JPS63198645A - Production of brassylic acid lower alkyl ester - Google Patents
Production of brassylic acid lower alkyl esterInfo
- Publication number
- JPS63198645A JPS63198645A JP62029696A JP2969687A JPS63198645A JP S63198645 A JPS63198645 A JP S63198645A JP 62029696 A JP62029696 A JP 62029696A JP 2969687 A JP2969687 A JP 2969687A JP S63198645 A JPS63198645 A JP S63198645A
- Authority
- JP
- Japan
- Prior art keywords
- lower alkyl
- brassylic acid
- alkyl ester
- halogenated
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はムスク系香料物質の合成における中間体として
有用なブラシル酸ジ低級アルキルエステルの製造法に関
する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing brassylic acid di-lower alkyl esters useful as intermediates in the synthesis of musk fragrance substances.
本発明のブラシル酸ジ低級アルキルエステルは一般式(
1)
(式中、R+、Rgは同一または異なる低級アルキル基
を示す)
で表され、ムスク系香料物質すなわちブラシル酸環状エ
チレンエステルを合成する際の重要な中間体である。ブ
ラシル酸ジ低級アルキルエステルの最も一般的製法とし
ては従来、ナタネ油の加水分解物中に存在するエルカ酸
をオゾン酸化して得られるブラシル酸をエステル化する
方法(S、C,Bha−ttacharyyaらInd
ian J、 cheIl、 4 、 (12)、 5
24. (1966))、アジピン酸モノエステルとア
ジピン酸モノエステルをコルベ反応による合成法(特開
昭57−198287号)、−一ハロゲン化デカン酸エ
ステルにマロン酸を反応させる方法(Dudinov、
A、A、らIzv。The brassylic acid di-lower alkyl ester of the present invention has the general formula (
1) (In the formula, R+ and Rg represent the same or different lower alkyl groups.) It is an important intermediate in the synthesis of musk fragrance substances, that is, brassylic acid cyclic ethylene ester. The most common method for producing brassylic acid di-lower alkyl esters has traditionally been a method of esterifying brassylic acid obtained by ozone oxidation of erucic acid present in the hydrolyzate of rapeseed oil (S, C, Bha-ttacharyya et al. Ind
ian J, cheIl, 4, (12), 5
24. (1966)), a method for synthesizing adipic acid monoester and adipic acid monoester by Kolbe reaction (JP-A-57-198287), a method for reacting malonic acid with monohalogenated decanoic acid ester (Dudinov,
A, A, et al Izv.
Akad、Nauksssr、Ser Khim、19
74.(6)、1421) 、)リゾカンを微生物によ
り2塩基酸をつくってエステル化する方法が知られてい
る(特開昭57−206394)。Akad, Nauksssr, Ser Khim, 19
74. (6), 1421),) A method is known in which lysocan is esterified by producing a dibasic acid using a microorganism (Japanese Patent Laid-Open No. 57-206394).
しかしながら、この従来の製法は原料的に入手が困難と
なってきたこと、原料価格が上昇してきていてより安価
な原料による合成法が切望されていた。However, with this conventional manufacturing method, it has become difficult to obtain raw materials, and the price of raw materials has been rising, so there has been a strong desire for a synthetic method using cheaper raw materials.
本発明は上記事情を鑑みて新たに創案されたものであっ
て、その主たる課題はハロゲン化ブラシル酸ジ低級アル
キルエステルを3級アミンの存在下に水素化分解反応を
して工業的規模で有利にブラシル酸ジ低級アルキルエス
テルを製造する方法を提供するにある。The present invention was newly created in view of the above circumstances, and its main objective is to carry out a hydrogenolysis reaction of halogenated brassylic acid di-lower alkyl ester in the presence of a tertiary amine, which is advantageous on an industrial scale. To provide a method for producing brassylic acid di-lower alkyl ester.
本発明は上記課題を解決するために、ハロゲン化ブラシ
ル酸ジ低級アルキルエステルをラネーニッケルと3級ア
ミンの存在下で水素化分解反応を行ない、生成するハロ
ゲン化水素を3級アミンの塩とすることで水素化触媒の
ラネーニッケルを不活性化することなしに水素化してブ
ラシル酸ジ低級アルキルエステル合成に関する。In order to solve the above problems, the present invention involves carrying out a hydrogenolysis reaction on a halogenated brassylic acid di-lower alkyl ester in the presence of Raney nickel and a tertiary amine, and converting the generated hydrogen halide into a salt of a tertiary amine. relates to the synthesis of brassylic acid di-lower alkyl esters by hydrogenating the hydrogenation catalyst Raney nickel without inactivation.
