JPS63199205A - Production of highly water absorbing polymer - Google Patents
Production of highly water absorbing polymerInfo
- Publication number
- JPS63199205A JPS63199205A JP62030412A JP3041287A JPS63199205A JP S63199205 A JPS63199205 A JP S63199205A JP 62030412 A JP62030412 A JP 62030412A JP 3041287 A JP3041287 A JP 3041287A JP S63199205 A JPS63199205 A JP S63199205A
- Authority
- JP
- Japan
- Prior art keywords
- water
- polymer
- compound
- group
- epoxy compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/30—Introducing nitrogen atoms or nitrogen-containing groups
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Absorbent Articles And Supports Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、生理ナプキンや紙おむつ等への体液吸収剤、
土壌の保水剤、種子コーティング剤、止水剤、結露防止
剤などの幅広い用途を有する吸収性ポリマーで、特に高
吸水性で、吸収したゲルの強度が大きく、かつ吸水速度
の優れた高吸水性ポリマーの製造方法に関するものであ
る。[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a body fluid absorbent for sanitary napkins, disposable diapers, etc.
It is an absorbent polymer that has a wide range of uses such as soil water retention agents, seed coating agents, water stopping agents, and dew prevention agents.It has particularly high water absorption properties, has high absorbed gel strength, and has excellent water absorption speed. The present invention relates to a method for producing a polymer.
従来の衛生材料や農園芸の分野で吸水材として使用され
てきた紙、パルプ等に代るものとしてカルボキシル基や
カルボキシレート基などを有する親水性ポリマーからな
る吸水性ポリマー等の吸水材料が提案されてきた。また
、これらのポリマーの吸水性能を一層向上させるために
種々の改良がなされている。例えば吸水性ポリマーのぬ
れ性を改良するために、逆相懸濁重合または乳化重合に
よりビニルモノマーを重合して吸水性樹脂を製造する際
に水溶性高分子(特開昭57−167307号)あるい
は界面活性剤(特開昭58−32641号)を添加する
方法が行われている。しかしながら、これらの方法では
得られたポリマーの吸水剤としての性能は未だ不十分で
ある。Water-absorbing materials such as water-absorbing polymers made of hydrophilic polymers having carboxyl groups and carboxylate groups have been proposed as an alternative to paper, pulp, etc., which have been conventionally used as water-absorbing materials in the fields of sanitary materials and agriculture and horticulture. It's here. In addition, various improvements have been made to further improve the water absorption performance of these polymers. For example, in order to improve the wettability of water-absorbing polymers, when producing water-absorbing resins by polymerizing vinyl monomers by reverse-phase suspension polymerization or emulsion polymerization, water-soluble polymers (JP 57-167307) or A method of adding a surfactant (JP-A No. 58-32641) has been used. However, the performance of the polymer obtained by these methods as a water absorbing agent is still insufficient.
一方、吸水速度の改良のためにカルボキシル基(または
カルボキシレート基)を有する親水性ポリマーを水分含
量が10〜40重量%となる様に調整した後に、カルボ
キシル基(またはカルボキシレート基)と反応しうる架
橋剤、特にポリグリシジルエーテルで架橋させる方法(
特開昭59−62665号)が提案されている。この方
法では、架橋剤がポリマー内部まで到達しないようポリ
マーの水分含量を減少させた状態すなわち、ポリマーの
半析出状態または表面層のみわずかの水分を吸収した状
態で架橋を行っており、ポリマーの表面の架橋密度を高
める、すなわち表面架橋を行って性能向上を計っている
と想像されるが、通常ポリマーの重合は水分含量55重
量%以上の水溶液で行なわれることから重合後、水分を
55重量%程度以上含有しているポリマーに対し、架橋
処理に先だって脱水工程という煩雑な工程を要するとい
う欠点がある。さらには、水分含量が少なすぎて、ポリ
マーが完全な析出状態または水を吸収していない固体の
状態で□は架橋剤がカルボキシル基に反応する効率がは
なはだ悪く架橋の効果・が小さいので架橋の効果を有効
なものにするには水分含量を15〜35%という狭い範
囲にコントロールしなくてはならないという問題がある
。また、架橋剤のカルボキシル基に対する反応性は、水
分含量により著しく影響をうけるための、水分含量がこ
の範囲にあったとしても生成物の性状が安定しにくい。On the other hand, in order to improve the water absorption rate, a hydrophilic polymer having a carboxyl group (or carboxylate group) is adjusted to have a water content of 10 to 40% by weight, and then reacted with the carboxyl group (or carboxylate group). A method of crosslinking with a polyglycidyl ether, especially a polyglycidyl ether (
JP-A No. 59-62665) has been proposed. In this method, crosslinking is performed in a state in which the water content of the polymer is reduced so that the crosslinking agent does not reach inside the polymer, that is, in a semi-precipitated state of the polymer or in a state in which only the surface layer absorbs a small amount of water. It is assumed that performance is improved by increasing the crosslinking density of the polymer, that is, performing surface crosslinking, but since polymerization is usually carried out in an aqueous solution with a water content of 55% by weight or more, after polymerization, the water content is reduced to 55% by weight. Polymers containing more than a certain amount have the disadvantage that a complicated step of dehydration is required prior to crosslinking treatment. Furthermore, if the water content is too low and the polymer is in a completely precipitated state or in a solid state that has not absorbed water, the efficiency of the reaction of the crosslinking agent with the carboxyl group is extremely low, and the crosslinking effect is small. The problem is that the water content must be controlled within a narrow range of 15-35% in order to be effective. Furthermore, the reactivity of the crosslinking agent toward carboxyl groups is significantly affected by the water content, so even if the water content is within this range, the properties of the product are difficult to stabilize.
そして、吸水性能についても吸水速度やゲル強度は向上
するものの衛生材料に用いる場合には未だ吸水性能が不
十分である。Regarding water absorption performance, although the water absorption rate and gel strength are improved, the water absorption performance is still insufficient when used for sanitary materials.
