シリコ
ンウェハー自体にへぎ開破壊を起こさせる等の問題があ
る。The thermal expansion coefficient (linear expansion coefficient) of most organic polymers is 4, even in the temperature range below the glass transition temperature.
X10' or more, and has a much larger value than metals and inorganic materials. Many problems arise due to the large linear expansion coefficient of organic materials. In other words, this is the reason why the development of applications for organic polymers is not progressing as expected. For example, even in the case of polyimide resin, which has extremely high heat resistance and has recently begun to be used as a protective film for LSIs and ICs, if it is applied to a metal plate or arbor material whose coefficient of thermal expansion is smaller than that of polyimide, the coefficient of expansion will decrease. Thermal stress caused by the difference in the On the other hand, there are problems such as not being able to perform photolithography for patterning, or extremely poor resolution, and problems such as peeling off the passivation film or causing cracking of the silicon wafer itself if the thermal stress is too large. There's a problem.
また、フィルムと導体とからなるフレキシブルプリント
基板(FPC)においては金属箔に可撓性フィルム材料
をコートあるいは熱圧着して1qられるフィルムが望ま
れているが、コーテイング後高温で硬化、乾燥、あるい
は熱圧着しなければならないため、室温に冷却後熱膨張
係数の差に起因する熱応力によってカールしてしまうと
いう問題がある。In addition, for flexible printed circuit boards (FPC) consisting of a film and a conductor, it is desirable to have a metal foil coated with a flexible film material or bonded by heat and pressure. Since thermocompression bonding is required, there is a problem in that the material curls due to thermal stress caused by a difference in thermal expansion coefficients after cooling to room temperature.
このように、有機ポリマーの線膨張係数が大きいための
問題点は極めて多く、この点を改善した低膨張係数を有
するポリイミド樹脂の開発がかなり前から強く望まれて
いた。As described above, there are many problems due to the large coefficient of linear expansion of organic polymers, and there has been a strong desire for a long time to develop a polyimide resin having a low coefficient of expansion that improves these problems.
このような状況下にあって、最近低膨張係数を有するポ
リイミドがいくつか発表されている。Under these circumstances, several polyimides having low expansion coefficients have recently been announced.
例えば沼田等により特開昭60−32827丹、特開昭
60−44338@、特開昭60−152786@、特
開昭60−208358号、特開昭60−243120
@、特開昭60−250031号。For example, according to Numata et al.
@, Japanese Patent Publication No. 60-250031.
特開昭61−60725号等に示されているもの、或い
は松浦等により特開昭60−210629号、特開昭6
0−210894@、特開昭60−221426号、特
開昭60−221427号、特開昭61−69833@
等に示されているものなどのように、特定の原料成分を
用いて熱膨張係数の低いポリイミドを作った例がある。JP-A-61-60725, etc., or by Matsuura et al., JP-A-60-210629, JP-A-6
0-210894@, JP-A-60-221426, JP-A-60-221427, JP-A-61-69833@
There are examples of polyimides with low coefficients of thermal expansion made using specific raw material components, such as those shown in .
又、低熱膨張係数のポリイミドフィルムを作った例とし
ては、太田らにより特開昭61−18133号公報にお
いて化学閉環によるイミド化法を用いたものが開示され
ている。Further, as an example of producing a polyimide film having a low coefficient of thermal expansion, Ota et al. have disclosed in JP-A-61-18133 that an imidization method using chemical ring closure is used.
しかし、前記の沼田ら及び松浦らの提案しているポリイ
ミドは、低膨張材料としての性能を(7るために、何等
かの配向処理を必要としている。However, the polyimide proposed by Numata et al. and Matsuura et al. requires some kind of orientation treatment in order to improve its performance as a low expansion material.
この点に関しては特開昭61−60725にとくに詳し
く記載されており、配向処理については、例えば同明細
書第5項左上刃ラム13行、第6項左下刃ラム12行か
ら右下刃ラム19行に効果が述べられ、第11項表1の
実施例2から8の実験結果に定量的に記載されている。This point is described in detail in JP-A No. 61-60725, and the orientation treatment is described, for example, in Section 5, line 13 of the upper left blade ram, and Section 6, line 12 of the lower left blade ram to lower right blade ram 19. The effects are stated in rows and are quantitatively described in the experimental results of Examples 2 to 8 in Section 11, Table 1.
この配向処理は主に乾燥又は効果の過程で延伸すること
により行うのが効果的であり、具体的にはフィルム状に
した後、鉄わくに固定して加熱硬化するなどの、硬化途
中に鉄の熱膨張による延伸がかかるような条件が好まし
い。前記明細書ではこの方法により、線熱膨張係数を自
由硬化の場合の60〜2.5%に減少させている。しか
しながらこれらのポリイミドはこの性質のため、塗布材
料として用いた場合、銅等の熱膨張係数の比較的大きな
材料上で塗膜形成、硬化を行った場合には所定の物性が
出るものの、セラミクス、シリコンウェハー等の熱膨張
係数の小さな材料上では、基材の熱膨張による延伸、配
向がほとんど無いため、熱膨張係数が充分に下がらず、
残留応力がおおきいという問題がある。It is effective to carry out this orientation treatment mainly by stretching during the drying or effecting process. Specifically, after forming into a film, it is fixed on an iron frame and heated to harden. Preferably, the conditions are such that stretching is caused by thermal expansion. In the above specification, this method reduces the coefficient of linear thermal expansion to 60 to 2.5% of that in the case of free curing. However, due to this property, when these polyimides are used as a coating material, they exhibit certain physical properties when a coating film is formed and cured on a material with a relatively large coefficient of thermal expansion, such as copper, but they are not suitable for ceramics, On materials with a small coefficient of thermal expansion such as silicon wafers, there is almost no stretching or orientation due to thermal expansion of the base material, so the coefficient of thermal expansion does not decrease sufficiently.
There is a problem that residual stress is large.
