JPS63198717A - Internal combustion engine exhaust particle removal device - Google Patents
Internal combustion engine exhaust particle removal deviceInfo
- Publication number
- JPS63198717A JPS63198717A JP62032107A JP3210787A JPS63198717A JP S63198717 A JPS63198717 A JP S63198717A JP 62032107 A JP62032107 A JP 62032107A JP 3210787 A JP3210787 A JP 3210787A JP S63198717 A JPS63198717 A JP S63198717A
- Authority
- JP
- Japan
- Prior art keywords
- filter
- catalyst body
- fuel
- internal combustion
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
- F01N3/025—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
- F01N3/0253—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/30—Arrangements for supply of additional air
- F01N3/32—Arrangements for supply of additional air using air pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〈産業1−の利用分野〉
本発明は、ディーゼル機関等の内燃機関の排気に含まれ
ているすす、炭素粉末等の粒子を捕集し燃焼させて除去
する装置に関する。[Detailed Description of the Invention] <Field of Application in Industry 1-> The present invention relates to a device that collects, burns, and removes particles such as soot and carbon powder contained in the exhaust gas of internal combustion engines such as diesel engines. .
〈従来技術とその問題点〉
ディーゼル機関について、排気路にセラミックフオーム
等のフィルタを設けて、排気に含まれているすす笠の粒
子・をフィルタに捕集する技術が知られている。<Prior Art and its Problems> For diesel engines, a known technique is to provide a filter made of ceramic foam or the like in the exhaust passage to collect soot particles contained in the exhaust gas.
ところが、フィルタに捕集された粒子は、約600℃以
1−の温度に加熱されないと、燃焼しない。また、ディ
ーゼル機関では、運転中の排気の温度は、通常、約40
0℃以下であり、600℃以1−になることはまれであ
る。However, the particles collected by the filter will not burn unless they are heated to a temperature of about 600° C. or higher. In addition, in diesel engines, the temperature of the exhaust gas during operation is usually about 40°C.
The temperature is below 0°C, and it rarely becomes 1- above 600°C.
従って、フィルタに捕集された粒子が排気の熱によって
燃焼することはほとんどないので、フィルタは、捕集し
た粒子によって11詰りを生ずることになる。Therefore, since the particles trapped in the filter are hardly combusted by the heat of the exhaust gas, the filter will become clogged with the trapped particles.
そこで、フィルタに捕集した粒子−を燃焼して除去する
1に気粒子−除去装置が必要になる。Therefore, a particulate removal device is required to burn and remove the particles collected by the filter.
第1従来例
この13”−j、粒子除去装置は、第5図に示すように
、ディーゼル機関21の排気路22の大径1部に粒子−
捕集用のフィルタ23を設け、排気路22のフィルタ2
3上流側位置と下流側位置の間に迂回路24を接続し、
迂回路24の入「1に、排気の流れを排気路22側又は
迂回路24側に切り換える9J換弁25を設けている。First Conventional Example This 13"-j particle removal device removes particles from a large diameter portion of the exhaust passage 22 of a diesel engine 21, as shown in FIG.
A collection filter 23 is provided, and the filter 2 of the exhaust path 22
3 Connecting the detour 24 between the upstream position and the downstream position,
A 9J switching valve 25 for switching the flow of exhaust gas to the exhaust path 22 side or the detour path 24 side is provided at the entrance 1 of the detour path 24.
フィルタ23の人口側には、燃焼室26を設け、燃焼室
26に、ディーゼル機関21の燃料をフィルタ23に向
けて噴霧する燃料噴霧ノズル27を設け、また、燃焼用
の空気を供給する空気供給路28を接続し、更に、燃料
と空気の混合気に点火する点火栓29を設けて、燃焼室
26の圧力を検出する圧力検出器30を設けている。A combustion chamber 26 is provided on the population side of the filter 23, and a fuel spray nozzle 27 for spraying fuel from the diesel engine 21 toward the filter 23 is provided in the combustion chamber 26, and an air supply for supplying air for combustion. A spark plug 29 for igniting the mixture of fuel and air is connected to the passage 28, and a pressure detector 30 for detecting the pressure in the combustion chamber 26 is provided.
この排気粒子除去装置においては、排気は、通常時には
、フィルタ23のある排気路22を流れており、フィル
タ23が捕集する粒子の量が増加するに従って、フィル
タ23による4Jl・気の圧力損失が増大し、燃焼室2
6の圧力が増加し、燃焼室26の圧力が所定の値に達す
ると、即ち、フィルタ23が捕集粒子によって目詰りを
生ずると、圧力検出器30が出力する。In this exhaust particle removal device, the exhaust gas normally flows through the exhaust path 22 in which the filter 23 is located, and as the amount of particles collected by the filter 23 increases, the pressure loss due to the filter 23 increases by 4 Jl. Increased combustion chamber 2
When the pressure in the combustion chamber 26 increases and the pressure in the combustion chamber 26 reaches a predetermined value, that is, when the filter 23 becomes clogged with trapped particles, the pressure detector 30 outputs an output.
すると、フィルタ23の11f生操作が開始し、!/j
換jf 25が作動して、排気の流れが排気路2z側か
ら迂回路24側にvJり換わり、また、燃焼室26に、
燃料噴霧ノズル27から燃料が、空気供給路28から空
気がそれぞれ供給されて、燃料と空気の混合気が形成さ
れ、この混合気が点火栓29によって点火されて燃焼し
、燃焼室26に火炎が発生する。この火炎によってフィ
ルタ23の捕集粒−γが燃焼し、フィルタ23の[1詰
りか解消されて、フィルタ23が++r生される。Then, the 11f raw operation of the filter 23 starts, and! /j
When the diversion jf 25 is activated, the flow of exhaust gas is switched from the exhaust path 2z side to the detour path 24 side, and the flow is changed to the combustion chamber 26.