本発明者等は、ハロゲン化ブラシル酸ジ低級アルキルエ
ステルを出発原料として水素化分解反応を種々の塩基及
び水添触媒を用いて鋭意研究を行った結果、ニッケルは
白金、パラジウムと異なりハロゲン化水素により溶かさ
れて、触媒毒となる(A、R,Pinder、5ynt
hesis 4251980) eそれにもかかわらず
3級アミンの塩基をうまく使うことにより、触媒毒であ
るハロゲン化水素を塩として除去することで水添触媒の
ラネーニッケルを不活性化することなく且つ反応を収率
よく進行することを見い出し本発明を完成するに至った
。The present inventors conducted intensive research on hydrogenolysis reactions using various bases and hydrogenation catalysts using halogenated brassylic acid di-lower alkyl ester as a starting material, and found that nickel, unlike platinum and palladium, does not react with hydrogen halides. It becomes a catalyst poison (A, R, Pinder, 5ynt
Hesis 4251980) eNevertheless, by skillfully using a tertiary amine base, hydrogen halide, which is a catalyst poison, can be removed as a salt, thereby increasing the reaction yield without inactivating Raney nickel, the hydrogenation catalyst. They found that the process progresses well and have completed the present invention.
本発明に使用する原料の1つの2−ハロゲン化ブラシル
酸ジ低級アルキルエステルはヒマシ油の熱分解で得られ
る安価なウンデシレン酸のエステルとモノハロゲン化酢
酸エステルからジーtert −ブチルパーオキサイド
を触媒としてラジカル付加反応により次の反応式[1)
のごとく合成される。One of the raw materials used in the present invention, 2-halogenated brassylic acid di-lower alkyl ester, is obtained from an inexpensive undecylenic acid ester obtained by thermal decomposition of castor oil and a monohalogenated acetic acid ester using di-tert-butyl peroxide as a catalyst. The radical addition reaction produces the following reaction formula [1]
It is synthesized as follows.
(D、LEFORT Bull、Soc、Chim、
Fr、、(11) 4613.(1968))一→ R
+ 0CCH(CHz) +。coRz
(1)(式中、XはCIまたはBrを表わし、RI+
Rzは前記一般式(1)におけるものと同一の低級アル
キル基を示す。)
一方、4ハロゲン化ブラシル酸ジ低級アルキルエステル
の合成は、オートクレーブ中に、ウンデシレン酸エステ
ルの炭化水素系溶媒(例えば、n−へブタン、ベンゼン
、又はトルエンが好ましい)溶液とモノハロゲノ酢酸エ
ステルを仕込み、十分に窒素置換を行った後、ルテニウ
ム−ホスフィン錯体を添加し、加熱攪拌して反応させる
。(D, LEFORT Bull, Soc, Chim,
Fr,, (11) 4613. (1968)) 1 → R
+0CCH(CHz)+. coRz
(1) (wherein, X represents CI or Br, RI+
Rz represents the same lower alkyl group as in the general formula (1). ) On the other hand, in the synthesis of tetrahalogenated brassylic acid di-lower alkyl ester, a solution of undecylenic acid ester in a hydrocarbon solvent (for example, n-hebutane, benzene, or toluene is preferable) and a monohalogenoacetic acid ester are placed in an autoclave. After sufficiently purging with nitrogen, a ruthenium-phosphine complex is added, and the mixture is heated and stirred to react.
なお、仕込み量はウンデシレン酸エステル10mM(ミ
リモル)に対し、モノハロゲノ酢酸エステル18〜24
mM、ルテニウム−ホスフィン錯体0.005〜0.1
mMの割合で用いることが好ましい。In addition, the amount of preparation is 18 to 24 monohalogenoacetate per 10mM (mmol) of undecylenate.
mM, ruthenium-phosphine complex 0.005-0.1
Preferably, it is used in a ratio of mM.
また、反応温度は、反応促進と副反応防止との兼ね合い
から110℃〜180℃の範囲内とすることが望ましい
。Further, the reaction temperature is desirably within the range of 110°C to 180°C from the viewpoint of promoting the reaction and preventing side reactions.
ここで、反応時間は通常、数時間乃至20時間程度を要
する。Here, the reaction time usually requires several hours to about 20 hours.
本発明で触媒として用いられるルテニウム−ホスフィン
錯体は三級ホスフィンをルテニウムに配位させたもので
、例えば以下に列挙するものなどである。The ruthenium-phosphine complexes used as catalysts in the present invention are those in which tertiary phosphine is coordinated with ruthenium, such as those listed below.
RuHz(PPh3) 4(PPb3はトリフェニルホ
スフィンを表わす、以下同じ〕
RuHCl (PPha) 3
RuC1z (PPhz) !