この問題点は、厚膜を一括して塗布する際に特に顕著で
あり、薄膜を多層重ねることによってやや改善されるが
、それでも不十分である。したがって、セラミックス、
シリコンウェハー等の熱膨張係数の小さな材料上に塗布
、加熱硬化するというプロレスに用いることができる低
熱膨張係数のポリイミド材料が望まれていたのである。This problem is particularly noticeable when thick films are applied all at once, and although it is somewhat improved by stacking multiple thin films, it is still insufficient. Therefore, ceramics,
There was a desire for a polyimide material with a low coefficient of thermal expansion that could be used in professional wrestling by coating it on a material with a low coefficient of thermal expansion, such as a silicon wafer, and curing it by heating.
また、これらのポリイミドは一般に機械強度に乏しく、
現在知られている他のポリイミドと比較して特に伸度が
著しく低く、脆いポリマーである。In addition, these polyimides generally have poor mechanical strength,
It is a brittle polymer with particularly low elongation compared to other currently known polyimides.
これは、無水ピロメリット酸とパラフェニレンジアミン
から導かれたポリイミドについて特に顕著であり、この
ことについては前記明細書実施例1にも記載されている
。塗膜の機械強度は、素子の信頼性に大きく関係するも
のであり、より伸度の大ぎな低膨張ポリイミドが望まれ
ていた。This is particularly true for polyimides derived from pyromellitic anhydride and paraphenylene diamine, which is also described in Example 1 of the above specification. The mechanical strength of the coating film is greatly related to the reliability of the device, and a low expansion polyimide with greater elongation has been desired.
また、これらのポリイミドは、前記明細書等に記載され
ているように、まずポリイミド前駆体として塗布、成型
、フィルム化などの加工を行った後、加熱硬化してイミ
ド化するという工程をとるものであるが、ポリイミド前
駆体段階での有機溶媒に対1−る溶解性が悪く、溶液よ
りのポリマーの析出が起こりやすいなどの挙動があり、
他の現在知られているポリイミドと比較して加工性が悪
いという問題点もあった。従ってこの点の改良も望まれ
ていたのである。In addition, as described in the above-mentioned specifications, these polyimides first undergo processing such as coating, molding, and film formation as a polyimide precursor, and then heat-cure and imidize. However, the solubility in organic solvents at the polyimide precursor stage is poor, and the polymer tends to precipitate from the solution.
It also had the problem of poor processability compared to other currently known polyimides. Therefore, improvements in this respect have also been desired.
(問題点を解決するだめの手段)
本発明省らは以上の問題点のない、即ち低熱膨張率の材
料上で塗布、硬化のプロセスを行っても、ポリイミド白
身が低熱膨張率化して熱による残留応力が無く、機械強
度が大きく、且つ前駆体の加工性にも優れた、新規なポ
リイミド樹脂を開発することを目的として、以下の研究
を行った。(Means to Solve the Problem) Even if the Ministry of Invention and others perform the coating and curing process on a material that does not have the above problems, that is, a material with a low coefficient of thermal expansion, the polyimide white will have a low coefficient of thermal expansion and will not be affected by heat. The following research was conducted with the aim of developing a new polyimide resin that has no residual stress, high mechanical strength, and excellent processability as a precursor.
まず種々のテトラカルボン酸、ジアミンからポリイミド
を作り評価検討した結果、ピロメリット酸とバラフェニ
レンジアミン又はそのメチル基置換体から合成されたポ
リイミドが、シリコンウェハー上で塗布、硬化しても残
留応力がほとんど無いことがわかったが、残念ながらこ
のポリマーは機械強度が小さく、かつ前駆体の溶解性も
不十分で実用に耐えなかった。First, we made polyimide from various tetracarboxylic acids and diamines and evaluated them. As a result, we found that polyimide synthesized from pyromellitic acid and paraphenylenediamine or its methyl group-substituted product has no residual stress even when coated and cured on a silicon wafer. Unfortunately, this polymer had low mechanical strength and insufficient solubility of the precursor, making it unsuitable for practical use.
そこでにのポリマーを基本に他のジアミンと共重合する
ことを試みたところ、ビ日メリッ(−酸を原料とするポ
リイミドで、ジアミンのうち60ないし90モル%をバ
ラフェニレンジアミンまたはそのメチル基置換体を用い
、且つジアミンのうち10ないし40モル%をメタフェ
ニレンジアミン又はそのメチル基置換体を用いると、シ
リコンウェハー等の低熱膨張材料上で塗布、硬化【ノて
も残留応力がほとんど無く、機械的強度は通常の市販さ
れている塗布型ポリイミドと同程度であり、且つ前駆体
の溶解性も充分で加工性も良く、満足すべき結果を与え
ることを見出だし、本発明を完成した。When we attempted to copolymerize this polymer with other diamines, we found that 60 to 90 mol% of the diamine was substituted with phenylenediamine or its methyl group. If 10 to 40 mol% of the diamine is metaphenylene diamine or its methyl group-substituted derivative, it can be coated and cured on a low thermal expansion material such as a silicon wafer, and there is almost no residual stress. The present invention has been completed based on the discovery that the adhesive strength is comparable to that of ordinary commercially available coated polyimide, the precursor has sufficient solubility, and the processability is good, giving satisfactory results.
プなわら本発明は、次式(1)
(式中、口はOないし2の整数である)で表わされる単
位構造を60ないし90モル%含み、次式(式中、mは
Oないし2の整数である)で表わされる単位構造を10
ないし40モル%含むことを特徴とするポリイミド樹脂
である。In other words, the present invention contains 60 to 90 mol% of a unit structure represented by the following formula (1) (in the formula, m is an integer from O to 2); ) is an integer of 10
It is a polyimide resin characterized by containing from 40 mol% to 40 mol%.
以F本発明の詳細な説明する。The present invention will now be described in detail.