Fuel is supplied from the fuel spray nozzle 27 and air is supplied from the air supply path 28 to form a mixture of fuel and air. This mixture is ignited by the ignition plug 29 and combusts, creating a flame in the combustion chamber 26. Occur. This flame burns the particles -γ collected in the filter 23, and the filter 23 is cleared of clogging, and the filter 23 is formed.
ところが、この排気粒子除去装置においては、燃焼室z
6に発生さぜた火炎によってフィルタ23を加熱するの
で、フィルタ23の全体を均一に、かつ、所q1の温度
に加熱するのが困難である。従って、フィルタ23の各
部の温度は不均一になり、フィルタ23の低温部分では
粒子の燃焼がネト分であり、フィルタ23の高温部分で
は過熱により損傷が発生する。However, in this exhaust particle removal device, the combustion chamber z
Since the filter 23 is heated by the flame generated at step 6, it is difficult to uniformly heat the entire filter 23 to a temperature of q1. Therefore, the temperature of each part of the filter 23 becomes non-uniform, and particles are burned in the low-temperature part of the filter 23, while damage occurs due to overheating in the high-temperature part of the filter 23.
また、’、!+火栓29は、長時間の使用によってすす
等がイ・1着して点火性能が劣化[7、点火のどれが発
生ずる。すると、燃焼室26に火炎が発生する+iij
4、“二、大量の燃料がフィルタ23に到達して付着
17、その後に火炎が発生した1寺に、フィルタ23に
イ・1着していた燃料が燃焼し、フィルタ23の燃料伺
1i個所が過熱されて損傷が発生する。Also,',! + When the fire plug 29 is used for a long period of time, soot etc. accumulate and the ignition performance deteriorates [7. Then, a flame is generated in the combustion chamber 26 +iij
4. 2. A large amount of fuel reached the filter 23 and adhered to the filter 23, and then a flame was generated at one point, and the fuel that had landed on the filter 23 burned, causing the fuel to adhere to the filter 23. is overheated and damage occurs.
第2従来例
この排気粒−を除去装置は、前例の装置における燃料噴
霧ノズル27、すy気供給路28及び点火栓29に代え
て、第6図に示すように、電熱器31をフィルタ23の
大11面に取り付けている。Second Conventional Example This exhaust particle removal device uses an electric heater 31 as shown in FIG. It is attached to the 11th large side of the .
圧力検出器30の出力によって前例の装置におけるのと
同様にしてフィルタ23の1v生操作が開始すると、電
熱器31が作動し、′上熱器31の熱によってフィルタ
z3の人11側の捕集粒子−が燃焼し、その燃焼熱によ
って粒子の燃焼が順次フィルタ23の11日1偶に伝播
し、フィルタ23の各部に捕集されている粒子−が燃焼
する。When the output of the pressure detector 30 starts the 1V operation of the filter 23 in the same manner as in the previous device, the electric heater 31 is activated, and the heat of the upper heater 31 causes the filter z3 to collect on the person 11 side. The particles are combusted, and the combustion of the particles is sequentially propagated to the filter 23 by the combustion heat, and the particles collected in each part of the filter 23 are combusted.
ところが、フィルタ23の各部の粒子を1〜分に燃焼さ
せるには1発熱1.ニーの多い電熱器を要し、非常に多
くの電力を要する。However, in order to burn the particles in each part of the filter 23 in 1 minute, it takes 1 heat generation. It requires an electric heater with a lot of power, and requires a large amount of electricity.
第3従来例
この排気粒子除去装置は、第1従来例の装置における燃
料噴霧ノズル27.空気供給路28及び点火栓29に代
えて、第7図に示すように、粒子・の燃焼温度を低ドさ
せる触媒の金属イオンを含んだ溶液41を空気流によっ
て噴霧する気流噴霧ノズル42を設けている。Third Conventional Example This exhaust particle removal device uses the fuel spray nozzle 27 in the device of the first conventional example. In place of the air supply path 28 and the spark plug 29, as shown in FIG. 7, an air spray nozzle 42 is provided which sprays a solution 41 containing catalyst metal ions that lower the combustion temperature of particles using an air stream. ing.
即ち、フィルタ23の人口に対面した気流噴霧ノズル4
2に、ポンプ付の触媒供給路43によって触媒溶液41
のタンク44を接続し、また、ポンプ付の空気供給路4
5を接続している。That is, the air spray nozzle 4 facing the population of the filter 23
2, the catalyst solution 41 is supplied by the catalyst supply path 43 with a pump.
A tank 44 is connected to the tank 44, and an air supply path 4 with a pump is connected.
5 is connected.
圧力検出器30の出力によって第1従来例の装置におけ
るのと同様にしてフィルタ23の再生操作が開始すると
、触媒溶液41が気流噴霧ノズル42からフィルタ23
に噴霧され、フィルタ23に捕集されている粒子は、触
媒によって燃焼温度が300℃位に低下して、燃焼する
。When the regeneration operation of the filter 23 is started in accordance with the output of the pressure detector 30 in the same manner as in the first conventional device, the catalyst solution 41 is transferred from the air spray nozzle 42 to the filter 23.
The combustion temperature of the particles that have been atomized and collected by the filter 23 is reduced to about 300° C. by the catalyst, and the particles are combusted.
ところが、この装置においては、ディーゼル機関の燃ネ
1の外に、触媒溶液41をも装備しな(すればならず、
装置が大がかりになる−にに、触媒溶液41をディーゼ
ル機関の堝料におけるのと同様に定期的に補給しなけれ
ばならない。However, in this device, a catalyst solution 41 is not provided in addition to the combustion engine 1 of the diesel engine.
As the installation becomes larger, the catalyst solution 41 must be periodically replenished, similar to the feedstock in a diesel engine.
