[go: up one dir, main page]

JPS63196368A - Polishing method using magnetic fluid - Google Patents

Polishing method using magnetic fluid

Info

Publication number
JPS63196368A
JPS63196368A JP62026443A JP2644387A JPS63196368A JP S63196368 A JPS63196368 A JP S63196368A JP 62026443 A JP62026443 A JP 62026443A JP 2644387 A JP2644387 A JP 2644387A JP S63196368 A JPS63196368 A JP S63196368A
Authority
JP
Japan
Prior art keywords
float
abrasive grains
magnetic fluid
polished
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62026443A
Other languages
Japanese (ja)
Other versions
JPH0541395B2 (en
Inventor
Yasushi Kato
康司 加藤
Tokuji Umehara
徳次 梅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP62026443A priority Critical patent/JPS63196368A/en
Priority to SE8800380A priority patent/SE464565B/en
Priority to US07/152,937 priority patent/US4821466A/en
Priority to DE3803773A priority patent/DE3803773A1/en
Publication of JPS63196368A publication Critical patent/JPS63196368A/en
Publication of JPH0541395B2 publication Critical patent/JPH0541395B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To improve the extent of efficiency, by dipping a float in a magnetic fluid containing abrasive grains, giving buoyance to this float in making an external magnetic field act on the magnetic fluid, while pressing these abrasive grains between a float acting surface and a workpiece to this workpiece by dint of the buoyancy, and giving relative motion to an interval between the workpiece and the magnetic fluid. CONSTITUTION:A workpiece 3 is attached to the underside of a disc 6 as a driving jig free of rotation, and it is dipped in the vicinity of a level of a magnetic fluid 2 containing abrasive grains in a vessel 1. Here, a float 5 is dipped in the magnetic fluid 2, and if an external magnetic field is made to act on by a magnet 4 from the lower part of the magnetic fluid 2, buoyancy acts on these abrasive grains, floating them upward, and thereby an abrasive grain layer of high density is formed in the upper part of the magnetic fluid 2. Simultaneously with this, the buoyancy is given to the float 5 as well, and the float 5 is floated upward, strongly pressing these abrasive grains existing in the upper part to a surface of the workpiece 3. Under this state, when the driving disc 6 is rotated with a vertical shaft 61 as the center, the under side being contacted with these abrasive grains is polished. In this case, the polishing rate is improved by action of the float 5.

Description

【発明の詳細な説明】 仁発明の目的 産業上の利用分野 この発明は、砥粒を含有する磁性流体を磁場の作用下で
使用して被研磨物の表面を研磨する方法、特に砥粒のM
勤を磁性流体と浮子と磁場との組合せにより制御して、
高い効率で研磨する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for polishing the surface of an object to be polished using a magnetic fluid containing abrasive grains under the action of a magnetic field. M
The force is controlled by a combination of a magnetic fluid, a float, and a magnetic field.
The present invention relates to a highly efficient polishing method.

監迷Jと1声 磁性流体に砥粒を含有させた研磨用液を磁場の作用下で
使用して物体の表面を研磨する方法としては、特開昭5
1−10499号、特開昭57−183057号、特開
昭57−158280号、特開昭58−77447号、
特開昭5i9−102589号、特開昭80−8705
7号、特開昭6O−11848B号、特開昭80−18
7781号、特開昭80−188388号、特開昭80
−191759号、特開昭80−242983号等の明
細書に各種の提案がなされている。
A method of polishing the surface of an object using a polishing liquid containing abrasive grains in magnetic fluid under the action of a magnetic field is described in Japanese Patent Application Laid-open No. 5
1-10499, JP-A-57-183057, JP-A-57-158280, JP-A-58-77447,
JP-A-5i9-102589, JP-A-80-8705
No. 7, JP-A No. 6O-11848B, JP-A No. 80-18
No. 7781, JP-A No. 80-188388, JP-A-80
Various proposals have been made in specifications such as No.-191759 and Japanese Patent Application Laid-open No. 80-242983.