RuzClt(PTO13)HtffNCPToliは
トリトリルホスフィン
を表わす、I!t3Nはトリエチルア
ミンを表わす、以下同じ〕
Ru2C14(PNaphi)4EtJ(PNaphs
はトリナフチルホスフィンを表わす、以下同じ〕
RuzCl4 (dppb) zEtsN(dppbは
1.4−ビス (ジフェニルホスフィノ)ブタンを表わ
す、以
下同じ〕
(RuzCl、:+(CI8七P)、) CIこれら錯
体はいづれも公知の物質であり、例えば文献、新実験化
学講座、 12. P157〜P165 (昭和51年
、丸善)、又はプリテン・オプ・ザ・ケミカルソサイエ
ティ・オプ・ジャパン(Bull、 Chew。RuHz (PPh3) 4 (PPb3 represents triphenylphosphine, the same applies hereinafter) RuHCl (PPha) 3 RuC1z (PPhz) ! RuzClt (PTO13) HtffNCPToli represents tritolylphosphine, I!t3N represents triethylamine, the following Same] Ru2C14(PNaphi)4EtJ(PNaphs
represents trinaphthylphosphine, the same applies hereinafter] RuzCl4 (dppb) zEtsN (dppb represents 1,4-bis (diphenylphosphino)butane, the same applies hereinafter)] (RuzCl, : + (CI87P),) CI These complexes All of these are known substances, for example, in literature, New Experimental Chemistry Course, 12. P157-P165 (1976, Maruzen), or Preten op the Chemical Society op Japan (Bull, Chew.
Soc、 Jan) 57.897 (1984)の記
載に基づいて調製することができる。Soc, Jan) 57.897 (1984).
上記の如くルテニウム−ホスフィン錯体の存在下でウン
デシレン酸エステ゛ルとモノハロゲノ酢酸エステルとを
反応させ4ハロゲン化ブラシル酸ジ低級アルキルエステ
ルを生成する。As described above, undecylenic acid ester and monohalogenoacetic acid ester are reacted in the presence of a ruthenium-phosphine complex to produce tetrahalogenated brassylic acid di-lower alkyl ester.
本発明はか(して得られたハロゲン化ブラシル酸ジ低級
アルキルエステルを原料としてブラシル酸ジ低級アルキ
ルエステルを以下のごとく合成する。In the present invention, brassylic acid di-lower alkyl ester is synthesized as follows using the obtained halogenated brassylic acid di-lower alkyl ester as a raw material.
即ち、オートクレーブ中にハロゲン化ブラシル酸ジ低級
アルキルエステルを約1モルとトリn−ブチルアミンの
ごとき3級アミン約1.5モル〜3.5モルを加え、メ
タノール、エタノール、イソプロパツールのごときアル
コール類を約5モル〜10モル加えて溶かし、それにラ
ネーニッケル約0.01モル〜0.1モルを加えて水素
圧1〜20 kg / cll、好ましくは5〜15
kg /−で約50〜100℃、好ましくは70〜80
℃にて2〜5時間水素化分解反応を行う。That is, about 1 mole of halogenated brassylic acid di-lower alkyl ester and about 1.5 to 3.5 moles of a tertiary amine such as tri-n-butylamine are added to an autoclave, and an alcohol such as methanol, ethanol, or isopropanol is added. About 5 to 10 moles of Raney nickel are added thereto and dissolved, and about 0.01 to 0.1 moles of Raney nickel are added thereto to raise the hydrogen pressure to 1 to 20 kg/cll, preferably 5 to 15
kg/- about 50-100℃, preferably 70-80℃
The hydrogenolysis reaction is carried out at a temperature of 2 to 5 hours.
水素の吸収が終了後1〜2時間反応を続けて反応を完結
させる。反応混合物を濾別して触媒を除き、減圧下で溶
媒を回収する。残留物にベンゼン、トルエン、キシレン
、n−ヘキサン等の水の分離する有機溶媒を加えて溶解
後着硫酸を加え攪拌して3級アミンを水層に移し、水層
を分液後有機溶媒層炭酸ソーダ水溶液、炭酸水ツナトリ
ウム水溶液で中和水洗後有機溶媒層を分液する。After hydrogen absorption is completed, the reaction is continued for 1 to 2 hours to complete the reaction. The reaction mixture is filtered to remove the catalyst and the solvent is recovered under reduced pressure. To the residue, add an organic solvent that separates water such as benzene, toluene, xylene, n-hexane, etc. and dissolve it. Add sulfuric acid and stir to transfer the tertiary amine to the aqueous layer. After separating the aqueous layer, add the organic solvent layer. After neutralization and washing with an aqueous solution of sodium carbonate and aqueous sodium carbonate solution, the organic solvent layer is separated.
得られた有機溶媒層を減圧下で有機溶媒を留去回収し、
ブラシル酸ジ低級アルキルエステルを得る。反応に使っ
た3級アミンはアミン抽出水層に苛性ソーダ水溶液を加
え、約20〜60℃で5分間攪拌後静置する。水層を分
液して除き、3級アミンを回収する。The organic solvent layer was distilled off and recovered under reduced pressure.
Brassylic acid di-lower alkyl ester is obtained. For the tertiary amine used in the reaction, an aqueous solution of caustic soda is added to the amine extraction aqueous layer, stirred at about 20 to 60°C for 5 minutes, and then allowed to stand. The aqueous layer is separated and removed to recover the tertiary amine.