更に、気流噴霧ノズル42によって噴霧された触媒溶液
41の一部は、フィルタ23を通過して、大気中に放出
され、触媒による新たな大気汚染が発生する。Further, a part of the catalyst solution 41 sprayed by the air spray nozzle 42 passes through the filter 23 and is released into the atmosphere, causing new air pollution due to the catalyst.
本発明の[I的は、1−記のような従来の問題点を解決
することである。The main purpose of the present invention is to solve the conventional problems as described in 1-.
く問題点を解決するための着眼点〉
本発明者は、−4−記の[1的を達成するため、先ず、
l記の3種の従来例の装置について検討したところ、実
用1−、ディーゼル機関の燃料を利用する第1従来例の
装置が優れているものとr4断した0次に、第1従来例
の装置を改良するに当り、次の点に着眼した。Points of focus for solving the problems> In order to achieve [Objective 1] of -4-, first of all,
After examining the three types of conventional devices described in section 1, we found that the device of the first conventional example using fuel from a diesel engine was superior. In improving the device, we focused on the following points.
1)ディーゼル機関の燃料は、触媒を用いて燃焼すると
、第1従来例の装置における火炎による燃焼に比較して
、均一な燃焼が行われる。1) When the fuel of a diesel engine is combusted using a catalyst, it is more uniformly combusted than combustion using a flame in the first conventional device.
2)ディーゼル機関の燃料は、白金、パラジウムやロジ
ウム等の貴金属系の触媒を用いると、250〜300℃
位の温度で燃焼を開始する。2) When using a noble metal catalyst such as platinum, palladium, or rhodium, diesel engine fuel can reach a temperature of 250 to 300°C.
Combustion begins at a temperature of about
3)ディーゼル機関は2通常の運転時には、排気が容易
に250〜300℃位の温度になる。3) During normal operation of a diesel engine, the exhaust gas temperature easily reaches 250 to 300°C.
4)従って、排気によって加熱された貴金属系の触媒に
燃料を噴霧すると、燃焼が開始する。4) Therefore, when fuel is sprayed onto a noble metal catalyst heated by exhaust gas, combustion begins.
く問題点を解決するための手段〉
本発明は、内燃機関の排気路に、排気中の粒子を捕集す
るフィルタを設け。Means for Solving the Problems> The present invention provides a filter for collecting particles in the exhaust gas in the exhaust path of an internal combustion engine.
フィルタの入11側又は出口側であって排気路の排気に
よって加熱される位置に、下記の燃料の燃焼温度を低下
させる触媒体を設け、
触媒体のフィルタ側と反対側に燃料と空気の混合室を設
け。A catalyst body that lowers the combustion temperature of the following fuel is provided at a position on the inlet 11 side or outlet side of the filter that is heated by the exhaust gas from the exhaust passage, and a catalyst body that lowers the combustion temperature of the fuel described below is installed on the side opposite to the filter side of the catalyst body to mix fuel and air. Set up a room.
混合室に、内燃機関の燃料を触媒体に噴霧する燃料噴霧
ノズルを設け、また、空気を供給する空気供給路を接続
し、
フィルタに捕集された粒子を、触媒体を用いた燃料の燃
焼による熱によって燃焼させる構成にしたことを特徴と
する内燃機関の排気粒子除去装置である。A fuel spray nozzle for spraying the fuel of the internal combustion engine onto the catalyst body is installed in the mixing chamber, and an air supply path is connected to the mixture chamber, and the particles collected by the filter are used to burn the fuel using the catalyst body. This is an exhaust particle removal device for an internal combustion engine, characterized in that it is configured to perform combustion using heat generated by the combustion engine.
〈発明の作用と効果〉
未発IJIの内燃機関の排気粒子除去装置においては、
フィルタに捕集された粒子は、内燃機関の燃才1を排気
の熱で加熱された触媒を用いて燃焼する熱によって燃焼
される。<Operation and Effects of the Invention> In the exhaust particle removal device for an internal combustion engine that has not yet emitted IJI,
The particles collected by the filter are combusted by the heat generated by combustion of the combustion engine 1 of the internal combustion engine using a catalyst heated by exhaust heat.
従って、フィルタの捕集粒子−の燃焼に、触媒を用いる
燃焼の熱が用いられるので、火炎による燃焼の熱を用い
る第1従来例の装置に比較して、フィルタの各部の捕集
粒子が均一に燃焼され、捕集粒子の不十分な燃焼やフィ
ルタの過熟による損傷が発生し難い。Therefore, since the heat of combustion using a catalyst is used to burn the particles collected by the filter, the particles collected in each part of the filter are uniform compared to the first conventional device that uses the heat of combustion by flame. It is difficult to cause damage due to insufficient combustion of collected particles or overripening of the filter.
また、点火栓が不要であるので、点火栓を用いた第1従
来例の装置におけるような、点火栓の性能劣化による弊
害が発生しない。Further, since a spark plug is not required, there is no problem caused by deterioration in the performance of the spark plug as in the first conventional device using a spark plug.
また、電熱器が不要であるので、電熱器を用いた第2従
来例の装置とは異なり、大ニーの電力を消費しない。Further, since an electric heater is not required, unlike the second conventional device using an electric heater, no electric power is consumed.
更に、捕集粒子・の燃焼に、内燃機関の燃料を用い、触
媒溶液を用いないので、触媒溶液を用いる第3従来例の
装置とは異なり、触媒溶液を用いることによる前記の問
題点がない。Furthermore, since the fuel of the internal combustion engine is used for combustion of the collected particles and no catalyst solution is used, unlike the third conventional apparatus which uses a catalyst solution, there is no problem mentioned above due to the use of a catalyst solution. .
く第1実施例〉
本例の内燃機関の排気粒子除去装置は、第1図に示すよ
うに、ディーゼル機関lの排気路2の大l−¥部に、排
気中の粒子を捕集するフィルタ3を取り付けている。First Embodiment> As shown in FIG. 1, the exhaust particle removal device for an internal combustion engine of this example includes a filter for collecting particles in the exhaust gas in the large l-\ section of the exhaust path 2 of the diesel engine l. 3 is installed.