又、特開昭59−189103号には、架橋剤として多
価グリシジルエーテル化合物、多価アジリジン化合物や
多価アミン化合物を用いて吸水性樹脂粉末を表面架橋す
る技術が提案されているが、吸収性樹脂が粉末状を呈す
る程度の水分含量では架橋剤の反応性が低く、多量の架
橋剤が残存する恐れがあり、また吸水性の向上が未だ不
十分である。In addition, JP-A-59-189103 proposes a technique for surface crosslinking of water-absorbing resin powder using a polyvalent glycidyl ether compound, a polyvalent aziridine compound, or a polyvalent amine compound as a crosslinking agent. If the water content is such that the resin exhibits a powdery state, the reactivity of the crosslinking agent is low, there is a risk that a large amount of the crosslinking agent remains, and the improvement in water absorption is still insufficient.
従って、本発明は従来の吸水性ポリマーよりも高吸水性
であり、かつ吸水ゲルの強度が優れた吸水性ポリマーを
製造する方法を提供することを目的とする。Therefore, an object of the present invention is to provide a method for producing a water-absorbing polymer that has higher water absorption than conventional water-absorbing polymers and has superior water-absorbing gel strength.
本発明は、分子内にカルボキシル基及び/又はカルボキ
シレート基をアニオン基として有する親木性ポリマーを
製造した後、アミノ基と2価以上のエポキシ基とを分子
内に有する架橋剤を用いて表面架橋を行うと、該官能基
中のアミノ基が親水性ポリマー中のアニオン基とイオン
的に親和性を有するので、特に存在する水分量を減少さ
せなくとも、架橋剤を添加した際に、親水性ポリマーの
表面層に架橋剤がトラップされ内部にまで侵入せずに、
表面層に多価のエポキシ基による架橋が生じるので、親
木性ポリマー粒子の表面の架橋密度の高い吸水性ポリマ
ーを容易に製造することができ、得られたポリマーの吸
水量が極めて高くかっゲル強度も極めて高いとの知見に
基づいてなされたものである。The present invention involves producing a wood-philic polymer having a carboxyl group and/or a carboxylate group as an anion group in the molecule, and then using a crosslinking agent having an amino group and an epoxy group of divalent or higher valence in the molecule to surface the polymer. When crosslinking is performed, the amino groups in the functional groups have an ionic affinity with the anionic groups in the hydrophilic polymer, so when a crosslinking agent is added, the hydrophilic The crosslinking agent is trapped in the surface layer of the polymer and does not penetrate inside.
Since cross-linking occurs in the surface layer with polyvalent epoxy groups, it is possible to easily produce a water-absorbing polymer with a high cross-linking density on the surface of the wood-philic polymer particles, and the resulting polymer has an extremely high water absorption capacity. This was done based on the knowledge that the strength is also extremely high.
すなわち、本発明は、カルボキシル基及び/又はカルボ
キシレート基を有する親水性ポリマーを、アミノ基を有
する多価エポキシ化合物で架橋することを特徴とする高
吸水性ポリマーの製造方法を提供する。That is, the present invention provides a method for producing a superabsorbent polymer, which is characterized in that a hydrophilic polymer having a carboxyl group and/or a carboxylate group is crosslinked with a polyepoxy compound having an amino group.
本発明の対象となる親水性ポリマーとしてはその構成単
位にカルボキシル基及び/又はカルボキシレート基を有
するものであればポリマーの種類及び重合方法は問わな
い。例えばカルボキシル基又はカルボキシレート基を有
するビニルモノマーであるアクリル酸、メタクリル酸、
マレイン酸、イタコン酸及びこれらの塩を、単独あるい
は2種以上重合して得られるポリマー、さらに他の成分
としてアクリルアミド、2−アクリルアミド−2−メチ
ルプロパンスルホン酸、酢酸ビニル、2−ヒドロキシエ
チルメタクリレート等を本発明の効果を低下させない程
度に共重合せしめた親水性共重合体、デンプン−アクリ
ル酸グラフト共重合体及びその塩、デンプン−アクリル
ニトリルグラフト共重合体ケン化物、カルボキシメチル
セルロース、ポリビニルアルコール−アクリル酸共重合
体及びその塩等があげられる。また、これらのポリマー
を製造する際にまたは重合後に本発明の効果を低下させ
ない範囲で少量の架橋剤を添加して架橋を行ったものや
、自己架橋型のものも含まれる。The hydrophilic polymer to be used in the present invention may be any type of polymer and any polymerization method as long as it has a carboxyl group and/or a carboxylate group in its constituent units. For example, acrylic acid, methacrylic acid, which is a vinyl monomer having a carboxyl group or a carboxylate group,
Polymers obtained by polymerizing maleic acid, itaconic acid, and their salts singly or in combination, and other components such as acrylamide, 2-acrylamido-2-methylpropanesulfonic acid, vinyl acetate, 2-hydroxyethyl methacrylate, etc. Hydrophilic copolymers copolymerized to an extent that does not reduce the effects of the present invention, starch-acrylic acid graft copolymers and salts thereof, saponified starch-acrylonitrile graft copolymers, carboxymethylcellulose, polyvinyl alcohol-acrylic Examples include acid copolymers and salts thereof. Also included are those in which a small amount of crosslinking agent is added during production or after polymerization to the extent that the effects of the present invention are not reduced, and self-crosslinking types.
尚、上記塩としてはナトリウム塩、カリウム塩、アンモ
ニウム塩等があげられる。又、分子中のカルボキシル基
の一部がカルボキシレートとなっていてもよい。Incidentally, the above-mentioned salts include sodium salts, potassium salts, ammonium salts, and the like. Further, a part of the carboxyl groups in the molecule may be carboxylate.