ここに使用される3級アミンは例えばトリエチルアミン
、トリーn−ブチルアミン、トリイソプロピルアミン、
トリーn−ヘキシルアミン、トリーn−オクチルアミン
、トリー2−エチルヘキシルアミン、ジメチルブチルア
ミン、ジオクチルメチルアミン、ジブチル−2−エチル
ヘキシルアミン、N−エチルピペリジン、N−エチルピ
ロリジン、N−エチルピペコリンが挙げられるが、好ま
しくはトリーn−ブチルアミン、トリイソプロピルアミ
ン、ジブチル−2−エチルヘキシルアミン、トリーn−
ヘキシルアミンである。Tertiary amines used here include, for example, triethylamine, tri-n-butylamine, triisopropylamine,
Examples include tri-n-hexylamine, tri-n-octylamine, tri-2-ethylhexylamine, dimethylbutylamine, dioctylmethylamine, dibutyl-2-ethylhexylamine, N-ethylpiperidine, N-ethylpyrrolidine, and N-ethylpipecoline. but preferably tri-n-butylamine, triisopropylamine, dibutyl-2-ethylhexylamine, tri-n-butylamine,
Hexylamine.
本発明に使用されるラネーニッケルは市販されているも
ので十分目的を達することができる。Commercially available Raney nickel used in the present invention is sufficient to achieve the purpose.
ここで得られたブラシル酸ジ低級アルキルエステルの収
率はほぼ定量的であって最も優れており、必要に応じて
蒸溜またはカラムクロマトグラフィーにより精製される
。The yield of brassylic acid di-lower alkyl ester obtained here is almost quantitative and is the best, and it is purified by distillation or column chromatography if necessary.
ブラシル酸ジ低級アルキルエステルは例えば下記の反応
式(2)で示される公知の方法(例えば特公昭46−3
7584号)によりエチレングリコールとのエステル化
反応又はエステル交換を行ないポリエステルとし、更に
熱解重合により単量体のブラシル酸環状エチレンエステ
ルとすることができる。For example, brassylic acid di-lower alkyl ester can be prepared by a known method shown by the following reaction formula (2) (for example, Japanese Patent Publication No. 46-3
No. 7584), a polyester can be obtained by esterification reaction or transesterification with ethylene glycol, and further thermal depolymerization can be carried out to obtain a monomeric brassylic acid cyclic ethylene ester.
ORZ
\Co−C)It
(式中、RI+ Rzは前記定義と同じ)このブラシル
酸環状エチレンエステルはムスク系香料物質の1つとし
てきわめて重要である。ORZ \Co-C)It (wherein RI+Rz is the same as defined above) This brassylic acid cyclic ethylene ester is extremely important as one of the musk fragrance substances.
次に本発明の参考例及び実施例によって詳しく説明する
。Next, the present invention will be explained in detail using reference examples and examples.
参考例1
2−クロルブラシル酸ジメチルの合成
モノクロル酢酸メチル1.047kgを2rrrの反応
釜に仕込み、加温して還流開始してからウンデシレン酸
メチル147.5kg (純度97.6%)とモノクロ
ル酢酸メチル147.5 k+rとジーtert−ブチ
ルパーオキサイド17.7kgの混合液を約15時間か
けて滴下する。Reference Example 1 Synthesis of dimethyl 2-chlorobrassylate 1.047 kg of methyl monochloroacetate was charged into a 2 rrr reaction vessel, heated to start refluxing, and then 147.5 kg of methyl undecylenate (purity 97.6%) and methyl monochloroacetate were added. A mixed solution of 147.5 k+r and 17.7 kg of di-tert-butyl peroxide is added dropwise over about 15 hours.
滴下終了後同条件下で更に3時間攪拌を続は熟成させる
。反応終了後歪部70℃まで冷却し、引き続き減圧下で
過剰のモノクロル酢酸メチルを回収する。After the dropwise addition was completed, the mixture was stirred for an additional 3 hours under the same conditions and then allowed to ripen. After the reaction is completed, the strained section is cooled to 70° C., and excess methyl monochloroacetate is subsequently recovered under reduced pressure.
残留物2−クロルブラシル酸ジメチル238 kgを得
る。理論収率72.2%、純度67.6%の2−クロル
ブラシル酸ジメチル150gを減圧蒸溜し、沸点165
〜168℃/ 1 mm11gの留分106gを得る。A residue of 238 kg of dimethyl 2-chlorobrassylate is obtained. 150 g of dimethyl 2-chlorobrassylate with a theoretical yield of 72.2% and a purity of 67.6% was distilled under reduced pressure to obtain a boiling point of 165.
106 g of a 11 g fraction of ~168° C./1 mm are obtained.
この物質はIRスペクトル、NMRスペクトル、マスス
ペクトル等の測定による分析により純度95%の2−ク
ロルブラシル酸ジメチルであることを確認した。This substance was confirmed to be dimethyl 2-chlorobrassylate with a purity of 95% by analysis using measurements such as IR spectrum, NMR spectrum, and mass spectrum.