フィルタ3は、多孔質のコージライト製のハニカム構造
であって、入[1面と出「1面の間に流路を1中方イン
チ当り200本貫設しており、各波路の人目と出目のい
ずれか一方を閉鎖し、入口を閉鎖した波路と出口を閉鎖
した流路を交互に配置している。The filter 3 has a honeycomb structure made of porous cordierite, and has 200 flow passages per medium inch between the input and output sides, and the passages between the input and output sides of each wave passage. Either one of the eyes is closed, and wave channels with closed entrances and flow channels with closed exits are arranged alternately.
従って、フィルタ3を通過する排気は1人口を開放して
出目を閉鎖した流路に流入し、その流路の多孔質の壁を
経て隣りの流路、即ち、入目を閉鎖して出[1を開放し
た流路に流入し、その流路の出1.i’lから流出する
0粒子を含有した排気は、フィルタ3の波路の多孔質の
壁を通過する際に、粒子が多孔質の壁に捕集されて取り
除かれる。Therefore, the exhaust gas passing through the filter 3 flows into the channel with one opening and the outlet closed, passes through the porous wall of that channel, and exits into the adjacent channel, i.e., with the inlet closed. [1.1 flows into the open channel, and 1. When the exhaust gas containing 0 particles flowing out from i'l passes through the porous wall of the wave path of the filter 3, the particles are collected on the porous wall and removed.
排気路2のフィルタ3上流側位置と下流側位置の間には
、第1図に示すように、迂回路4を接続し、迂回路4の
人「1に、排気の流れを排気路2側又は迂回路4偶に切
り換える切換弁5を、没けている。As shown in FIG. 1, a detour 4 is connected between the upstream and downstream positions of the filter 3 in the exhaust path 2, and the exhaust flow is directed to the exhaust path 2 to the detour 4. Or, the switching valve 5 for switching to the detour route 4 is sunk.
排気路2の大径部には、第1図に示すように、フィルタ
3と同径のハニカム構造の触媒体6をフィルタ3の入口
側に隙間を設けてフィルタ3と同芯状に取り付けている
。As shown in FIG. 1, in the large diameter portion of the exhaust passage 2, a catalyst body 6 having a honeycomb structure having the same diameter as the filter 3 is installed concentrically with the filter 3 with a gap provided on the inlet side of the filter 3. There is.
触媒体6は、コージライト製のハニカム構造の担体に、
アルミナを被覆して、触媒金属の白金を相持している。The catalyst body 6 is a honeycomb structure carrier made of cordierite.
It is coated with alumina and supports the catalytic metal platinum.
ハニカム構造の担体は、入[1面と出「1面の間に波路
を1平方インチ当り200本貫設している。触媒のには
、触媒体6の体積1文当り2gである。The carrier having a honeycomb structure has 200 wave channels per square inch between the first side and the first side.
排気路2の触媒体6人[−1側には、第1図に示すよう
に2触媒体6から遠ざかるに従って小径になる略円錐筒
状の混合室7を触媒体6と同芯状に形成している。Six catalyst bodies [-1 side of the exhaust passage 2, as shown in FIG. are doing.
混合室7の小径端の中心部には、第1図に示すように、
ディーゼル機関lの燃料を空気流によって噴霧する気流
噴霧ノズル8を触媒体6と対面して同芯状に取り付けて
いる。In the center of the small diameter end of the mixing chamber 7, as shown in FIG.
An air spray nozzle 8 for spraying the fuel of the diesel engine 1 using an air stream is installed concentrically facing the catalyst body 6.
即ち、燃料噴霧ノズルの一種である気流噴霧ノズル8に
は、ポンプ9付の燃料供給路IOとポンプ11付の空気
供給路工2をそれぞれ接続している。また、混合室7の
周11tには、空気供給路12のポンプ11下流側位置
から分岐した絞り付の空気供給路13を気流噴霧ノズル
8の直前位置に接続して、気流噴霧ノズル8から噴霧し
た燃料が触媒体6の人目面にほぼ一様に分布する構成に
している。That is, a fuel supply path IO with a pump 9 and an air supply path 2 with a pump 11 are connected to the air flow spray nozzle 8, which is a type of fuel spray nozzle. In addition, on the circumference 11t of the mixing chamber 7, an air supply path 13 with a throttle branched from the downstream side of the pump 11 of the air supply path 12 is connected to a position immediately before the air spray nozzle 8, so that the air spray nozzle 8 can spray the air. The fuel is distributed almost uniformly on the lateral surface of the catalyst body 6.
混合室7には、第1因に示すように、混合室7の圧力が
11シ定値になると、フィルタ3のilT生操作を開始
するために出力する圧力検出器14を取り+lけCいる
。As shown in the first factor, the mixing chamber 7 is equipped with a pressure detector 14 which outputs an output in order to start the ILT operation of the filter 3 when the pressure in the mixing chamber 7 reaches a constant value.
本例の内燃機1t1の排気粒子−除去装置においては、
1f気は、通゛畠11!Nには、触媒体6とフィルタ3
のある11気路2を流れ、排気によって触媒体6が加熱
され、また、+Jl気中の粒子がフィルタ3に捕集され
る。In the exhaust particle removal device for the internal combustion engine 1t1 of this example,
1F is like 11! For N, catalyst body 6 and filter 3
The catalyst body 6 is heated by the exhaust gas, and particles in the +Jl air are collected by the filter 3.
フィルタ3が捕集した粒子の量が増加するに従って、混
合室7の圧力が増加し、混合室7の圧力が+iQ定植に
達すると、即ち、フィルタ3が捕集粒子によって目1情
りを生ずると、圧力検出器14が出力する。As the amount of particles collected by the filter 3 increases, the pressure in the mixing chamber 7 increases, and when the pressure in the mixing chamber 7 reaches +iQ, that is, the filter 3 becomes overwhelmed by the collected particles. The pressure detector 14 outputs this.