まず本発明のポリイミドの製造方法であるが、該ポリイ
ミドは、テトラカルボン酸又はその誘導体とジアミン又
はその誘導体とからポリアミド酸又はその誘導体を合成
した後、これを用いて塗布、成型、フィルム化等の加工
を行い、ついで加熱硬化してイミド化するというプロセ
スによって製造する。First, the method for producing polyimide of the present invention is to synthesize a polyamic acid or a derivative thereof from a tetracarboxylic acid or a derivative thereof and a diamine or a derivative thereof, and then use this to coat, mold, form a film, etc. It is manufactured through a process of processing, followed by heat curing and imidization.
テ]へラカルボン酸又はその誘導体としては、ピロメリ
ット酸無水物、ピロメリット酸ジエステル、ピロメリッ
ト酸ジエステルの二酸塩化物、ピロメリッ1へ酸ジアミ
ド等を用いる。なお、ビフェニルテ1〜ラカルボン酸無
水物、3.3’ 、4.4’ −ベンシフ1ノンテトラ
カルボン酸無水物、又はこれ等の誘導体を用いると、低
熱膨張係数の基材上で塗イ[、硬化のプロセスをとった
際の残留応力が大きく好ましくない。As the heracarboxylic acid or its derivative, pyromellitic anhydride, pyromellitic diester, diacid chloride of pyromellitic diester, pyromellitic acid diamide, etc. are used. In addition, when biphenyltetracarboxylic anhydride, 3.3', 4.4'-bensif 1nontetracarboxylic acid anhydride, or derivatives thereof are used, coating on a substrate with a low coefficient of thermal expansion is possible. , the residual stress during the curing process is large, which is undesirable.
ジアミン又はその誘導体としては、バラフェニレンジア
ミン、2.5−トルイレンジアミン、バラキシリレン−
2,5−ジアミン、メタキシリレン−2,5−ジアミン
又はこれ等のジアミンのイソシアネート誘導体、シリル
化誘導体などをジアミン類仝体の60ないし90モル%
含み、メタフェニレンジアミン、2.4−トルイレンジ
アミン、2゜6−トルイレンジアミン、メタキシリレン
−2゜4−ジアミン、メタキシリレン−4,6−ジアミ
ン、バラキシリレン−2,6−ジアミン又はこれ等のイ
ソシアネート誘導体、シリル化誘導体などをジアミン類
全体の10ないし40モル%用いる。これ等のジアミン
類のうちで、バラフェニレンジアミンとメタフェニレン
ジアミンとの組み合わせを用いると、耐熱製、ポリイミ
ド前駆体の溶解性の点で優れたものが得られる。またメ
チル置換基が多いものほどポリイミドの伸度が大きくな
る。パラフェニレンジアミンはまたそのメチル塁置換の
ジアミン類におけるモル%が90を越えると、ポリイミ
ドの伸度が小さくなり、且つポリイミド前駆体の溶解性
が悪化するので好ましくない。またメタフェニレンジア
ミンはまたそのメチル基置換体のジアミン類におけるモ
ル%が40を越えると、シリコンウェハー等の低熱膨張
材料上で塗布、硬化した場合に残留応力が充分に低くな
らないので好ましくない。Examples of diamines or derivatives thereof include paraphenylene diamine, 2,5-tolylene diamine, and paraxylylene diamine.
2,5-diamine, metaxylylene-2,5-diamine, isocyanate derivatives, silylated derivatives, etc. of these diamines in an amount of 60 to 90 mol% of the diamine analogs.
Contains metaphenylene diamine, 2,4-toluylene diamine, 2゜6-tolylene diamine, metaxylylene-2゜4-diamine, metaxylylene-4,6-diamine, varaxylylene-2,6-diamine, or isocyanates thereof. Derivatives, silylated derivatives, etc. are used in an amount of 10 to 40 mol% of the total diamines. Among these diamines, when a combination of phenylene diamine and meta-phenylene diamine is used, a product excellent in heat resistance and solubility of the polyimide precursor can be obtained. Furthermore, the more methyl substituents there are, the greater the elongation of the polyimide. Para-phenylenediamine is also not preferable if the mole % of the methyl base-substituted diamine exceeds 90, since the elongation of the polyimide decreases and the solubility of the polyimide precursor deteriorates. Further, metaphenylenediamine is not preferable if the mole % of its methyl group-substituted product in diamines exceeds 40, since the residual stress will not be sufficiently reduced when coated and cured on a low thermal expansion material such as a silicon wafer.
許容されるジアミン類の組成の範囲内で、パラフェニレ
ンジアミン又はそのメチル基置換体のジアミン類におけ
るモル%が大きくなるほどシリコンウェハー等の低熱膨
張材料上で塗布、硬化した場合の残留応力が相対的に高
く、ポリイミドの伸度及びポリイミド前駆体の溶解度は
相対的に低くなる傾向にあるので、使用目的に応じた最
適な比率を選ぶ必要がある。Within the allowable composition range of diamines, the larger the mole percentage of para-phenylene diamine or its methyl group-substituted derivative in diamines, the greater the relative residual stress when coated and cured on a low thermal expansion material such as a silicon wafer. Since the elongation of polyimide and the solubility of the polyimide precursor tend to be relatively low, it is necessary to select the optimum ratio depending on the purpose of use.
本発明において、テトラカルボン酸またはその誘導体と
ジアミン又はその誘導体とからポリアミド酸またはその
誘導体を合成する方法としては種々のものを用いること
ができる。例えば前述の沼田等の特許公報に開示されて
いる方法であるテトラカルボン酸二無水物とジアミンと
を極性溶媒中で反応し、ポリアミド酸を作る方法を用い
ることができる。また本発明者等が特開昭61−720
22@。In the present invention, various methods can be used to synthesize polyamic acid or its derivative from tetracarboxylic acid or its derivative and diamine or its derivative. For example, the method disclosed in the aforementioned patent publication of Numata et al., in which a tetracarboxylic dianhydride and a diamine are reacted in a polar solvent to produce a polyamic acid, can be used. In addition, the present inventors et al.