IRスペクトル: 1720cm−’NMR〃:
3.4PPM S、6)1マススペクトル: 306(
M”)
参考例2
4−クロルブラシル酸ジメチルの合成
500−のオートクレーブにウンデシレン酸メチル10
g(50,5mM) 、トルエン20mZ、モノクロル
酢酸メチルLL、7g(108mM)を仕込み、オート
クレーブ内に窒素ガスで十分に置換したのち、RuCl
z (PPh、l) 397wg(0,1mM)及び
トルエン5rBlを加えた。IR spectrum: 1720cm-'NMR:
3.4PPM S, 6) 1 mass spectrum: 306 (
M”) Reference Example 2 Synthesis of dimethyl 4-chlorobrassylate 100% of methyl undecylenate was placed in a 500% autoclave.
(50.5mM), toluene 20mZ, monochloromethyl acetate LL, 7g (108mM), and the autoclave was sufficiently purged with nitrogen gas, and RuCl
z (PPh, l) 397wg (0.1mM) and toluene 5rBl were added.
ついで150℃で15時間、攪拌下で反応させた後得ら
れた反応液を5%炭酸ソーダ水で洗浄した。The reaction mixture was then reacted at 150° C. for 15 hours with stirring, and the resulting reaction solution was washed with 5% aqueous sodium carbonate.
次に溶媒を留去したのち、減圧蒸溜を行い、沸点165
℃〜170℃/ 1 m+*Hgの留去を集め、純度約
85%の4−クロルブラシル酸ジメチル7.8gを得た
(収率76%)。Next, after distilling off the solvent, vacuum distillation was performed to obtain a boiling point of 165
℃~170℃/1 m+*Hg distilled off was collected to obtain 7.8 g of dimethyl 4-chlorobrasylate with a purity of about 85% (yield 76%).
次いで、これをカラムクロマトグラフィにより精製し、
純度はぼ100%の4−クロルブラシル酸ジメチルを得
た。This was then purified by column chromatography,
Dimethyl 4-chlorobrassylate with a purity of nearly 100% was obtained.
参考例3
2−クロルブラシル酸ジエチルの合成
モノクロル酢酸エチル1182に+rを2n?の反応釜
に仕込み、加温還流開始後ウンデシレン酸エチル(純度
97.6%)158ktrとモノクロル酢酸エチル16
6.5kgとジーLert−ブチルパーオキサイド19
kgの混合液を約15時間かけて滴下する0滴下終了後
回条件下で更に3時間攪拌を続は反応を完結する0反応
終了後谷部70℃まで冷却し、引き続き減圧下で過剰の
モノクロル酢酸エチルを回収する。Reference Example 3 Synthesis of diethyl 2-chlorobrassylate Add +r to 2n? of monochloroethyl acetate 1182? After heating and refluxing, 158ktr of ethyl undecylenate (purity 97.6%) and 16ktr of ethyl monochloroacetate were added to a reaction vessel.
6.5kg and G-Lert-Butyl Peroxide 19
kg of the mixed solution was added dropwise over about 15 hours. After the completion of the dropwise addition, stirring was continued for an additional 3 hours under the following conditions to complete the reaction. After the completion of the reaction, the trough was cooled to 70°C, and then the excess monochlore was removed under reduced pressure. Collect ethyl acetate.
この時、釜残油として2−クロルブラシル酸ジエチルを
得る。収it260kg 、純度67.4%、理論収率
は72.0%である。この残留油の一部を減圧蒸溜し、
沸点180〜185℃10.5nusHgの留分を集め
、ガスクロマトグラフィー、G S−Massスペクト
ル、NMRスペクトル、IRスペクトルの測定を行い、
このものが純度95%の2−クロルブラシル酸ジエチル
であることを確認した。At this time, diethyl 2-chlorobrassylate is obtained as a residual oil in the pot. Yield: 260 kg, purity: 67.4%, theoretical yield: 72.0%. Part of this residual oil is distilled under reduced pressure,
A fraction with a boiling point of 180 to 185°C and 10.5 nusHg was collected, and gas chromatography, GS-Mass spectrum, NMR spectrum, and IR spectrum were measured.
This product was confirmed to be diethyl 2-chlorobrasylate with a purity of 95%.