すると、フィルタ3のIIf生操作が1511始され、
!/J換弁5が作動して、排気の流れが排気路2 (I
llから迂回路4偶に切り換わり、また、混合室7に、
気流噴霧ノズル8から燃料が空気流によって噴霧される
と共に、空気供給路13がら空気が供給されて、燃料と
空気の混合気が形成され、この混合気が触媒体6の入口
面にほぼ一様に分布して吹き付けられ、排気によって加
熱された触媒体6に付着した燃料が燃焼し、この燃焼の
熱によってフィルタ3の入口面がほぼ均一に加熱され、
フィルタ3に捕集されていた粒子が燃焼し、フィルタ3
の11詰りか解消される。Then, the IIf raw operation of filter 3 starts at 1511,
! /J exchange valve 5 operates, and the flow of exhaust gas is directed to exhaust path 2 (I
Switching from ll to detour 4, and into mixing chamber 7,
Fuel is atomized by an air stream from the air spray nozzle 8, and air is supplied from the air supply path 13 to form a mixture of fuel and air, and this mixture is distributed almost uniformly on the inlet surface of the catalyst body 6. The fuel adhering to the catalyst body 6 heated by the exhaust gas is combusted, and the inlet surface of the filter 3 is almost uniformly heated by the heat of this combustion.
The particles trapped in the filter 3 are burned, and the filter 3
11 blockages will be resolved.
実 験
2.21の排気j14があるディーゼル機関1は、約3
.000 rpmの定速回転で運転した。Diesel engine 1 with exhaust j14 in experiment 2.21 has approximately 3
.. It was operated at a constant rotation speed of 000 rpm.
運転開始直後には、混合室7の圧力は、圧力検出器14
によると、約100l1Hgであった。Immediately after the start of operation, the pressure in the mixing chamber 7 is detected by the pressure detector 14.
According to , it was about 100l1Hg.
15時間の連続運転をした直後には、混合室7の圧力は
、圧力検出器14によると、約200+smHgになっ
た。Immediately after 15 hours of continuous operation, the pressure in the mixing chamber 7 was approximately 200+smHg according to the pressure detector 14.
そこで、フィルタ3の再生操作を開始させ、」−記した
ように、切換弁5の作動によって排気の流れを迂回路4
側に切り換え、また、気流噴霧ノズル8の作動によって
混合室7に混合気を形成し、この混合気を触媒体6に吹
き付けた。混合気は、吹付速度が毎秒的Q、3mであり
、空気過剰率が約4であった。Therefore, the regeneration operation of the filter 3 is started, and the flow of exhaust gas is diverted to the bypass route 4 by operating the switching valve 5, as described in "-".
By switching to the side and operating the air spray nozzle 8, a mixture was formed in the mixing chamber 7, and this mixture was sprayed onto the catalyst body 6. The air-fuel mixture had a blowing speed of Q per second, 3 m, and an excess air ratio of about 4.
そして、第1図に示すように、触媒体6の入口面中心の
前側位置のA点と、触媒体6とフィルタ3間の隙間の中
央位置のB点、及び、フィルタ3の中心位置の0点の各
温度を熱電対によって測定し、また、混合室7の圧力を
圧力検出器14によって測定した。これらの測定結果は
、第2図の線図に示す。As shown in FIG. 1, there is a point A at the front side of the center of the inlet face of the catalyst body 6, a point B at the center position of the gap between the catalyst body 6 and the filter 3, and a point 0 at the center position of the filter 3. The temperature at each point was measured by a thermocouple, and the pressure in the mixing chamber 7 was measured by a pressure detector 14. The results of these measurements are shown in the diagram of FIG.
この線図からIIらかなように、フィルタ3のIIf生
操作の開始後に、触媒体6の前側のA点の温度は、徐々
に上昇するが、大きく変化しないのに対し、触媒体6と
フィルタ3間のB点とフィルタ3内の0点の温度は、急
速に上昇し、触媒体6における燃料の燃焼による熱によ
ってフィルタ3が加熱されたことを示している。As is clear from this diagram, after the start of the IIf operation of the filter 3, the temperature at point A on the front side of the catalyst body 6 gradually increases but does not change significantly, whereas the temperature of the catalyst body 6 and the filter The temperature at point B between 3 and point 0 inside the filter 3 rose rapidly, indicating that the filter 3 was heated by the heat generated by combustion of the fuel in the catalyst body 6.
また、混合室7の圧力は、−・旦−1−昇してから減少
し、フィルタ3の通気抵抗即ち目詰りが減少したことを
示している。Further, the pressure in the mixing chamber 7 increased by -1-1- and then decreased, indicating that the ventilation resistance, that is, the clogging of the filter 3, decreased.
フィルタ3の再生操作を3分間行った後、切換弁5を原
位置に戻し、気流噴霧ノズル8の作動を停止二させたと
ころ、圧力検出器14は、再び、約100mmHHの圧
力を示し、フィルタ3が11f生されたことを示した。After regenerating the filter 3 for 3 minutes, the switching valve 5 was returned to its original position and the operation of the air spray nozzle 8 was stopped. The pressure detector 14 again showed a pressure of about 100 mmHH, and the filter 3 was born at 11f.
また、ディーゼル機関lを連続運転し、混合室7の圧力
が増加して200tamHg強になったところで、ディ
ーゼル機関1の運転を停止し、触媒体6を取り出しで調
べたところ、触媒体6の流路の壁面にわずかな粒子の付
着が認められた。In addition, when the diesel engine 1 was continuously operated and the pressure in the mixing chamber 7 increased to over 200 tamHg, the operation of the diesel engine 1 was stopped and the catalyst body 6 was taken out and examined. A small amount of particles were observed on the road wall.