これらの親木性ポリマーは溶液重合法、逆相懸、濁重合
法などの公知の重合によって合成されるが、ポリマーを
乾燥する際の作業性や粒径のコントロールの容易さから
、逆相懸濁重合法で得られたポリマーが好ましい。特に
好ましいのは、中間相に前記モノマーを含む相を配した
O /−W / O型のエチルアミンを形成して重合を
行って得られた多孔性ポリマーである。These wood-philic polymers are synthesized by known polymerization methods such as solution polymerization, reverse-phase suspension, and turbidity polymerization. Polymers obtained by turbidity polymerization are preferred. Particularly preferred is a porous polymer obtained by polymerizing to form O/-W/O type ethylamine in which a phase containing the monomer is arranged as an intermediate phase.
具体的には、はじめに水溶性界面活性剤、または水溶性
高分子分散剤、例えば部分ケン化ポリビニルアルコール
をもちいて、内相がシクロヘキサン等の疎水相で外相が
アクリル酸中和物等のカルボキシル及び/又はカルボキ
シレート基を有するモノマーと過硫酸アンモニウム等の
重合開始剤とを含む水相であるO/Wエマルジョンをつ
くった後、このエマルジョンをエチルセルロース等の油
溶性界面活性剤、または油溶性高分子分数剤を含むシク
ロヘキサン等の疎水性分散媒中に加えてO/W10エマ
ルジョンをつくり、モノマーヲ重合させて得られた粒子
内に多数の空孔をもつ多孔性ポリマーであり、このポリ
マーは表面積が非常に大きいために、本発明の効果を最
も発揮しろる。Specifically, first, a water-soluble surfactant or a water-soluble polymeric dispersant, such as partially saponified polyvinyl alcohol, is used, and the inner phase is a hydrophobic phase such as cyclohexane, and the outer phase is a carboxyl compound such as a neutralized acrylic acid. After preparing an O/W emulsion, which is an aqueous phase containing a monomer having a carboxylate group and a polymerization initiator such as ammonium persulfate, this emulsion is treated with an oil-soluble surfactant such as ethyl cellulose, or an oil-soluble polymer fraction. It is a porous polymer with many pores in the particles obtained by adding it to a hydrophobic dispersion medium such as cyclohexane containing a monomer to make an O/W10 emulsion and polymerizing the monomer. Since it is large, the effect of the present invention can be exhibited most effectively.
本発明により親木性ポリマー粒子の表面で架橋を行う際
、親木性ポリマーの水分含量はいかなる量でもよいが、
好ましくは1.0%〜90%、より好ましくは40%〜
70%である。親木性ポリマーの水分含量が上記範囲の
場合、特に吸水量と吸水ゲルの強度が優れたものとなる
。これは、本発明では、架橋剤としてカルボキシル基ま
たはカルボキシレート基とイオン的に親和性のあるアミ
ノ基を有する多価エポキシ化合物を架橋剤として用いる
ためである。すなわち親木性ポリマーに、該架橋剤を接
触させて架橋を行う際、親木性ポリマーの水分含量が上
記範囲にあると架橋剤は親木性ポリマーの表面でカルボ
キシル基またはカルボキシレート基と効率よく結合して
架橋するためポリマー粒子表面が架橋密度が高く、かつ
性能の優れた吸収剤が得られるものと推察される。従っ
て、本発明では親水性ポリマーを逆相懸濁重合法により
重合した後、水を除去することなく直ちに表面架橋を行
うことができる。尚、含水量が上記範囲を大きくはずれ
、水分含量が少なすぎると効果は減少し、逆に含水量が
多すぎる場合には架橋は進むがその後の乾燥工程で水分
を除去するのに手間がかかりすぎて実用的でない。When performing crosslinking on the surface of the wood-philic polymer particles according to the present invention, the water content of the wood-philic polymer may be any amount;
Preferably 1.0% to 90%, more preferably 40% to
It is 70%. When the water content of the wood-philic polymer is within the above range, particularly the water absorption amount and the strength of the water-absorbing gel will be excellent. This is because in the present invention, a polyvalent epoxy compound having an amino group that has an ionic affinity with a carboxyl group or a carboxylate group is used as a crosslinking agent. In other words, when crosslinking is carried out by bringing the crosslinking agent into contact with the wood-philic polymer, if the moisture content of the wood-philic polymer is within the above range, the cross-linking agent will efficiently interact with carboxyl groups or carboxylate groups on the surface of the wood-philic polymer. It is presumed that because the polymer particles are well bonded and crosslinked, the surface of the polymer particles has a high crosslinking density and an absorbent with excellent performance can be obtained. Therefore, in the present invention, after polymerizing a hydrophilic polymer by reverse phase suspension polymerization, surface crosslinking can be performed immediately without removing water. Note that if the water content is far outside the above range, and the water content is too low, the effect will decrease; on the other hand, if the water content is too high, crosslinking will proceed, but it will take time and effort to remove the water in the subsequent drying process. It's too impractical.
本発明で用いる架橋剤としては、分子内にアミノ基を含
有する多価エポキシ化合物であればいずれでもよいが分
子内に少くとも1個のアミノ基と2.10個のエポキシ
基を有する化合物が好ましい。アミノ基は1級、2級、
3級または4級アンモニウム塩のいずれでもよい。この
ような化合物としては多価エポキシ化合物とアミンを反
応して得られる化合物があげられる。特にポリグリシジ
ル化合物と低分子量のアミンを反応して得られる化合物
が好ましい。ポリグリシジル化合物としてはソルビトー
ルポリグリシジルエーテル、ポリグリセロールポリグリ
シジルエーテル、ペンタエリスリトールポリグリシジル
エーテル、グリセロールポリグリシジルエーテル、トリ
メチロールプロパンポ・リグリシジルエーテル、エチレ
ングリコールポリグリシジルエーテル、ポリエチレング
リコールポリグリシジルエーテル、ビスフェノールA型
エポキシ樹脂等分子内にエポキシ基を2個以上有するも
のがあげられる。低分子量のアミンとしては、1級又は
2級アミン、例えばメチルアミン、ジメチルアミン、モ
ノエタノールアミン、ジェタノールアミン、エチルアミ
ン、ジエチルアミン、エチレンジアミン等、またイミダ
ゾール類として2−メチルイミダゾール等があげられる
。3級アミンはエポキシ基の重合をうながすので、反応
後の粘度の点で1級または2級アミンが好ましい。The crosslinking agent used in the present invention may be any polyvalent epoxy compound containing an amino group in the molecule, but a compound having at least one amino group and 2.10 epoxy groups in the molecule may be used. preferable. Amino groups are primary, secondary,
Either a tertiary or quaternary ammonium salt may be used. Examples of such compounds include compounds obtained by reacting polyvalent epoxy compounds and amines. Particularly preferred are compounds obtained by reacting a polyglycidyl compound with a low molecular weight amine. Examples of polyglycidyl compounds include sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, glycerol polyglycidyl ether, trimethylol propane polyglycidyl ether, ethylene glycol polyglycidyl ether, polyethylene glycol polyglycidyl ether, and bisphenol A. Examples include those having two or more epoxy groups in the molecule, such as type epoxy resins. Examples of low molecular weight amines include primary or secondary amines such as methylamine, dimethylamine, monoethanolamine, jetanolamine, ethylamine, diethylamine, and ethylenediamine, and imidazoles such as 2-methylimidazole. Since tertiary amines promote polymerization of epoxy groups, primary or secondary amines are preferred from the viewpoint of viscosity after reaction.