IRスペクトル:1720C!l−’
N M R# : (3,8PPM、q、411)
(1,2PPM、 t、6H)マススペクトル: 3
34(M+)
実施例1
17!のオートクレーブ中に参考例1で得られた純度6
7.6%の2−クロルブラシル酸ジメチル175g(0
,386モル)とトリーn−ブチルアミン159g (
0,86モル)メタノール233g、ラネーニッケル触
媒(用研ファインケミカル製)3.5gを取り、水素圧
10kg/−下で70℃にて水素化分解を行う。水素の
吸収は6時間で終了するが、さらに同条件下で2時間反
応し反応を完結する。反応混合物より触媒を濾別後、減
圧下でメタノール228.9g (トリーn−ブチルア
ミン4.3g含有)を回収する。メタノール回収率は理
論量の96.4%であった。このメタノールはそのまま
リサイクル使用ができる。メタノール回収後の残油33
7.5gにトルエン220gを加え溶解後、7%希硫酸
450g (0,32M)を加え攪拌し、トリー〇−ブ
チルアミンを水層に抽出する。水層を分液後トルエン層
に2%の炭酸ソーダ水溶液、2%の炭酸水素ナトリウム
水溶液、2.5%食塩水の等量混合水溶液をトルエンと
同量加え中和復水層を分液する。IR spectrum: 1720C! l-'NMR#: (3,8PPM, q, 411)
(1,2PPM, t, 6H) Mass spectrum: 3
34 (M+) Example 1 17! Purity 6 obtained in Reference Example 1 in the autoclave of
175 g of 7.6% dimethyl 2-chlorobrassylate (0
, 386 mol) and 159 g of tri-n-butylamine (
0.86 mol) methanol (233 g) and 3.5 g of Raney nickel catalyst (manufactured by Yoken Fine Chemicals) were taken, and hydrogenolysis was carried out at 70°C under a hydrogen pressure of 10 kg/-. Although absorption of hydrogen is completed in 6 hours, the reaction is continued for an additional 2 hours under the same conditions to complete the reaction. After filtering the catalyst from the reaction mixture, 228.9 g of methanol (containing 4.3 g of tri-n-butylamine) is recovered under reduced pressure. The methanol recovery rate was 96.4% of the theoretical amount. This methanol can be recycled as is. Residual oil after methanol recovery 33
After dissolving 220 g of toluene in 7.5 g, 450 g of 7% dilute sulfuric acid (0.32 M) was added and stirred, and tri-butylamine was extracted into the aqueous layer. After separating the aqueous layer, add the same amount of 2% sodium carbonate aqueous solution, 2% sodium bicarbonate aqueous solution, and 2.5% saline solution to the toluene layer and separate the neutralized condensate layer. .
トルエン層より減圧下でトルエン210g (回収率9
5%)回収し、純度70.3%のブラシル酸ジメチル1
46gを得る。理論収率98%、このものを減圧蒸溜し
、沸点137〜140℃/lmmHgの留分102gを
得た。210g of toluene from the toluene layer under reduced pressure (recovery rate 9
5%) recovered and 70.3% pure dimethyl brassylate 1
Obtain 46g. This product was distilled under reduced pressure with a theoretical yield of 98% to obtain 102 g of a fraction with a boiling point of 137 to 140°C/lmmHg.
この物質はガスクロマトグラフィー、IRスペクトル、
NMRスペクトル、マススペクトル等の分析の結果純度
96%のブラシル酸ジメチルであることを確認した。This substance can be analyzed by gas chromatography, IR spectroscopy,
As a result of analysis such as NMR spectrum and mass spectrum, it was confirmed that the dimethyl brassylate had a purity of 96%.
IRスペクトル: 1720cm−’NMR〃:
3.2PPM S、6Hマススペクトル: 272(
Mつ
トリーn−ブチルアミン抽出水層740gに25%苛性
ソーダ水溶液220gを加え、50℃で5分間、攪拌後
静置する。下層の水層を分液除去し、油層のトリーn−
ブチルアミン151gを回収した。このものは純度99
%以上で、精製することな(リサイクル使用できる。IR spectrum: 1720cm-'NMR:
3.2PPM S, 6H mass spectrum: 272 (
220 g of a 25% caustic soda aqueous solution was added to 740 g of the aqueous layer extracted from M-tri-n-butylamine, stirred at 50° C. for 5 minutes, and then allowed to stand. The lower aqueous layer is separated and removed, and the oil layer is separated and removed.
151 g of butylamine was recovered. This stuff has a purity of 99
% or more, it does not need to be purified (can be recycled).
実施例2
参考例2で得られた4−クロルブラシル酸ジメチル10
2g(0,33モル、純度100%)を11のオートク
レーブに入れ、トリエチルアミン74.8g(0,74
モル)、エタノール210g、ラネーニッケル3.1g
をとり水素圧12kir/cjで65℃にて水素化分解
を行った。以下の処理は実施例1と同様に処理して純度
99.5%のブラシル酸ジメチル90g得る。理論収率
98%、この物質はガスクロマトグラフィー、IRスペ
クトル、NMRスペクトル、マススペクトル等の分析の
結果純度96%のブラシル酸ジメチルであることを確認
した。Example 2 Dimethyl 4-chlorobrassylate 10 obtained in Reference Example 2
2 g (0.33 mol, purity 100%) was placed in a 11 autoclave, and 74.8 g (0.74 mol) of triethylamine was added to
mole), ethanol 210g, Raney nickel 3.1g
Hydrogenolysis was carried out at 65° C. under a hydrogen pressure of 12 kir/cj. The following treatment was carried out in the same manner as in Example 1 to obtain 90 g of dimethyl brassylate with a purity of 99.5%. The theoretical yield was 98%, and as a result of analysis such as gas chromatography, IR spectrum, NMR spectrum, and mass spectrum, it was confirmed that this substance was dimethyl brassylate with a purity of 96%.