22@.
特開昭61−127731号公報で示したような、テト
ラカルボン酸ジエステルとジアミンとを脱水縮合剤の存
在下に反応させてポリアミド酸エステルを作る方法も用
いることができる。他に、ルブナー等が特公昭55−4
1422号公報において用いているような、テトラカル
ボン酸ジエステルニ酸塩化物とジアミンを塩基の存在下
反応させてポリアミド酸エステルを作る方法、今封らが
、日本化学会第53秋季年会予稿集4^−05号で示し
た、テトラカルボン酸無水物とシリル化ジアミンと反応
による方法も用いることができる。またテトラカルボン
酸とジイソシアネートとの反応も用いることができる。A method of producing a polyamic acid ester by reacting a tetracarboxylic acid diester and a diamine in the presence of a dehydration condensing agent, as shown in JP-A-61-127731, can also be used. In addition, Lubner et al.
A method for producing a polyamic acid ester by reacting a tetracarboxylic acid diester diacid chloride and a diamine in the presence of a base, as used in Publication No. 1422, was reported by Imafuru et al. in Proceedings of the 53rd Autumn Annual Meeting of the Chemical Society of Japan, 4. The method shown in No. ^-05, in which a tetracarboxylic acid anhydride is reacted with a silylated diamine, can also be used. It is also possible to use a reaction between a tetracarboxylic acid and a diisocyanate.
これらの合成方法のうち、沼田らの方法は、合成方法が
簡便であり好ましく、ルブナーらの方法及び本発明者ら
の方法は生成するポリアミド酸エステルの溶解性及び保
存安定性が良好であるので好ましい。しかし、本発明者
らの方法が不純物イオンの含量が少ないので最も好まし
い。Among these synthesis methods, the method of Numata et al. is preferable because it is a simple synthesis method, and the method of Lubner et al. and the method of the present inventors are preferable because the produced polyamic acid ester has good solubility and storage stability. preferable. However, our method is the most preferred because it has a lower content of impurity ions.
合成されたポリアミド酸又はその誘導体は、主としてま
ず溶液とした後、塗布、成型、フィルム化等の加工を行
うものであるが、ぞの際の溶媒としてはN−メチルピロ
リドン、ジメチルアセトアミド、ジメチルスルフオキシ
ド、T−ブチロラクトン、シクロヘキシノン、シクロペ
ンタノン、テトラヒドロフラン、ジオキサン等の極性溶
媒が好ましく、また必要に応じてその他の溶媒を塗布性
の改良のためなどに混合することもできる。この溶媒は
合成の際の溶媒とかねて、合成反応液をそのまま用いる
ことができる。Synthesized polyamic acid or its derivatives are mainly made into a solution and then processed by coating, molding, film formation, etc. The solvent used in this process is N-methylpyrrolidone, dimethylacetamide, dimethylsulfate, etc. Polar solvents such as fluoride, T-butyrolactone, cyclohexinone, cyclopentanone, tetrahydrofuran, and dioxane are preferred, and other solvents may be mixed as necessary to improve coating properties. As this solvent, the synthesis reaction solution can be used as it is as a solvent during synthesis.
また、この溶液に対して、特開昭61−293204号
公報に記載されているのと同様に光活性物質を添加して
感光性を付与することもできる。Furthermore, a photoactive substance can be added to this solution to impart photosensitivity as described in JP-A No. 61-293204.
この溶液にはシランカップリング剤、アルミニウムキレ
ート剤、チタニウムキレート剤等の接着助剤を添加して
おくこともできる。An adhesion aid such as a silane coupling agent, an aluminum chelating agent, a titanium chelating agent, etc. can also be added to this solution.
ついで、接着助剤の塗布、エツチング、プラズマ処理な
どの接着力を高めるための処理を必要に応じて行った基
材に対して、前記の溶液を塗布、乾燥し、必要な成型、
バターニング等の加工を行った後、加熱により硬化して
ポリイミドの塗膜、フィルム、成型品などを得る。Next, the above-mentioned solution is applied to the base material, which has been subjected to treatments to increase adhesive strength such as application of an adhesion aid, etching, and plasma treatment as necessary, followed by drying, and the necessary molding.
After processing such as buttering, it is cured by heating to obtain polyimide coatings, films, molded products, etc.
加熱硬化はオーブン、ホットプレート、電磁加熱装置等
を用い、窒素等の不活性ガス気流中又は空気中で行う。Heat curing is performed using an oven, hot plate, electromagnetic heating device, etc. in a stream of an inert gas such as nitrogen or in air.
パラフェニレンジアミンとピロメリット酸から合成され
るポリイミドは、考え(qる最も剛直な構造を持つポリ
イミドであり、低熱膨張係数、高弾性率、高耐熱性等の
種々の特徴ある性能を持っている。しかし、伸度がほと
んど無くもろい等の欠点も同時に持っており実用化はさ
れていなかった。Polyimide synthesized from para-phenylene diamine and pyromellitic acid is a polyimide with the most rigid structure in the world, and has various characteristic properties such as a low coefficient of thermal expansion, high modulus of elasticity, and high heat resistance. However, it also had drawbacks such as almost no elongation and was brittle, so it was not put into practical use.
そしてこの特性は上記の構造を持つ強い自己配向性によ
るものと考えられる。This property is thought to be due to the strong self-orientation of the structure described above.
本発明においてはこの構造と特定の他の閏迄との共重合
を行うことにより、強い自己配向性を残したまま伸度の
向上、加工性の向上を達成し得たものであり、低膨張係
数の基材上でも自己配向により低熱膨張係数のポリイミ
ドとなるような材料が開発できたものと思われる。In the present invention, by copolymerizing this structure with other specific leaps, we were able to achieve improved elongation and processability while retaining strong self-orientation, resulting in low expansion. It seems that we have been able to develop a material that becomes a polyimide with a low coefficient of thermal expansion through self-orientation even on a base material with a low coefficient of thermal expansion.