そして、本発明で用いる架橋剤を得るには、前記ポリグ
リシジル化合物とアミンの両者を混合し必要ならば加熱
すればよい。ポリグリシジルエーテルのエポキシ基に対
してアミンがほぼ定量的に付加し、エポキシ基はその分
消滅し、アミノ基が生成する。2価のエポキシ化合物に
対して反応させるアミンは1分子内に活性水素を2個以
上有していなければならず、1級アミンが適当である。In order to obtain the crosslinking agent used in the present invention, both the polyglycidyl compound and the amine may be mixed and heated if necessary. Amine is added almost quantitatively to the epoxy group of the polyglycidyl ether, the epoxy group disappears, and an amino group is generated. The amine to be reacted with the divalent epoxy compound must have two or more active hydrogens in one molecule, and primary amines are suitable.
多価エポキシ化合物に対しては1級アミン、2級アミン
又は1級と2級アミノ基の両方、あるいは多数もってい
るアミン類のいずれを用いてもよい。For the polyvalent epoxy compound, any of primary amines, secondary amines, both primary and secondary amino groups, or amines having a large number of groups may be used.
混合比はポリグリシジルエーテルの1分子中エポキシ数
(平均値)とアミンの活性水素数から、反応物である架
橋剤にエポキシ基が1分子あたり2個以上となるように
すればよいが、実際には両者の種類によっても、またポ
リグリシジル化合物にもエポキシ官能基数に分布がある
ため異なるが、好ましくはポリグリシジル化合物エポキ
シ当量あたりアミンの活性水素として0.05〜00g
当量用いるのが適当である。更に好ましくは0.1〜0
.7当量用いるのがよい。尚、反応は40℃〜90℃で
数分〜2時間程度で行うのがよい。反応時間が長いと一
部重合物が混合しエポキシ含量は減少するが架橋剤の効
果をさまたげない程度に水等の溶媒を加えてもよいし、
反応後エポキシ基が減少しない程度の塩酸等を加え、ア
ミンの塩としてもよい。本発明では、上記化合物のほか
に、特開昭60−199010号で開示された多価エポ
キシ化合物があげられる。すなわちイミダゾール類とエ
ピクロルヒドリン等のハロメチルオキシラン化合物を反
応させた後、アルカリ処理によりジェポキシ化合物とし
たものである。また、その他にはエポキシ樹脂構成成分
として用いられているがあげられる。The mixing ratio should be determined based on the number of epoxy groups per molecule of polyglycidyl ether (average value) and the number of active hydrogens of the amine, so that the crosslinking agent as a reactant has two or more epoxy groups per molecule. Although it differs depending on the type of both types and because there is a distribution in the number of epoxy functional groups in the polyglycidyl compound, it is preferably 0.05 to 00 g as active hydrogen of the amine per epoxy equivalent of the polyglycidyl compound.
It is appropriate to use an equivalent amount. More preferably 0.1-0
.. It is preferable to use 7 equivalents. Incidentally, the reaction is preferably carried out at 40°C to 90°C for several minutes to about 2 hours. If the reaction time is long, some polymers will mix and the epoxy content will decrease, but a solvent such as water may be added to an extent that does not interfere with the effect of the crosslinking agent.
After the reaction, hydrochloric acid or the like may be added to an extent that does not reduce the epoxy group to form an amine salt. In the present invention, in addition to the above-mentioned compounds, polyepoxy compounds disclosed in JP-A-60-199010 can be used. That is, after reacting an imidazole with a halomethyloxirane compound such as epichlorohydrin, a jepoxy compound is obtained by an alkali treatment. In addition, it is also used as a component of epoxy resin.
本発明において表面架橋に用いる前記架橋剤の使用量は
任意であるが、通常親水性ポリマーに対して0.01〜
10%、好ましくは0.05〜5%である。すなわち、
架橋剤の添加量が0.01%より少ない場合には十分効
果が発現せず、反対に10%よりも多い場合は吸水量が
低下する傾向にあり好ましくない。In the present invention, the amount of the crosslinking agent used for surface crosslinking is arbitrary, but it is usually 0.01 to
10%, preferably 0.05-5%. That is,
If the amount of the crosslinking agent added is less than 0.01%, sufficient effects will not be achieved, while if it is more than 10%, the amount of water absorption tends to decrease, which is not preferable.