この触媒体6はそのまま原位置に戻し、ディーゼル機関
lの運転を再開し、フィルタ3の再生操作を行った後に
、再び、触媒体6を取り出して調べたところ、触媒体6
には波路の壁面のみならず他の部分にも粒子の付着が認
められなかった。従って、粒子の触媒体6への付着は1
問題にならないことが判明した。The catalyst body 6 was returned to its original position, the diesel engine 1 was restarted, and the filter 3 was regenerated. When the catalyst body 6 was again taken out and examined, it was found that the catalyst body 6
No particle adhesion was observed not only on the wall of the wave channel but also on other parts. Therefore, the adhesion of particles to the catalyst body 6 is 1
It turned out to be no problem.
フィルタ3の再生操作は、繰り返して何回も行ったが、
フィルタ3の再生後には、常に、圧力検出′J:iia
は、100+smHg前後のほぼ一定した圧力を示した
。I repeated the regeneration operation of filter 3 many times, but
After the filter 3 is regenerated, the pressure detection 'J:iia
showed a nearly constant pressure around 100+smHg.
く第2実施例〉
本例の内燃機関の排気粒子除去装置は、前例のそれにお
いては排気を触媒体6の入口側に導入したのに対し、第
3図に示すように、排気をフィルタ3と触媒体6の間の
隙間に導入する構成にしている。フィルタ3と触媒体6
の間の隙間には、その隙間の圧力が設定値になると出力
する圧力検出器14を増り付けている。Second Embodiment> The exhaust particle removal device for an internal combustion engine of this example introduces exhaust gas into the inlet side of the catalyst body 6 in the previous example, whereas the exhaust gas is introduced into the inlet side of the catalyst body 6 as shown in FIG. and the catalyst body 6. Filter 3 and catalyst body 6
A pressure detector 14 is added to the gap between the two, which outputs an output when the pressure in the gap reaches a set value.
その他の点は、匍例におけるのとほぼ同様であり、第3
図に同−符−)を付する。The other points are almost the same as in the case of the third case.
The same symbol (-) is attached to the figure.
く第3実施例〉
本例の内燃機関の排気粒子除去装置は、第1実施例のそ
れにおいては排気を混合室7、触媒体6、フィルタ3の
順序に流していたのに対し。Third Embodiment The exhaust particle removal device for an internal combustion engine of this embodiment is different from the first embodiment in which the exhaust gas is passed through the mixing chamber 7, the catalyst body 6, and the filter 3 in this order.
第4図に示すように、排気をフィルタ3、触媒体6、混
合室7の順序、即ち、逆方向に流す構成にしている。迂
回路4の出口には、排気の流れをフィルタ3や触媒体6
のある排気路2側又は迂回路4側にすJり換えるνJ換
弁5を設け、排気路2のフィルタ3上流側位置に、その
位置の圧力が設定値になると出力する圧力検出器14を
取り付けている。As shown in FIG. 4, the exhaust gas is configured to flow in the order of the filter 3, the catalyst body 6, and the mixing chamber 7, that is, in the reverse direction. At the exit of the detour path 4, the exhaust flow is passed through a filter 3 and a catalyst body 6.
A νJ switching valve 5 is provided on the exhaust path 2 side or the detour path 4 side, and a pressure detector 14 is installed at a position upstream of the filter 3 in the exhaust path 2, which outputs an output when the pressure at that position reaches a set value. ing.
その他の点は、ml実施例におけるのとほぼ同様であり
、第4図に同−符吟を封する6くその他〉
触媒体6は、白金、パラジウムやロジウム等の貴金属を
一種又は二種以上担持したものが低温で活性が高く最も
優れている。The other points are almost the same as those in the ml example, and the catalyst body 6 contains one or more noble metals such as platinum, palladium, and rhodium. Supported materials are the best because they have high activity at low temperatures.
しかし、XIL金属の触媒体は、高価であるので、酸化
第二鉄、酸化コバルトや酸化ニンケル等の金属酸化物を
担持した触媒体と併用し、1′を金属の触媒体を燃本1
噴霧ノズル側に、金属酸化物の触媒体をフィルタ側にそ
れぞれ配置してもよい。このようにすると、貴金属の触
媒体を?i独で用いた場合に比較して、安価であり、ま
た、同様な触媒性能を示す。However, since XIL metal catalysts are expensive, they are used in combination with catalysts supporting metal oxides such as ferric oxide, cobalt oxide, and nickel oxide.
The metal oxide catalyst may be placed on the spray nozzle side and the metal oxide catalyst body on the filter side. In this way, the precious metal catalyst body? It is cheaper and exhibits similar catalytic performance compared to when used alone.
触媒体の4!1体は、ハニカム構造が通気抵抗が小さく
て優れているが、多孔室のフオーム等であってもよい。The 4!1 catalyst body has a honeycomb structure, which is excellent because of its low ventilation resistance, but it may also have a foam with porous chambers.
燃料噴霧ノズル8は、気流噴霧ノズルが微粒化性能が良
く優れているが、圧力噴霧ノズルや超音波式噴霧ノズル
等であってもよい。As for the fuel spray nozzle 8, although an airflow spray nozzle has excellent atomization performance, it may be a pressure spray nozzle, an ultrasonic spray nozzle, or the like.