本発明のポリイミドは、シリコンウェハー等の低熱膨張
係数の基材上においても、塗布、硬化という簡便なプロ
セスにより、残留応力のほとんど無い耐熱性被膜を形成
することができ、広く電子材料、半導体の分野に適応で
きる有用な材料である。The polyimide of the present invention can form a heat-resistant film with almost no residual stress even on substrates with low thermal expansion coefficients such as silicon wafers through a simple process of coating and curing, and is widely used in electronic materials and semiconductors. It is a useful material that can be applied to various fields.
また、本発明のポリイミドは高い伸度を持ち、上記の分
野に適用した際の信頼性に優れている。Furthermore, the polyimide of the present invention has high elongation and is excellent in reliability when applied to the above fields.
ざらに、本発明のポリイミドの前駆体は溶解性が良く、
加工する際の作業性が改良されるものである。In general, the polyimide precursor of the present invention has good solubility;
This improves workability during processing.
(実施例1)
以下に本発明の実施例を示すが、本発明はこれ(制限さ
れるものではない。(Example 1) Examples of the present invention are shown below, but the present invention is not limited thereto.
合成例1
500 d容のセパラブルフラスコに、ピロメリットM
pIA水物21.8g、2−ヒドロキシエチルメタクリ
レート27.0 g、γ−ブチロラクトン100 rn
lを入れ、水冷下、撹拌しながらピリジン17.0gを
加えた。室温で16時間撹拌した後、ジシクロヘキシル
゛カルボジイミド41.29のγ−ブチロラク
トン40Inlの溶液を水冷下、10分間で加え、続い
てパラフェニレンジアミン(以下、P−PDと略す)8
.1gと、メタフェニレンジアミン(以下、M−PDと
略す>2.09を20WIIlのγブチロラクトンに懸
濁したものを15分間で加えた。Synthesis Example 1 Pyromellit M was added to a 500 d separable flask.
pIA hydrate 21.8 g, 2-hydroxyethyl methacrylate 27.0 g, γ-butyrolactone 100 rn
17.0 g of pyridine was added while stirring under water cooling. After stirring at room temperature for 16 hours, a solution of 41.29 dicyclohexyl carbodiimide in 40 Inl of γ-butyrolactone was added over 10 minutes under water cooling, followed by addition of paraphenylenediamine (hereinafter abbreviated as P-PD) 8
.. 1 g of metaphenylene diamine (hereinafter abbreviated as M-PD>2.09) suspended in 20 WIl of γ-butyrolactone was added over 15 minutes.
さらに、ジメチルアセトアミド707を加えて室温で3
時間撹拌した後、エタノール5In1を加えて更に1時
間撹拌し、沈澱を濾過した後、得られた溶液を101の
エタノールでに加え、生成した沈澱をエタノールで洗浄
した後、真空乾燥して淡黄色の粉末を得た。(qられた
粉末のN−メチルピロリドン中、30℃、0.59/d
Iでの粘度数(以下、v、 n。Furthermore, dimethylacetamide 707 was added and 3
After stirring for an hour, 5In1 of ethanol was added and further stirred for 1 hour. After filtering the precipitate, the resulting solution was added to 101% of ethanol, the resulting precipitate was washed with ethanol, and then dried under vacuum to give a pale yellow color. powder was obtained. (The quantified powder in N-methylpyrrolidone, 30°C, 0.59/d
Viscosity number at I (hereinafter v, n).
と略す)は32.8dl/gであった。) was 32.8 dl/g.
得られた粉末のN−メチルピロリドン中、23℃、36
%溶液でのE型粘度計を用いて求めた溶液It!i度(
以下、ηと略す)は、133.9ボイスであった。The obtained powder was dissolved in N-methylpyrrolidone at 23°C at 36°C.
Solution It! determined using an E-type viscometer at % solution! i degree(
(hereinafter abbreviated as η) was 133.9 voices.
この溶液を室温で10日放置したがポリマーの析出は無
かった。このポリマーをA−0020と称する。This solution was left at room temperature for 10 days, but no polymer was deposited. This polymer is designated as A-0020.
合成例2〜3.比較合成例1〜3
P−PDとM−PDの量を変える以外は合成例1と同様
にして合成を行った。結果を表1に記す。Synthesis Examples 2-3. Comparative Synthesis Examples 1 to 3 Synthesis was carried out in the same manner as Synthesis Example 1 except that the amounts of P-PD and M-PD were changed. The results are shown in Table 1.
合成例4〜15.比較合成例4〜11
ジアミン類を表2に示すものに変える以外は実施例1と
同様にして合成を行った。結果を表2に記す。Synthesis Examples 4-15. Comparative Synthesis Examples 4 to 11 Synthesis was carried out in the same manner as in Example 1 except that the diamines were changed to those shown in Table 2. The results are shown in Table 2.
(以下余白)
合成例16
温度計、撹拌装置を有するフラスコに、合成例1で用い
たのと同量のジアミンを入れ、N−メチルピロリドン(
NMP>181 gで溶解した。次いで20℃の水浴中
にフラスコをつけ、実施例1で用いたのと同量のピロメ
リット酸無水物を粉体のまま少倦ずつ、15分間かけて
投入した。反応系が均一になった後、室温で5時間撹拌
し、更に23℃での粘度がおよそ50ポイズになるまで
85℃で加熱撹拌した。このポリマーを8−0020と
称する。(Leaving space below) Synthesis Example 16 The same amount of diamine as used in Synthesis Example 1 was placed in a flask equipped with a thermometer and a stirring device, and N-methylpyrrolidone (
Dissolved with >181 g of NMP. Next, the flask was placed in a water bath at 20°C, and the same amount of pyromellitic anhydride as used in Example 1 was added little by little in powder form over 15 minutes. After the reaction system became homogeneous, it was stirred at room temperature for 5 hours, and further heated and stirred at 85°C until the viscosity at 23°C became approximately 50 poise. This polymer is designated 8-0020.