親水性ポリマーに上記の架橋剤を反応させ、吸水性ポリ
マーを得る方法は種々あげられる。逆相懸濁重合で得ら
れた親水性ポリマーや○/W/○エマルジョンによる懸
濁重合で得られた多孔性の親水性ポリマーの場合には、
通常、重合時の水分含量は約55重量%以上であるので
、本発明の架橋剤を添加し、さらに40℃以上で加熱し
、架橋を行い、公知の乾燥方法を用いて乾燥すれば良い
。There are various methods for obtaining a water-absorbing polymer by reacting a hydrophilic polymer with the above-mentioned crosslinking agent. In the case of a hydrophilic polymer obtained by reverse phase suspension polymerization or a porous hydrophilic polymer obtained by suspension polymerization using a ○/W/○ emulsion,
Since the water content during polymerization is usually about 55% by weight or more, the crosslinking agent of the present invention may be added, further heated at 40° C. or higher to effect crosslinking, and then dried using a known drying method.
溶液重合を用いて薄膜重合する場合には生成ポリマーゲ
ルを解砕後、架橋剤を加え熱処理を行い、その後乾燥を
行う。また必要に応じ粉砕、造粒処理を施し、使用する
ことができる。In the case of thin film polymerization using solution polymerization, the resulting polymer gel is crushed, a crosslinking agent is added, heat treatment is performed, and then drying is performed. In addition, it can be used after being subjected to pulverization and granulation treatment if necessary.
本発明によれば高吸水性で、吸水したゲルの強度が大き
く、かつ吸水速度の優れた高吸水性ポリマーを製造する
ことができる。According to the present invention, it is possible to produce a superabsorbent polymer that is highly water absorbent, has a high gel strength after absorbing water, and has an excellent water absorption rate.
したがって多量の尿や血液をすみやかに吸収する必要が
ある紙おむつや生理用ナプキン等の衛生材料用吸水剤と
して、また農園芸用保水剤や土木建築用の止水剤などに
好適に使用できる。Therefore, it can be suitably used as a water-absorbing agent for sanitary materials such as disposable diapers and sanitary napkins that need to quickly absorb large amounts of urine and blood, as well as water-retaining agents for agriculture and horticulture, water-stopping agents for civil engineering and construction, and the like.
次に実施例により本発明を説明するが、本発明はこれら
により限定されるものではない。Next, the present invention will be explained with reference to Examples, but the present invention is not limited thereto.
〔実施例1〕
実arpiにおいて、吸水量、吸水速度及び吸水ゲルの
強度は次のようにして測定した。[Example 1] In actual ARPI, water absorption amount, water absorption rate, and strength of water absorption gel were measured as follows.
吸水量
吸水性樹脂0.3gを不織布製袋に封入し、水平にして
試料を均一にまぶした。次に、これを300−の生理食
塩水の入ったシャーレ−中に水平に10分間浸漬した後
、引き上げて金網上で1分間水切りして、重量を測定し
た。一方、別に吸水性樹脂の入っていない不織布製袋を
同様の方法で試験して得た重量をブランクとし、上記測
定値からブランクを差し引き、吸水性樹脂1g当りの重
量に換算して得た値を吸水量とした。数値の大きいほど
高吸水性であることを示す。Water Absorption Amount 0.3 g of water-absorbent resin was sealed in a non-woven fabric bag, and the bag was held horizontally so that the sample was evenly sprinkled on it. Next, the sample was immersed horizontally in a petri dish containing 300 g of physiological saline for 10 minutes, then pulled out and drained on a wire mesh for 1 minute, and its weight was measured. On the other hand, the weight obtained by testing a non-woven bag that does not contain water absorbent resin in the same manner is used as a blank, and the value obtained by subtracting the blank from the above measurement value and converting it to the weight per 1 g of water absorbent resin. was taken as the water absorption amount. The larger the number, the higher the water absorption.
初期吸水速度
5X3cmの紙製ティーバック型の袋にポリマー0.3
gを入れ、この袋を立ててポリマーを底に軽く詰めた。Polymer 0.3 in a paper tea bag type bag with an initial water absorption rate of 5 x 3 cm
g, the bag was stood up, and the bottom was lightly stuffed with polymer.
これを30(ltf!のビーカーに入れた生理食塩水中
に1分間袋を立てた形で浸漬した。1分間浸漬微水を切
り、重量を測定した。この値から風袋の吸水量を差引き
、ポリマー1g当りの吸水量に換算した。This was immersed in physiological saline in a 30 (ltf!) beaker for 1 minute with the bag upright. After immersion for 1 minute, the water was drained off and the weight was measured. From this value, the amount of water absorbed by the tare was subtracted. The amount of water absorbed was converted to the amount of water absorbed per gram of polymer.
ゲル強度の測定
100−のビーカーに吸水性樹脂2gを入れ、メタノー
ル2gを加えて吸水性樹脂を十分に湿潤させた。これに
、イオン交換水40gを一気に入れてママコにならない
ように振り混ぜ、均一に吸水させて試料とした。次にレ
オメータ−(不動工業製、NRM−2002J)を用い
て、この試料を2ca+/minの速度で上昇させ、ア
ダプター(Φ10mm、円盤上)とゲル面が接してから
10秒後の応力を測定し、これをゲル強度とした。この
数値が大きい程、吸水ゲルがしっかりしていることを示
す。Measurement of Gel Strength 2 g of a water absorbent resin was placed in a 100-mm beaker, and 2 g of methanol was added to sufficiently wet the water absorbent resin. 40 g of ion-exchanged water was added to the mixture at once, and the mixture was shaken to avoid clumping, and the mixture was uniformly absorbed to prepare a sample. Next, using a rheometer (manufactured by Fudo Kogyo, NRM-2002J), this sample was raised at a rate of 2ca+/min, and the stress was measured 10 seconds after the adapter (Φ10 mm, on a disc) and the gel surface came into contact. This was taken as the gel strength. The larger this value is, the stronger the water-absorbing gel is.