IRスペクトル: 1720c1m−’NMR〃:
3.2PPMS、6H
マススペクトル: 272(M”)
実施例3
水素化分解反応によるジエチルブラシレートの合成
参考例3で得られた純度67.4%の2−クロルブラシ
ル酸ジエチル192gとトリーn−ブチルアミン159
gとメタノール233gとラネーニッケル触媒3.8g
をLAのオートクレーブ中に取り実施例1と同様な条件
下で水素化分解を行ない、粗製ブラジル酸ジエチル16
1.0g (純度70.5%、理論収率98%)を得た
。この物質の減圧蒸溜により沸点150〜155℃/
l mm11gの留分として112.3gを得た。IR spectrum: 1720c1m-'NMR:
3.2PPMS, 6H Mass spectrum: 272 (M”) Example 3 Synthesis of diethylbrasylate by hydrogenolysis reaction 192 g of diethyl 2-chlorobrasylate with a purity of 67.4% obtained in Reference Example 3 and tri-n-butylamine 159
g, methanol 233g and Raney nickel catalyst 3.8g
was placed in an LA autoclave and subjected to hydrogenolysis under the same conditions as in Example 1 to obtain crude diethyl brazilate 16.
1.0 g (purity 70.5%, theoretical yield 98%) was obtained. By distilling this substance under reduced pressure, the boiling point is 150-155℃/
112.3 g of 11 g of l mm fraction was obtained.
この物質はガスクロマトグラフィー、IRスペクトル、
NMRスペクトル、マススペクトル等による分析により
純度96%のブラシル酸ジエチルである事を確認した。This substance can be analyzed by gas chromatography, IR spectroscopy,
Analysis by NMR spectrum, mass spectrum, etc. confirmed that the product was diethyl brassylate with a purity of 96%.
IRスペクトル:1720cm−’
N M R〃: (3,8PPM q、4H) (1,
2PPルt、6H)マススペクトル: 300(Mつ
ガスクロマトグラフィー条件
カラム:シリ:2 ン0V−1010,25φ×251
11温度:100〜250℃(10℃/m1n)機 器
:ガスクロマトグラフィーGc7A(株式会社島津製作
所製)
111核磁気共鳴スペクトル(NMR): JNM−G
X400型(400MHz) (日本電子株式会社製)
赤外分光光度計(IR)
: I R−810(日本分光株式会社製)〔発明の効
果〕
本発明によればハロゲン化ブラシル酸ジ低級アルキルエ
ステルから高収率でブラジル酸ジ低級アルキルエステル
を合成でき、しかも発生する塩化水素ガスを3級アミン
塩として捕獲できて労働作業上安全であるばかりでなく
、反応に使った触媒のラネーニッケル、溶媒、3級アミ
ンが全て安全に回収できるので大変重要なムスク系香料
物質の1つである大環状ブラシル酸エチレンエステルの
中間体の製造法として有用である。IR spectrum: 1720cm-' NMR〃: (3,8PPM q, 4H) (1,
2PPrut, 6H) Mass spectrum: 300 (M gas chromatography conditions column: silicone 0V-1010, 25φ x 251
11 Temperature: 100-250°C (10°C/m1n) Equipment: Gas chromatography Gc7A (manufactured by Shimadzu Corporation) 111 Nuclear magnetic resonance spectrum (NMR): JNM-G
X400 type (400MHz) (manufactured by JEOL Ltd.) Infrared spectrophotometer (IR): IR-810 (manufactured by JASCO Corporation) [Effects of the invention] According to the present invention, halogenated brassylic acid di-lower alkyl ester It is possible to synthesize di-lower alkyl brasilyl acid ester in high yield from the ester, and the generated hydrogen chloride gas can be captured as a tertiary amine salt, making it safe for labor. Since all tertiary amines can be safely recovered, this method is useful as a method for producing an intermediate for macrocyclic brassylic acid ethylene ester, which is one of the very important musk fragrance substances.