このポリマーに溶液を室温で3日間放置したが、にごり
の発生、ポリマーの析出、溶液の同化は起こらなかった
。A solution of this polymer was allowed to stand at room temperature for 3 days, but no turbidity, polymer precipitation, or assimilation of the solution occurred.
合成例17〜25.比較合成例12〜16ジアミンを、
前述の合成例又は比較合成例で用いたのど同量用いる以
外は合成例16と同様にしてポリマー溶液を得た。対応
する合成例または比較合成例の番号と結果を表3に記す
。Synthesis Examples 17-25. Comparative Synthesis Examples 12 to 16 diamines,
A polymer solution was obtained in the same manner as in Synthesis Example 16, except that the same amount of polymer as used in the above-mentioned Synthesis Example or Comparative Synthesis Example was used. Table 3 shows the numbers and results of the corresponding synthesis examples or comparative synthesis examples.
(以下余白) 比較合成例17 ピロメリット酸無水物のかわりに、3.3’ 。(Margin below) Comparative synthesis example 17 3.3' instead of pyromellitic anhydride.
4.4′−ビフェニルテトラカルボン酸無水物29.6
gを用い、パラフェニレンジアミンを10.0g用い、
3,3′ジメチルベンジジンを用いない以外は合成例1
と同様にして合成を行った。1ワられた粉末のv、 n
、は27.2であった。ηは63.2であった。4.4'-Biphenyltetracarboxylic anhydride 29.6
g, using 10.0 g of para-phenylenediamine,
Synthesis Example 1 except that 3,3'dimethylbenzidine is not used
Synthesis was carried out in the same manner. 1 v, n of crushed powder
, was 27.2. η was 63.2.
ηの測定に用いた溶液を室温で10日間放置したがポリ
マーの析出はなかった。このポリマーをC−ooooと
称する。The solution used for the measurement of η was allowed to stand at room temperature for 10 days, but no polymer was precipitated. This polymer is called C-oooo.
比較合成例18
3.3’ 、4.4’−ビフェニルテトラカルボン酸無
水物のかわりに、3.3’ 、4.4’−ベンゾフェノ
ンテトラカルボン酸無水物32.29を用いる以外は、
比較合成例17と同様にして合成を行った。1qられた
粉末のv、 n、は25.3であった。ηは55.3で
あった。Comparative Synthesis Example 18 Except for using 3.3', 4.4'-benzophenonetetracarboxylic anhydride 32.29 instead of 3.3', 4.4'-biphenyltetracarboxylic anhydride.
Synthesis was carried out in the same manner as Comparative Synthesis Example 17. The v, n, of the 1q powder was 25.3. η was 55.3.
ηの測定に用いた溶液を室温で10日間放置したがポリ
マーの析出はなかった。このポリマーをC−1000と
称する。The solution used for the measurement of η was allowed to stand at room temperature for 10 days, but no polymer was precipitated. This polymer is designated C-1000.
比較合成例19
ジアミン類として、ジアノジフェニルエーテル18.7
gを用いる以外は合成例1と同様にして合成を行った。Comparative Synthesis Example 19 As diamines, dianodiphenyl ether 18.7
Synthesis was carried out in the same manner as in Synthesis Example 1 except that g was used.
得られた粉末のv、 n、は25.8であった。The obtained powder had v and n of 25.8.
ηは53.0であった。ηの測定に用いた溶液を室温で
10日間放置したがポリマーの析出はなかった。η was 53.0. The solution used for the measurement of η was allowed to stand at room temperature for 10 days, but no polymer was precipitated.
このポリマーをC−2000と称する。This polymer is designated C-2000.
参考例1
残留応力の測定
370μm厚の3インチシリコンウェハーに、γ−アミ
ノプロピルジメトキシメチルシランの0.2%メタノー
ル溶液をsooorpmで30秒間回転塗布し、150
℃のホットプレート中で10分間加熱した。冷却後、合
成例又は比較合成例で得られたポリアミド酸又はポリア
ミド酸エステルの溶液を硬化後の膜厚が15〜30μと
なるように回転塗布し、90℃で30分〜3時間乾燥し
、更に140℃2時間、350℃2時間加熱して、ポリ
イミドの塗膜を得た。冷却後、ウェハーの裏の中心部分
3cIItを接触式表面あらざ計(SLOAN社製、O
EにTAにIIA)を用いて湾曲を測定した。得られた
、はぼ弓形に近似できる図形の、弦の中心部分から弓ま
での距離を測定し、これをAとづると、残留応力δは下
記の式(3)で表わされる。Reference Example 1 Measurement of Residual Stress A 0.2% methanol solution of γ-aminopropyldimethoxymethylsilane was spin coated on a 370 μm thick 3-inch silicon wafer at sooorpm for 30 seconds.
It was heated for 10 minutes in a hot plate at .degree. After cooling, the solution of polyamic acid or polyamic acid ester obtained in the synthesis example or comparative synthesis example was spin-coated so that the film thickness after curing was 15 to 30μ, and dried at 90 ° C. for 30 minutes to 3 hours. The mixture was further heated at 140°C for 2 hours and at 350°C for 2 hours to obtain a polyimide coating. After cooling, the central part 3cIIt of the back of the wafer was measured with a contact type surface roughness meter (manufactured by SLOAN, O
Curvature was measured using E, TA, and IIA). If the distance from the center of the string to the bow of the obtained figure that can be approximated to a hollow bow shape is measured and this is referred to as A, then the residual stress δ is expressed by the following equation (3).