実施例1
攪拌機、還流冷却器、滴下ロートおよび窒素ガス導入管
を備えた11の四つロフラスコに、シクロヘキサン30
0gとエチルセルロース3g(バーキュレス社製、商品
名N−50)を加えて攪拌し窒素ガスを吹き込んで溶存
酸素を追い出し、70℃まで昇温した。また、別のフラ
スコ中で水酸化ナトリウム43gを水130gに溶解し
、これにアクリル酸(AA)100gを加えてできた水
溶液に、過硫酸アンモニウム(APS)0.16g1部
分ケン化ポリビニルアルコール(日本合成社製、商品名
GH−17)1.2g及びエチレングリコールジグリシ
ジルエーテル(EGDG)122mgを水34gに溶解
して添加し、さらにシクロヘキサン80gを加えて攪拌
し、窒素ガスを吹き込んで溶存酸素を追い出してモノマ
ー水溶液(0/Wエマルジヨン)を調製した(七ツマー
濃度40%対水相)。次に上記四つロフラスコ中の分散
媒を40 Orpmの速度で十分攪拌させながら、0/
Wエマルジヨンを1時間かけて滴下し、さ°らに3時間
重合した。Example 1 In 11 four-bottle flasks equipped with a stirrer, reflux condenser, dropping funnel and nitrogen gas inlet tube, 300 g of cyclohexane was added.
0 g and 3 g of ethyl cellulose (manufactured by Vercules, trade name N-50) were added, stirred, nitrogen gas was blown in to drive out dissolved oxygen, and the temperature was raised to 70°C. In addition, in another flask, 43 g of sodium hydroxide was dissolved in 130 g of water, and 100 g of acrylic acid (AA) was added to the resulting aqueous solution. 1.2 g of GH-17 (manufactured by Co., Ltd., trade name) and 122 mg of ethylene glycol diglycidyl ether (EGDG) were dissolved in 34 g of water, and then 80 g of cyclohexane was added and stirred. Nitrogen gas was blown in to drive out dissolved oxygen. A monomer aqueous solution (0/W emulsion) was prepared (7mer concentration: 40% vs. aqueous phase). Next, while thoroughly stirring the dispersion medium in the four-loaf flask at a speed of 40 Orpm,
W emulsion was added dropwise over 1 hour, and polymerization was continued for a further 3 hours.
一方40m1!のサンプルビンに、ソルビトールポリグ
リシジルエーテル(エポキシ当量180、分子中の平均
エポキシ基3.6個:ナガセ化成工業製デナコール61
4B)6.14gとジェタノールアミン1.08 gを
入れ、攪拌、混合して80℃にて30分反応したのち、
室温まで冷却し、水22.78g加えて、架橋剤溶液(
1)を調製した。On the other hand, 40m1! In a sample bottle, add sorbitol polyglycidyl ether (epoxy equivalent: 180, average epoxy groups in the molecule: 3.6: Denacol 61 manufactured by Nagase Chemical Industries, Ltd.).
4B) 6.14 g and jetanolamine 1.08 g were added, stirred, mixed and reacted at 80°C for 30 minutes,
Cool to room temperature, add 22.78g of water, and add crosslinking agent solution (
1) was prepared.
上記の重合後の親木性ポリマースラリー(ポリマー含水
量60%)に溶液(I)を3g添加し、外温80℃にて
2時間加温して表面架橋させた。3 g of solution (I) was added to the above polymerized wood-philic polymer slurry (polymer water content 60%) and heated at an external temperature of 80° C. for 2 hours to cause surface crosslinking.
その後、デカンテーシ田ンにより分散媒を除き110℃
にて4時間乾燥し、平均粒径200μの多孔性の吸水性
ポリマーを得た。After that, the dispersion medium was removed using a decanter and heated to 110°C.
The polymer was dried for 4 hours to obtain a porous water-absorbing polymer with an average particle size of 200 μm.
尚、架橋剤溶液(I)は、エポキシ当量当り、アミンを
0630当量反応させたものであり、分子中にアミノ基
を平均1.1個有する化合物である。The crosslinking agent solution (I) is a compound obtained by reacting 0,630 equivalents of amine per equivalent of epoxy, and has an average of 1.1 amino groups in the molecule.
実施例2
実施例1と同様の四つロフラスコに、シクロヘキサン3
00g、!:エチルセルロース3g(ハーキ二レス社製
、商品名N−50)を加えて攪拌し窒素ガスを吹き込ん
で溶存酸素を追い出し、70℃まで昇温した。また、別
のフラスコ中で水酸化ナトリウム43gを水130gに
溶解し、これにアクリル酸(AA)100gを加えてで
きた水溶液に、過硫酸アンモニウム(APS)0.16
g、エチレングリコールジグリシジルエーテル(EGD
G)61mgを加え、窒素ガスを吹き込んで溶存酸素を
追い出してモノマー水溶液を調製したくモノマー濃度4
5%)。Example 2 In a four-necked flask similar to Example 1, cyclohexane 3
00g! : 3 g of ethyl cellulose (manufactured by Harkiniless, trade name N-50) was added, stirred, nitrogen gas was blown in to drive out dissolved oxygen, and the temperature was raised to 70°C. In addition, in another flask, 43 g of sodium hydroxide was dissolved in 130 g of water, and 100 g of acrylic acid (AA) was added to the resulting aqueous solution, and 0.16 g of ammonium persulfate (APS) was added.
g, ethylene glycol diglycidyl ether (EGD
G) Add 61 mg and blow nitrogen gas to drive out dissolved oxygen to prepare a monomer aqueous solution. Monomer concentration 4
5%).
次に上記四つロフラスコ中の分散媒を40゜rpmの速
度で十分攪拌させながら、モノマー水溶液を1時間かけ
て滴下し、さらに3時間重合した。Next, the monomer aqueous solution was added dropwise over 1 hour while thoroughly stirring the dispersion medium in the four-hole flask at a speed of 40° rpm, and the mixture was further polymerized for 3 hours.
一方、40rnlのサンプルピンにポリグリセロールポ
リグリシジルエーテル(エポキシ当量183、分子中の
平均エポキシ56.3個:ナガセ化成工業製デナコール
521 ) 4.91 gとモノエタノールアミン0.
14 gを入れて攪拌、混合し、60℃にて5分反応さ
せたのち粘度が高くなったので水2gを加えさらに60
℃で155分反応せた。次に室温まで冷却し水を22.