これらの、磁性流体に砥粒を含有させた研磨用液を磁場
の作用下で使用して物体の表面を研磨する方法の基本的
原理を第8図により説明すると、容器lに満たされた砥
粒を含有する磁性流体z中に被研磨物3の被研磨面が浸
漬するように設置し、容器1の下に磁石4を配置して磁
性流体の下方より外部磁場を作用させる。このようにす
ると砥粒は上部に浮上して被研磨面に接触する高密度の
砥粒層を形成する。そこで被研磨物と砥粒を含有する磁
性流体との間に相対運動、図示の場合は被研磨物を垂直
軸を中心として回転させることによる相対運動を与える
と、砥粒層と接触している被研磨面は研磨される。
The basic principle of the method of polishing the surface of an object using a polishing liquid containing abrasive grains in a magnetic fluid under the action of a magnetic field is explained using Fig. 8. An object 3 to be polished is placed so that its surface to be polished is immersed in a magnetic fluid z containing grains, and a magnet 4 is placed below the container 1 to apply an external magnetic field from below the magnetic fluid. In this way, the abrasive grains float to the top and form a high-density abrasive grain layer that comes into contact with the surface to be polished. Therefore, when relative motion is applied between the object to be polished and the magnetic fluid containing abrasive grains, in the case shown in the figure, the object to be polished is rotated around a vertical axis, so that it comes into contact with the abrasive grain layer. The surface to be polished is polished.

別法として、外部磁場を回転させて砥粒を含有する磁性
流体を回転させることにより被研磨物と砥粒を含有する
磁性流体との間に相対運動を与える方法もある。
Alternatively, there is a method of applying relative motion between the object to be polished and the magnetic fluid containing abrasive grains by rotating an external magnetic field to rotate the magnetic fluid containing abrasive grains.

しかしこれら従来法は、研磨の目的は達成し得るものの
、いずれも研磨率(単位時間当りの研磨量)が非常に小
さく効率が悪いために、原理的には可渣であっても実用
化された例はない。
However, although these conventional methods can achieve the purpose of polishing, the polishing rate (amount of polishing per unit time) is very small and inefficient, so even though they are stable in principle, they have not been put into practical use. There are no examples.

発明が解決しようとする問題点 本発明は砥粒を含有する磁性流体を用いる研磨方法にお
いて、被研磨物の表面を効率よく研磨する方法を提供す
ることを目的とする。
Problems to be Solved by the Invention An object of the present invention is to provide a method for efficiently polishing the surface of a workpiece in a polishing method using a magnetic fluid containing abrasive grains.

口0発明の構成 口      るための 本発明の研磨方法は、砥粒を含有する磁性流体中に浮子
を浸漬し、磁性流体に外部磁場を作用させることにより
浮子に浮力を与え、その浮力によって浮子の作用面と被
研磨物との間の砥粒を被研磨物に押しつけると共に、被
研磨物と砥粒を含有する磁性流体との間に相対運動を与
えることよりなる。
In the polishing method of the present invention, a float is immersed in a magnetic fluid containing abrasive grains, and an external magnetic field is applied to the magnetic fluid to impart buoyancy to the float. The method consists of pressing the abrasive grains between the working surface of the workpiece and the object to be polished onto the object to be polished, and giving relative motion between the object to be polished and the magnetic fluid containing the abrasive grains.

本発明方法を、典型的な適用例の一つについて具体的に
説明する。
The method of the present invention will be specifically explained using one typical application example.

第1A図及び第1B図は複数個の被研磨物を同時研磨す
る場合の具体例の一つであり、第1A図は上方から見た
図、第1B図は側断面図である。
1A and 1B show one specific example of simultaneous polishing of a plurality of objects to be polished, with FIG. 1A being a view seen from above and FIG. 1B being a side sectional view.