Claims (1)
ネーニッケルと3級アミンの存在下で水素化分解反応を
行うことを特徴とするブラシル酸ジ低級アルキルエステ
ルの製造法。 2)ハロゲン化ブラシル酸ジ低級アルキルエステルが2
又は4−ハロゲン化ブラシル酸のメチル又はエチルのジ
エステルである特許請求の範囲第1項記載のブラシル酸
ジ低級アルキルエステルの製造法。 3)ハロゲン化ブラシル酸ジ低級アルキルエステルのハ
ロゲン原子がクロル原子である特許請求の範囲第1項記
載のブラシル酸ジ低級アルキルエステルの製造法。 4)3級アミンがトリ−n−ブチルアミンである特許請
求の範囲第1項記載のブラシル酸ジ低級アルキルエステ
ルの製造法。[Scope of Claims] 1) A method for producing di-lower alkyl brassylate, which comprises carrying out a hydrogenolysis reaction of halogenated di-lower alkyl brassylate in the presence of Raney nickel and a tertiary amine. 2) Halogenated brassylic acid di-lower alkyl ester is 2
or a methyl or ethyl diester of 4-halogenated brassylic acid, the method for producing a di-lower alkyl brassylate ester according to claim 1. 3) The method for producing di-lower alkyl brassylate according to claim 1, wherein the halogen atom of the halogenated di-lower alkyl brassylate is a chlorine atom. 4) The method for producing di-lower alkyl brassylate ester according to claim 1, wherein the tertiary amine is tri-n-butylamine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62029696A JPS63198645A (en) | 1987-02-13 | 1987-02-13 | Production of brassylic acid lower alkyl ester |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62029696A JPS63198645A (en) | 1987-02-13 | 1987-02-13 | Production of brassylic acid lower alkyl ester |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63198645A true JPS63198645A (en) | 1988-08-17 |
JPH0417939B2 JPH0417939B2 (en) | 1992-03-26 |
Family
ID=12283271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62029696A Granted JPS63198645A (en) | 1987-02-13 | 1987-02-13 | Production of brassylic acid lower alkyl ester |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63198645A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1323541A2 (en) | 2001-12-27 | 2003-07-02 | Eastman Kodak Company | Thermal dye transfer receiver element with microvoided support |
EP1431055A2 (en) | 2002-12-20 | 2004-06-23 | Eastman Kodak Company | Voided polyester sheet for thermal recording materials |
EP1452336A1 (en) | 2003-02-26 | 2004-09-01 | Eastman Kodak Company | Therma dye-transfer receiver element with microvoided layer |
US7078367B2 (en) | 2004-02-20 | 2006-07-18 | Eastman Kodak Company | Thermal-dye-transfer receiver element with polylactic-acid-based sheet material |
-
1987
- 1987-02-13 JP JP62029696A patent/JPS63198645A/en active Granted
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1323541A2 (en) | 2001-12-27 | 2003-07-02 | Eastman Kodak Company | Thermal dye transfer receiver element with microvoided support |
EP1431055A2 (en) | 2002-12-20 | 2004-06-23 | Eastman Kodak Company | Voided polyester sheet for thermal recording materials |
US6867168B2 (en) | 2002-12-20 | 2005-03-15 | Eastman Kodak Company | Microbead and immiscible polymer voided polyester for thermal imaging medias |
EP1452336A1 (en) | 2003-02-26 | 2004-09-01 | Eastman Kodak Company | Therma dye-transfer receiver element with microvoided layer |
US6890884B2 (en) | 2003-02-26 | 2005-05-10 | Eastman Kodak Company | Thermal dye-transfer receiver element with microvoided layer |
US7078367B2 (en) | 2004-02-20 | 2006-07-18 | Eastman Kodak Company | Thermal-dye-transfer receiver element with polylactic-acid-based sheet material |
Also Published As
Publication number | Publication date |
---|---|
JPH0417939B2 (en) | 1992-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH1192423A (en) | Production of methyl ester or ethyl ester of trifluoroacetic acid and chlorodifluoroacetic acid | |
CN114096513A (en) | New Quaternary Ammonium Compounds | |
JPS63198645A (en) | Production of brassylic acid lower alkyl ester | |
EP0258967B2 (en) | Process for producing optically active alcohols | |
JPH0246590B2 (en) | ||
JP2502936B2 (en) | Novel acetylene derivative | |
JP3254746B2 (en) | Terminal acetylene compound and method for producing the same | |
JPH0250101B2 (en) | ||
JP2782513B2 (en) | Tricyclo [4.3.1.1 {upper 2} '[upper 5]] undec-7-ene and method for producing the same | |
JP2736916B2 (en) | Manufacturing method of cibeton | |
JPH0558617B2 (en) | ||
JP2762106B2 (en) | Method for producing 3-hydroxypyrrolidine | |
JP2782512B2 (en) | Method for producing tricyclo [5.3.1.0 [top 3] '[top 8]] undec-4-ene | |
US4029700A (en) | Process for the production of even series ω-amino acids | |
SU556724A3 (en) | The method of obtaining 6-β-deoxytetracycline | |
AU2004234350A1 (en) | Process for preparation of (+)-p-mentha-2,8-diene-1-ol | |
JP2791572B2 (en) | Macrocyclic compound and method for producing the same | |
CN116891415A (en) | Preparation method of 2- [2- (2-aminoethoxy) ethoxy ] ethanol | |
JP2796151B2 (en) | Process for producing prenyl ketones and 3,3-dimethyl-4-prenyl-1-alkene-4-ols used for the production | |
JP4100003B2 (en) | Method for purifying cyclopentenolones | |
CN118026836A (en) | Preparation method of 4-tert-butylcyclohexyl acetic acid or ester thereof | |
JPS62164656A (en) | Production of cyanoisophorone | |
EP2867194B1 (en) | Process for producing 4-cyclohexyl-2-methyl-2-butanol | |
JP2631769B2 (en) | Method for producing allyl isoamyl glycolate | |
JPS5822450B2 (en) | Isolongiphoran-3-ol |