95 g加えて架橋剤溶液(n)を調製した。On the other hand, 4.91 g of polyglycerol polyglycidyl ether (epoxy equivalent: 183, average 56.3 epoxies in molecule: Denacol 521 manufactured by Nagase Chemical Industries) and 0.0 g of monoethanolamine were placed in a 40 rnl sample pin.
14 g was added, stirred and mixed, and the viscosity became high after 5 minutes of reaction at 60°C, so 2 g of water was added and the mixture was stirred and mixed.
The reaction was carried out at ℃ for 155 minutes. Next, cool to room temperature and add 22.
95 g was added to prepare a crosslinking agent solution (n).
上記の重合後の親水性ポリマースラリー(ポリマー含水
量55%)に溶液(II)を3g添加し、外温80℃に
て2時間加温して表面架橋させた。3 g of solution (II) was added to the above polymerized hydrophilic polymer slurry (polymer water content 55%) and heated at an external temperature of 80° C. for 2 hours to cause surface crosslinking.
その後デカンテーションにより分散媒を除き110℃に
て4時間乾燥し、平均粒径150μのポリマーを得た。Thereafter, the dispersion medium was removed by decantation, and the mixture was dried at 110° C. for 4 hours to obtain a polymer having an average particle size of 150 μm.
尚、架橋剤溶液(n)は、エポキシ当量当りアミンを0
.16当量反応させたものであり、分子中にアミノ基を
平均1.0個有する化合物である。In addition, the crosslinking agent solution (n) contains 0 amine per epoxy equivalent.
.. 16 equivalents were reacted, and the compound has an average of 1.0 amino groups in the molecule.
実施例3
三角フラスコ中で水酸化ナトリウム43gを水208g
に溶解し、これにアクリル酸(AA)100gを加えて
できた水溶液に過硫酸アンモニウム(APS)0.3g
、エチレングリコールジグリシジルエーテル(EGDG
)61mgを加え窒素ガスを吹き込んで溶存酸素を追い
出してモノマー水溶液を調製した(モノマー濃度35%
)。Example 3 43g of sodium hydroxide was added to 208g of water in an Erlenmeyer flask.
0.3 g of ammonium persulfate (APS) is added to an aqueous solution prepared by adding 100 g of acrylic acid (AA) to this solution.
, ethylene glycol diglycidyl ether (EGDG)
) was added and nitrogen gas was blown in to drive out the dissolved oxygen to prepare a monomer aqueous solution (monomer concentration 35%).
).
このモノマー水溶液をテフロン板の上に流し、薄膜状に
して120℃にて1時間保持し重合した。This aqueous monomer solution was poured onto a Teflon plate, formed into a thin film, and held at 120° C. for 1 hour to polymerize.
生成したゴム状のポリマーゲルを2 ma+片程に切断
した。The rubbery polymer gel produced was cut into pieces of about 2 ma+.
一方、40m1のサンプルビンにソルビトールポリグリ
シジルエーテル(ナガセ化成工業製デナコール614B
)?J7gとジエチルアミン1.31gを入れて攪拌混
合して50℃にて1時間反応させたのち室温まで冷却し
て水を21.32 g加え、架橋剤溶液(I)を調製し
た。Meanwhile, in a 40 ml sample bottle, sorbitol polyglycidyl ether (Denacol 614B manufactured by Nagase Chemical Industries, Ltd.)
)? 7 g of J and 1.31 g of diethylamine were added, mixed with stirring, and reacted at 50° C. for 1 hour, cooled to room temperature, and 21.32 g of water was added to prepare a crosslinking agent solution (I).
上記の重合後のポリマーゲル(ポリマー含水量65%)
に溶液(I[I)を3g1l霧し、80℃にて3時間加
温して表面架橋させた。その後さらに110℃で4時間
乾燥を行い、平均粒径2正のポリマー粒子を辱た。Polymer gel after the above polymerization (polymer water content 65%)
3 g 1 liter of solution (I [I) was sprayed onto the solution, and the mixture was heated at 80° C. for 3 hours to cause surface crosslinking. Thereafter, it was further dried at 110° C. for 4 hours to destroy the polymer particles having an average particle size of 2.
尚、架橋剤溶液(III)は、エポキシ当量当りアミン
を0.44当量反応させたものであり、分子中にアミノ
基を平均1.6個有する化合物である。The crosslinking agent solution (III) is a compound obtained by reacting 0.44 equivalents of amine per equivalent of epoxy, and has an average of 1.6 amino groups in the molecule.
比較例1
実施例1に準じて重合を行った。但し、架橋剤溶液(1
)のかわりにソルビトールポリグリシジルX−−fル(
テ+:)−ル514 B) 0.614 gヲ水3gに
溶解したものを重合後のポリマースラリーに加え、実施
例1と同じ処理を行った。Comparative Example 1 Polymerization was carried out according to Example 1. However, crosslinking agent solution (1
) instead of sorbitol polyglycidyl X--f (
A solution of 0.614 g of Te+:)-l 514 B) in 3 g of water was added to the polymer slurry after polymerization, and the same treatment as in Example 1 was carried out.
比較例2
実施例2に準じて重合を行った。但し、架橋剤溶液(I
I)のかわりにポリグリセロールポリグリシジルエーテ
ル(ブナコール521 ) 0.491 gを水3gに
溶解したものを重合後のポリマースラリーに加え、実施
例2と同じ処理を行った。Comparative Example 2 Polymerization was carried out according to Example 2. However, the crosslinking agent solution (I
Instead of I), 0.491 g of polyglycerol polyglycidyl ether (Bunacol 521) dissolved in 3 g of water was added to the polymer slurry after polymerization, and the same treatment as in Example 2 was carried out.
比較例3
実施例3に準じて重合を行った。但し、架橋剤溶液(I
)のかわりにソルビトールポリグリシジルエーテル(ブ
ナコール614B)0.74gを水3gに溶解したもの
を噴霧した以外は実施例3と同じ処理を行った。Comparative Example 3 Polymerization was carried out according to Example 3. However, the crosslinking agent solution (I
) The same treatment as in Example 3 was carried out, except that instead of spraying 0.74 g of sorbitol polyglycidyl ether (Bunacol 614B) dissolved in 3 g of water.