第1A図及び第1B図に示すように、被研磨物3は駆動
治具としての円板6の下面に回転自在に取付けられ、容
器l中の砥粒を含有する磁性流体2の液面近傍に浸漬さ
れる。ここで砥粒を含有する磁性流体2中に浮子5を浸
漬し、磁性流体の下方より磁石4により外部磁場を作用
させると、砥粒には浮力が作用して上方に浮上し磁性流
体の上部に高密度の砥粒層を形成するが、それとともに
浮子5にも浮力が与えられ、浮子5は浮丘してその上方
に存在する砥粒を被研磨物面に強く押しつける。この状
態で駆動円板6を垂直軸61を中心として回転させると
、砥粒に接触している下面が研磨される。この場合、浮
子5の作用によって、浮子を使用しない場合に比べて研
磨率は著しく向上する。
As shown in FIGS. 1A and 1B, the object to be polished 3 is rotatably attached to the lower surface of a disk 6 as a driving jig, and is placed near the liquid level of the magnetic fluid 2 containing abrasive grains in a container l. immersed in. Here, when the float 5 is immersed in the magnetic fluid 2 containing abrasive grains and an external magnetic field is applied by the magnet 4 from below the magnetic fluid, buoyancy acts on the abrasive grains and they float upwards. A high-density abrasive grain layer is formed at the same time, and buoyancy is also given to the float 5, so that the float 5 floats and strongly presses the abrasive grains present above it against the surface of the object to be polished. When the drive disk 6 is rotated about the vertical axis 61 in this state, the lower surface in contact with the abrasive grains is polished. In this case, due to the action of the float 5, the polishing rate is significantly improved compared to the case where no float is used.

発生する研磨力は、浮子に働く浮力と、浮子の研磨方向
への抵抗力としての剛性により決定される。研磨方向へ
の剛性は、浮子の材質、質量、形状及びそれによる流体
抵抗等の要素により決定される。
The generated polishing force is determined by the buoyant force acting on the float and the rigidity of the float as a resistance force in the polishing direction. The rigidity in the polishing direction is determined by factors such as the material, mass, shape, and fluid resistance of the float.

浮子の材質としては、金属、プラスチック、セラミック
ス、ゴム等、種々の材料を目的に応じて選択使用できる
As the material of the float, various materials such as metal, plastic, ceramics, rubber, etc. can be selected depending on the purpose.

浮子に働く浮力は、下方より働く外部磁場の強さ、浮子
の大きさ、浮子までの距離等により決定され、これらを
変化させることによって所要の加工圧を任意に制御する
ことができる。
The buoyant force acting on the float is determined by the strength of the external magnetic field acting from below, the size of the float, the distance to the float, etc., and by changing these factors, the required processing pressure can be arbitrarily controlled.

浮子の比重は砥粒を含有する磁性流体の比重よりも軽い
ことは絶対必要な条件ではなく、下方より働く外部磁場
の作用により浮力を生じるものであればよい。
It is not an absolutely necessary condition that the specific gravity of the float is lighter than the specific gravity of the magnetic fluid containing abrasive grains, but it is sufficient that it generates buoyancy by the action of an external magnetic field acting from below.

浮子の形状は、被研磨物の被研磨面の形状、例えば平面
、曲面、凹凸面などの表面形状に応じて。
The shape of the float depends on the shape of the surface to be polished of the object to be polished, for example, a flat surface, a curved surface, an uneven surface, etc.

被研磨物の被研磨面との間隔がどの部分でも一定になる
ような形状にするのが好ましい。
It is preferable that the shape is such that the distance between the object to be polished and the surface to be polished is constant in all parts.