E :シリコンウエハーのヤング率
■ =シリコンウェハーのポアソン比
D :測定長
TS:シリコンウェハーの厚み
T :塗布膜厚(硬化後)
ここで、式の波線を付した部分は、シリコンウェハー固
有の値であるので、今回の測定では定数となる。従って
、残留応力、δは下記の式(4)で表わされることにな
る。E: Young's modulus of the silicon wafer ■ = Poisson's ratio of the silicon wafer D: Measurement length TS: Thickness of the silicon wafer T: Coating film thickness (after curing) Here, the wavy lined part of the equation is the value specific to the silicon wafer. Therefore, it becomes a constant in this measurement. Therefore, the residual stress, δ, is expressed by the following equation (4).
ここでKの値を計算すると、 K =3.91 [Kl/wi ]となる。Calculating the value of K here, we get K=3.91 [Kl/wi].
ついで塗膜に傷をつけ、同じ接触式表面あらざ計を用い
て塗布膜厚Tを測定し、■、Δ、により、式(4)に従
って残留応力δの値を得た。Next, the coating film was scratched and the coating film thickness T was measured using the same contact type surface roughness meter, and the value of the residual stress δ was obtained according to formula (4) using ◯ and Δ.
参考例2
機械強度の測定−1
合成例1〜15、比較合成例1〜11.17〜19で作
った溶液に、4,4゛−ビス(ジメチルアミノ)ベンゾ
フェノンを1.0%、1−フェニル−1,2−プロパン
ジオン−2−(0−エトキシカルボニル)オキシム1.
5%、トリエチレングリコールジアクリレート3.0%
を加え、8時間撹拌して均一溶液とした。この感光性組
成物を16時間放置して脱泡した後、′厚ざ0.5#a
m、直径7.50Rのアルミニウム円板上に厚さ30〜
60μmになるように回転塗布した。70℃で1時間乾
燥し、冷却後、超高圧水銀灯(8mw/rvt )とフ
ォトマスクを用いて、幅3M、長さ2011IIr1の
直線部分とはさみこむためのやや広い部分を持つダンベ
ル状のパターンを120秒間露光した。ついで、スプレ
一式現f&機を用い、N−メチルピロリドンとイソプロ
ピルアルコールの3対1混合液で未露光部分を溶解し、
イソプロピルアルコールでリンスした。ついでこのパタ
ーンを140°C2時間、350℃で2時間加熱してポ
リイミドのパターンの付いたアルミ円板を得た。これを
3規定の塩酸につけてアルミニウムを溶解し、水洗し、
70℃で8時間乾燥することにより、試験片を得た。こ
の試験片から、東洋ボールドウィン社製引張試験ta
(TENSILON、 UTH−II −20型)ヲ用
いて、引張強度、伸度、引張弾性率を測定した。Reference Example 2 Measurement of Mechanical Strength-1 Synthesis Examples 1 to 15 and Comparative Synthesis Examples 1 to 11. To the solutions prepared in 17 to 19, 1.0% of 4,4゛-bis(dimethylamino)benzophenone and 1- Phenyl-1,2-propanedione-2-(0-ethoxycarbonyl)oxime1.
5%, triethylene glycol diacrylate 3.0%
was added and stirred for 8 hours to form a homogeneous solution. After leaving this photosensitive composition for 16 hours to defoam,
m, thickness 30~ on an aluminum disk with a diameter of 7.50R
The coating was applied by spinning to a thickness of 60 μm. After drying at 70°C for 1 hour and cooling, using an ultra-high pressure mercury lamp (8 mw/rvt) and a photomask, a dumbbell-shaped pattern with a straight part of width 3M and length 2011IIr1 and a slightly wider part for sandwiching was made into 120 pieces. Exposure for seconds. Next, using a spray set generator, the unexposed areas were dissolved with a 3:1 mixture of N-methylpyrrolidone and isopropyl alcohol.
Rinse with isopropyl alcohol. This pattern was then heated at 140°C for 2 hours and at 350°C for 2 hours to obtain an aluminum disk with a polyimide pattern. Soak this in 3N hydrochloric acid to dissolve the aluminum, wash with water,
A test piece was obtained by drying at 70°C for 8 hours. From this test piece, tensile test ta manufactured by Toyo Baldwin Co., Ltd.
(TENSILON, UTH-II-20 type) was used to measure tensile strength, elongation, and tensile modulus.
機械強度の測定−2
合成例16〜25、比較合成例12〜16で得た溶液を
ガラス板にアプリケータを用いて均一に塗布し、80〜
100℃で30〜60分乾燥してフィルム状にし、ガラ
ス板からはがして鉄枠に固定し、140℃、350℃に
夫々2時間保持して、15〜30μm厚のポリイミドフ
ィルムを得た。これを3mX80mに切り出して試験片
を得た。これを用いて、機械強度の測定−1と同様にし
て測定を行った。Measurement of Mechanical Strength-2 The solutions obtained in Synthesis Examples 16 to 25 and Comparative Synthesis Examples 12 to 16 were uniformly applied to a glass plate using an applicator.
It was dried at 100° C. for 30 to 60 minutes to form a film, peeled off from the glass plate, fixed to an iron frame, and held at 140° C. and 350° C. for 2 hours, respectively, to obtain a polyimide film with a thickness of 15 to 30 μm. This was cut into a size of 3 m x 80 m to obtain a test piece. Using this, measurements were performed in the same manner as in Mechanical Strength Measurement-1.
実施例1〜23.比較例1〜16
合成した各ポリマーにつき、参考例1及び2の方法でイ
ミド化した際の残貿応力と機械強度を測定した。結果を
表4に記す。伸度に「もろい」と記したものは、脆くて
測定不能のものである。Examples 1-23. Comparative Examples 1 to 16 For each of the synthesized polymers, the residual stress and mechanical strength when imidized by the methods of Reference Examples 1 and 2 were measured. The results are shown in Table 4. If the elongation is marked as "brittle", it is brittle and cannot be measured.