第1図は、本発明の第1実施例の内燃機関の排気粒子−
除去装置の略示断面図である。
第2図は、同排気粒子除去装置におけるA点、B点と0
点の温度変化と混合室の圧力変化を示す線図である。
第3図は、第2実施例の内燃機関の排気粒子除去装置の
部分略示断面図である。
第4図は、第3実施例の内燃機関の排気粒子−除去装置
の略示断面図である。
第5図は、第1従来例の内燃機関の排気粒子除去装置の
略示断面図である。
第6図は、第2従来例の内燃機関の排気粒子除去装置の
略示断面図である。
第7図は、第3従来例の内燃機関の排気粒子除去装置の
略示断面図である。
l : ディーゼル機関、内燃機関
2 : 排気路 3 : フィルタ6 : 触媒
体 7 : 混合室8 : 燃料噴霧ノズル、気
流噴霧ノズル12:’−ζ気供給路 13 : 空気供
給路特許出願人 株式会社:ru中央研究所代 理
人 弁理 ト 水 野 桂7′2 図
0 0.5 1 1.5
時間〔分]
7′3図
第4 図FIG. 1 shows exhaust particles of an internal combustion engine according to a first embodiment of the present invention.
FIG. 3 is a schematic cross-sectional view of the removal device. Figure 2 shows points A, B and 0 in the same exhaust particle removal device.
FIG. 2 is a diagram showing temperature changes at points and pressure changes in a mixing chamber. FIG. 3 is a partially schematic cross-sectional view of an exhaust particle removal device for an internal combustion engine according to a second embodiment. FIG. 4 is a schematic cross-sectional view of an exhaust particle removal device for an internal combustion engine according to a third embodiment. FIG. 5 is a schematic cross-sectional view of a first conventional example of an exhaust particle removal device for an internal combustion engine. FIG. 6 is a schematic cross-sectional view of a second conventional example of an exhaust particle removal device for an internal combustion engine. FIG. 7 is a schematic cross-sectional view of a third conventional example of an exhaust particle removal device for an internal combustion engine. l: Diesel engine, internal combustion engine 2: Exhaust passage 3: Filter 6: Catalyst body 7: Mixing chamber 8: Fuel spray nozzle, air spray nozzle 12: '-ζ air supply passage 13: Air supply passage Patent applicant Corporation: Deputy Director of ru Central Research Institute
Person Patent attorney To Katsura Mizuno 7'2 Figure 0 0.5 1 1.5 Time [minutes] Figure 7'3 Figure 4
Claims (1)
ルタを設け、 フィルタの入口側又は出口側であって排気路の排気によ
って加熱される位置に、下記の燃料の燃焼温度を低下さ
せる触媒体を設け、 触媒体のフィルタ側と反対側に燃料と空気の混合室を設
け、 混合室に、内燃機関の燃料を触媒体に噴霧する燃料噴霧
ノズルを設け、また、空気を供給する空気供給路を接続
し、 フィルタに捕集された粒子を、触媒体を用いた燃料の燃
焼による熱によって燃焼させる構成にしたことを特徴と
する内燃機関の排気粒子除去装置。 2)触媒体は、白金、パラジウムやロジウム等の貴金属
を一種又は二種以上担持したことを特徴とする特許請求
の範囲第1項記載の内燃機関の排気粒子除去装置。 3)触媒体は、白金、パラジウムやロジウム等の貴金属
を一種又は二種以上担持した触媒体と、酸化第二鉄、酸
化コバルトや酸化ニッケル等の金属酸化物を担持した触
媒体とからなり、 前者の触媒体を燃料噴霧ノズル側に、後者の触媒体をフ
ィルタ側に、それぞれ、配置したことを特徴とする特許
請求の範囲第1項記載の内燃機関の排気粒子除去装置。 4)触媒体の担体は、ハニカム構造であることを特徴と
する特許請求の範囲第1項、第2項又は第3項記載の内
燃機関の排気粒子除去装置。 5)燃料噴霧ノズルは、燃料を空気流によって噴霧する
気流噴霧ノズルであることを特徴とする特許請求の範囲
第1項乃至第4項のいずれかに記載の内燃機関の排気粒
子除去装置。[Claims] 1) A filter for collecting particles in the exhaust gas is provided in the exhaust passage of the internal combustion engine, and the following is installed on the inlet side or outlet side of the filter at a position heated by the exhaust gas in the exhaust passage. A catalyst body that lowers the combustion temperature of the fuel is provided, a mixing chamber for fuel and air is provided on the side opposite to the filter side of the catalyst body, a fuel spray nozzle is provided in the mixing chamber to spray fuel from the internal combustion engine onto the catalyst body, Further, there is provided an exhaust particle removal device for an internal combustion engine, characterized in that an air supply path for supplying air is connected, and the particles collected by the filter are combusted by heat generated by combustion of fuel using a catalyst body. . 2) The exhaust particle removal device for an internal combustion engine according to claim 1, wherein the catalyst body supports one or more noble metals such as platinum, palladium, and rhodium. 3) The catalyst body consists of a catalyst body that supports one or more noble metals such as platinum, palladium, and rhodium, and a catalyst body that supports metal oxides such as ferric oxide, cobalt oxide, and nickel oxide, 2. The exhaust particle removal device for an internal combustion engine according to claim 1, wherein the former catalyst body is disposed on the fuel spray nozzle side, and the latter catalyst body is disposed on the filter side. 4) The exhaust particle removal device for an internal combustion engine according to claim 1, 2 or 3, wherein the carrier of the catalyst body has a honeycomb structure. 5) The exhaust particle removal device for an internal combustion engine according to any one of claims 1 to 4, wherein the fuel spray nozzle is an airflow spray nozzle that sprays fuel using an airflow.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62032107A JPS63198717A (en) | 1987-02-13 | 1987-02-13 | Internal combustion engine exhaust particle removal device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62032107A JPS63198717A (en) | 1987-02-13 | 1987-02-13 | Internal combustion engine exhaust particle removal device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63198717A true JPS63198717A (en) | 1988-08-17 |
Family
ID=12349671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62032107A Pending JPS63198717A (en) | 1987-02-13 | 1987-02-13 | Internal combustion engine exhaust particle removal device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63198717A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0737802A2 (en) * | 1995-04-10 | 1996-10-16 | Nippon Soken, Inc. | Hydrocarbon supplementing device mounted in exhaust purification device of internal combustion engine |