実施例1〜3及び比較例1〜3で製造した吸水性ポリマ
ーの性能をまとめて表−1に示す。The performances of the water-absorbing polymers produced in Examples 1 to 3 and Comparative Examples 1 to 3 are summarized in Table 1.
表 −1
表−1の結果より、分子中にアミノ基とエポキシ基を有
する架橋剤を用いて親木性ポリマーの表面架橋を行うと
、アミノ基を有しないエポキシ化合物を用いた場合に比
べて、吸水量が高くなり、吸水速度がはやくかつ吸水ゲ
ルの強度にすぐれた吸水性ポリマーが得られることがわ
かる。Table 1 From the results in Table 1, it can be seen that when surface crosslinking of a wood-philic polymer is performed using a crosslinking agent that has an amino group and an epoxy group in the molecule, compared to when an epoxy compound that does not have an amino group is used. It can be seen that a water-absorbing polymer having a high water absorption amount, a fast water absorption rate, and excellent strength of a water-absorbing gel can be obtained.
Claims (2)
有する親水性ポリマーを、アミノ基を有する多価エポキ
シ化合物で架橋することを特徴とする高吸水性ポリマー
の製造方法。(1) A method for producing a superabsorbent polymer, which comprises crosslinking a hydrophilic polymer having a carboxyl group and/or a carboxylate group with a polyepoxy compound having an amino group.
量が40〜70重量%である特許請求の範囲第(1)項
記載の製造方法。(2) The manufacturing method according to claim (1), wherein the hydrophilic polymer is a water-containing polymer and has a water content of 40 to 70% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62030412A JPS63199205A (en) | 1987-02-12 | 1987-02-12 | Production of highly water absorbing polymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62030412A JPS63199205A (en) | 1987-02-12 | 1987-02-12 | Production of highly water absorbing polymer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63199205A true JPS63199205A (en) | 1988-08-17 |
Family
ID=12303233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62030412A Pending JPS63199205A (en) | 1987-02-12 | 1987-02-12 | Production of highly water absorbing polymer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63199205A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19543366A1 (en) * | 1995-11-21 | 1997-05-22 | Stockhausen Chem Fab Gmbh | Water-swellable polymers crosslinked with unsaturated amino alcohols, their preparation and use |
ES2158737A1 (en) * | 1999-09-01 | 2001-09-01 | Galante Agustin Gomez | Conversion of e.g. textile dye effluent into gelatinous material consists of incorporation of hydrophilic polymer grains for quantitative absorption and evaporation of the effluent water |
EP0937736A3 (en) * | 1998-02-24 | 2002-10-02 | Nippon Shokubai Co., Ltd. | Crosslinking a water-absorbing agent |
-
1987
- 1987-02-12 JP JP62030412A patent/JPS63199205A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19543366A1 (en) * | 1995-11-21 | 1997-05-22 | Stockhausen Chem Fab Gmbh | Water-swellable polymers crosslinked with unsaturated amino alcohols, their preparation and use |
DE19543366C2 (en) * | 1995-11-21 | 1998-09-10 | Stockhausen Chem Fab Gmbh | Water-swellable polymers crosslinked with unsaturated amino alcohols, their preparation and use |
US6087450A (en) * | 1995-11-21 | 2000-07-11 | Stockhausen Gmbh & Co., Kg | Water-swelling polymers cross-linked with unsaturated amino alcohols, the production and use of same |
EP0937736A3 (en) * | 1998-02-24 | 2002-10-02 | Nippon Shokubai Co., Ltd. | Crosslinking a water-absorbing agent |
ES2158737A1 (en) * | 1999-09-01 | 2001-09-01 | Galante Agustin Gomez | Conversion of e.g. textile dye effluent into gelatinous material consists of incorporation of hydrophilic polymer grains for quantitative absorption and evaporation of the effluent water |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI290155B (en) | Hygiene article comprising an absorbent polymer | |
JP4683405B2 (en) | Water-absorbing resin composition and method for producing the same | |
JP3957004B2 (en) | Water-swellable polymer crosslinked with unsaturated amino alcohol, its production and use | |
JP3202767B2 (en) | Manufacturing method of water absorbing agent | |
JPH11310644A (en) | Production of water-absorbing agent | |
JP2008528750A (en) | Polyamine-coated super absorbent polymer | |
CN1141004A (en) | Porous absorbent materials having modified surface characteristics and methods for making the same | |
EP0999238A1 (en) | Water-absorbing agent and production process therefor | |
US5314952A (en) | Processes for producing highly water absorptive resins | |
JPH09136966A (en) | Water-absorptive resin particles and its preparation | |
JP3177859B2 (en) | Powdery absorbent for aqueous liquids based on water-absorbing polymers | |
JPH078882B2 (en) | Manufacturing method of highly water-absorbent resin with excellent durability | |
JP3118779B2 (en) | Method for producing improved superabsorbent resin | |
JPH11286611A (en) | Water-absorbing resin composition and its production | |
US5055501A (en) | Process for producing highly water-absorbing resins from diepoxides and acrylic polymers | |
JPH01113406A (en) | Manufacture of highly water-absorptive polymer | |
JPH08157531A (en) | Super absorbent resin manufacturing method | |
JP2862357B2 (en) | Water absorbing agent and method for producing the same | |
JP6751582B2 (en) | Manufacturing method of water absorbent | |
JP3461860B2 (en) | Manufacturing method of absorbent material | |
JP4550256B2 (en) | Manufacturing method of water absorbent resin | |
JP3822812B2 (en) | Water absorbing agent and method for producing the same | |
JPS63199205A (en) | Production of highly water absorbing polymer | |
JP2001247683A (en) | Manufacturing method of basic water-absorbing resin, manufacturing method of water-absorbing agent and use thereof | |
JP2000197818A (en) | Water absorbing agent and method for producing the same |