参考例3
実施例2,3.比較例14.15.16で作製した、ポ
リイミドの塗膜の付したシリコンウェハー基板上に実施
例1の機械強度の測定の際に用いたのと同・−の感光性
組成物を厚さ5μとなるように回転塗t5シ、70℃で
30分間乾燥した。冷却後、超高汁水銀灯(8mw/
cri )とフォトマスクを用いて、幅1μmから50
μmまで種々の大きさを持った長方形の穴のパターンを
20秒間露光した。ついで、スプレ一式現像機を用い、
N−メチルピロリドンとイソプロピルアルコールの3対
1混合液で未露光の穴の部分を溶解し、イソプロピルア
ルコールでリンスをおこない、ウェハーの中央部でどの
大きさの穴までが現像されているかを見て、これを解像
度とした。結果を表5に記す。Reference example 3 Examples 2 and 3. The same photosensitive composition as that used in the measurement of mechanical strength in Example 1 was coated on a silicon wafer substrate coated with polyimide prepared in Comparative Examples 14, 15, and 16 to a thickness of 5 μm. It was spin-coated t5 and dried at 70°C for 30 minutes. After cooling, use a super high liquid mercury lamp (8 mw/
cri ) and a photomask, from 1 μm in width to 50
A pattern of rectangular holes with different sizes down to μm was exposed for 20 seconds. Next, using a spray developing machine,
Dissolve the unexposed holes with a 3:1 mixture of N-methylpyrrolidone and isopropyl alcohol, rinse with isopropyl alcohol, and check to see how many holes have been developed in the center of the wafer. , this was taken as the resolution. The results are shown in Table 5.
(以下余白) 表5(Margin below) Table 5
Claims (1)
位構造を60ないし90モル%含み、次式(2) ▲数式、化学式、表等があります▼…(2) (式中、mは0ないし2の整数である)で表わされる単
位構造を10ないし40モル%含むことを特徴とするポ
リイミド樹脂。[Claims] Primary formula (1) ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(1) 60 to 90 moles of the unit structure represented by (in the formula, n is an integer from 0 to 2) Contains 10 to 40 mol% of the unit structure represented by the following formula (2) ▲Mathematical formula, chemical formula, table, etc.▼...(2) (In the formula, m is an integer from 0 to 2) Characteristic polyimide resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2959287A JPS63199236A (en) | 1987-02-13 | 1987-02-13 | Low-stress and heat-resistant resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2959287A JPS63199236A (en) | 1987-02-13 | 1987-02-13 | Low-stress and heat-resistant resin |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63199236A true JPS63199236A (en) | 1988-08-17 |
Family
ID=12280342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2959287A Pending JPS63199236A (en) | 1987-02-13 | 1987-02-13 | Low-stress and heat-resistant resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63199236A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0455571A2 (en) * | 1990-03-30 | 1991-11-06 | International Business Machines Corporation | Low thermal coefficients of expansion(TCE) polyimides |
WO2002014406A1 (en) * | 2000-08-11 | 2002-02-21 | Mitsui Chemicals, Inc. | Novel polyimide and circuit substrate comprising the same |
JP2009184131A (en) * | 2008-02-04 | 2009-08-20 | Nippon Steel Chem Co Ltd | Multilayer laminate and method for producing flexible copper-clad laminate |
-
1987
- 1987-02-13 JP JP2959287A patent/JPS63199236A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0455571A2 (en) * | 1990-03-30 | 1991-11-06 | International Business Machines Corporation | Low thermal coefficients of expansion(TCE) polyimides |
WO2002014406A1 (en) * | 2000-08-11 | 2002-02-21 | Mitsui Chemicals, Inc. | Novel polyimide and circuit substrate comprising the same |
US6734276B2 (en) | 2000-08-11 | 2004-05-11 | Mitsui Chemicals, Inc. | Polyimide and circuit substrate comprising the same |
JP2009184131A (en) * | 2008-02-04 | 2009-08-20 | Nippon Steel Chem Co Ltd | Multilayer laminate and method for producing flexible copper-clad laminate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0203372B1 (en) | Process for making photopolymerizable aromatic polyamic acid derivatives | |
JP5740977B2 (en) | Photosensitive polyimide precursor and photosensitive resin composition | |
JP3526829B2 (en) | Polyamic acid ester | |
JPH0680776A (en) | Polyimide precursor and composition | |
KR910007212B1 (en) | Photopolymerizable Compositions Containing Low Thermal Stress Polyimide Precursors and Polyimide Precursors | |
US6084053A (en) | Electronic part and process for manufacturing the same | |
JPS60250031A (en) | Low-thermal expansion resin material | |
US4485234A (en) | Method of preparing polyamide acid for processing of semiconductors | |
JP4665373B2 (en) | Polyimide film | |
JPH0292535A (en) | Composite molded body of metal and polyimide | |
JPS61236829A (en) | Coated material and its utilization | |
JP2844219B2 (en) | Low stress polyimide precursor and method for producing polyimide composite molded article | |
JP3687044B2 (en) | Copolymerized polyimide film and method for producing the same | |
JPS62253621A (en) | polyimide resin | |
JPS63199236A (en) | Low-stress and heat-resistant resin | |
JPS61181829A (en) | Low-thermal expansion resin material | |
JP4470315B2 (en) | Photosensitive polyimide precursor composition | |
JPS63207825A (en) | Novel polyimide | |
JPH0796618B2 (en) | Low thermal expansion resin | |
JPS63191830A (en) | Low-stress polyimide resin | |
GB2216532A (en) | Heat resistant and photosensitive aromatic polyamide resins and method of preparing same | |
JPS61287736A (en) | Polyimide metallic-foll composite film | |
JPH07238168A (en) | Regular polymer and composition | |
JPS61293204A (en) | Photosensitive composition | |
JPS6347142A (en) | Cover containing radiation-sensitive polyimide layer having specific diaminodiphenyl methane unit |