US5711149A (en) * | 1995-05-18 | 1998-01-27 | Toyota Jidosha Kabushiki Kaisha | Device for purifying the exhaust gas of a diesel engine |
WO2004079168A1 (en) * | 2003-01-31 | 2004-09-16 | Jean Claude Fayard | Method for the post-injection of hydrocarbon-, alcohol- and/or reducing-agent-type regeneration solution (e.g. diesel fuel and/or urea and/or ammoniacal solution) for the regeneration of diesel engine exhaust gas filtration systems |
JP2006316758A (en) * | 2005-05-16 | 2006-11-24 | Isuzu Motors Ltd | Exhaust emission control method and exhaust emission control system |
FR2921967A1 (en) * | 2007-10-03 | 2009-04-10 | Renault Sas | Reactive fluid e.g. fuel, and exhaust gas mixing device for internal combustion engine of motor vehicle, has controller sending positioning control signal to actuator by communication link and injection control signal to injector |
DE102008046439A1 (en) * | 2008-09-09 | 2010-03-11 | Volkswagen Ag | Device for inserting medium for waste gas treatment for pollutant control equipment in exhaust gas flow guided in exhaust strand of internal combustion engine, has mixing chamber for mixing medium with exhaust gas flow |
-
1987
- 1987-02-13 JP JP62032107A patent/JPS63198717A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0737802A2 (en) * | 1995-04-10 | 1996-10-16 | Nippon Soken, Inc. | Hydrocarbon supplementing device mounted in exhaust purification device of internal combustion engine |
EP0737802A3 (en) * | 1995-04-10 | 1997-03-05 | Nippon Soken | Hydrocarbon supplementing device mounted in exhaust purification device of internal combustion engine |
US5806310A (en) * | 1995-04-10 | 1998-09-15 | Nippon Soken, Inc. | Exhaust purification apparatus |
US5711149A (en) * | 1995-05-18 | 1998-01-27 | Toyota Jidosha Kabushiki Kaisha | Device for purifying the exhaust gas of a diesel engine |
EP0743429A3 (en) * | 1995-05-18 | 1998-06-10 | Toyota Jidosha Kabushiki Kaisha | Device for purifying the exhaust gas of a diesel engine |
EP1158143A2 (en) | 1995-05-18 | 2001-11-28 | Toyota Jidosha Kabushiki Kaisha | Device for purifying the exhaust gas of a diesel engine |
WO2004079168A1 (en) * | 2003-01-31 | 2004-09-16 | Jean Claude Fayard | Method for the post-injection of hydrocarbon-, alcohol- and/or reducing-agent-type regeneration solution (e.g. diesel fuel and/or urea and/or ammoniacal solution) for the regeneration of diesel engine exhaust gas filtration systems |
US7481045B2 (en) | 2003-01-31 | 2009-01-27 | Jean-Claude Fayard | Method for the post-injection of hydrocarbon-, alcohol- and/or reducing-agent-type regeneration solution (e.g. diesel fuel and/or urea and/or ammoniacal solution) for the regeneration of diesel engine exhaust gas filtration systems |
JP2006316758A (en) * | 2005-05-16 | 2006-11-24 | Isuzu Motors Ltd | Exhaust emission control method and exhaust emission control system |
JP4561467B2 (en) * | 2005-05-16 | 2010-10-13 | いすゞ自動車株式会社 | Exhaust gas purification method and exhaust gas purification system |
FR2921967A1 (en) * | 2007-10-03 | 2009-04-10 | Renault Sas | Reactive fluid e.g. fuel, and exhaust gas mixing device for internal combustion engine of motor vehicle, has controller sending positioning control signal to actuator by communication link and injection control signal to injector |
DE102008046439A1 (en) * | 2008-09-09 | 2010-03-11 | Volkswagen Ag | Device for inserting medium for waste gas treatment for pollutant control equipment in exhaust gas flow guided in exhaust strand of internal combustion engine, has mixing chamber for mixing medium with exhaust gas flow |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3355943B2 (en) | Exhaust gas purification method and exhaust gas filter and exhaust gas filter purification device using the same | |
US6989045B2 (en) | Apparatus and method for filtering particulate and reducing NOx emissions | |
KR101583540B1 (en) | Particulate exhaust reduction device for generator | |
CN101631935B (en) | Catalyst system and use thereof | |
JPS60122214A (en) | Method and device for removing black smoke from exhaust gas of internal combustion engine | |
US6968681B2 (en) | Method and device for aftertreatment of exhaust gases from combustion engines | |
JPS61223215A (en) | Regenerating method for filter member for collectively catching fine particle | |
JPS63198717A (en) | Internal combustion engine exhaust particle removal device | |
JP6753179B2 (en) | Oxidation catalyst and exhaust gas purification system | |
JPS59150918A (en) | Diesel engine exhaust gas purification device | |
JP3780268B2 (en) | Diesel engine exhaust gas purification system | |
JPH0771226A (en) | Exhaust particulate purifying device | |
JPH05149127A (en) | Exhaust emission control device for diesel engine | |
JPS6235854Y2 (en) | ||
JP2003155910A (en) | Diesel particulate filter | |
JPS59134314A (en) | Diesel engine exhaust purification device | |
CN207315482U (en) | System for diesel engine exhaust purified treatment | |
KR100318888B1 (en) | Diesel engine exhaust gas purifier | |
JPH0530964B2 (en) | ||
JPH08260944A (en) | Dpf burner regenerating device | |
JPH10299457A (en) | Method and device for purifying exhaust gas filter | |
JPH03210008A (en) | Diesel exhaust gas processor | |
JPH02173310A (en) | Remover of particle in exhaust gas | |
JP2003155909A (en) | Filter for diesel particulate filter device | |
JPH086579B2 (en) | Diesel exhaust gas purification equipment |