浮子の表面は平滑でもよいが、第6A図又は第6B図に
部分拡大断面図として示すように、その上部表面に多数
の溝又は凹部を設けて砥粒の保持を容易にしたものを使
用することが好ましい、あるいは第6C図に部分拡大断
面図として示すように、多数の連通孔を有するものを使
用して砥粒の補給を容易にしたものを使用してもよい。
The surface of the float may be smooth, but as shown in FIG. 6A or FIG. 6B as a partially enlarged sectional view, a float with a large number of grooves or recesses on its upper surface to facilitate retention of abrasive grains is used. Alternatively, as shown in FIG. 6C as a partially enlarged sectional view, one having a large number of communicating holes may be used to facilitate the replenishment of abrasive grains.

被研磨物と磁性流体に混合された砥粒との相対運動は、
被研磨物の回転、往復、振動その他の運動、砥粒を含有
する磁性流体の運動、磁場の変動のほか、浮子の運動及
びこれらを組合せた運動によって行われる。
The relative motion between the object to be polished and the abrasive grains mixed in the magnetic fluid is
This is performed by rotation, reciprocation, vibration and other movements of the object to be polished, movement of a magnetic fluid containing abrasive grains, fluctuations in the magnetic field, movement of a float, and movements that combine these movements.

磁性流体中に含有される砥粒は、公知の研磨用砥粒を適
宜選択して使用することができる0例えばAJ1203
(コランダム)、5iC(炭化ケイ素:カーポランダム
)、ダイヤモンド等であり、あるいは磁性を付加した砥
粒でもよい。
As the abrasive grains contained in the magnetic fluid, known polishing abrasive grains can be appropriately selected and used. For example, AJ1203
(corundum), 5iC (silicon carbide: carporundum), diamond, etc., or abrasive grains with added magnetism may be used.

外部磁場として使用する磁石4は、単一磁石または極性
を揃えて配置した磁石群であってもよいが、むしろ隣り
合う磁石の極が互いに異なるように(図で矢印で示す)
組合せた磁石群であることが好ましい、磁石群を隣り合
う磁石の極が互いに異なるように組合せるのは、砥粒と
浮子の浮力を増し、また水平方向にも磁気排出力を作用
させ、被研磨物の運動方向に抗するように砥粒を保持す
るためである。
The magnet 4 used as the external magnetic field may be a single magnet or a group of magnets arranged with the same polarity, but it is rather arranged so that the polarities of adjacent magnets are different from each other (as indicated by the arrows in the figure).
A combined magnet group is preferable. Combining the magnet groups so that the poles of adjacent magnets are different from each other increases the buoyancy of the abrasive grains and the float, and also causes a magnetic ejection force to act in the horizontal direction, thereby reducing the This is to hold the abrasive grains against the direction of movement of the polishing object.

この磁石または磁石群は永久磁石でも電磁石でもよい。This magnet or group of magnets may be a permanent magnet or an electromagnet.

また磁石は容器lの下部のほか、一方の側部に配置して
水平あるいは傾斜方向などの適宜方向の磁場勾配を発生
させてもよく、いずれの場合も磁性流体の一方の側から
外部磁場を作用させ、対向側に浮力を発生させればよい
In addition to the lower part of the container l, the magnet may also be placed on one side to generate a magnetic field gradient in an appropriate direction, such as horizontally or in an inclined direction. In either case, an external magnetic field is applied from one side of the magnetic fluid. All you have to do is to apply this force to generate buoyancy on the opposite side.

第2A図及び第2B図は、第1A図及び第1B図と同様
の複数個の被研磨物を同時研磨する場合の他の具体例を
説明するための図で、第2A図は上方から見た図、第2
B図は側断面図である。この場合には、複数個の被研磨
物3は駆動円板6と浮子5との間に、砥粒を含有する磁
性流体z中に浮遊する状態に配置される。これに下方か
ら外部磁場を作用させると、砥粒を含有する磁性流体2
中に浸漬した浮子5が浮上してその上方に存在する砥粒
が被研磨物3の下面に押しつけられる。駆動円板6を垂
直軸61を中心として回転すると、被研磨物3は円板6
、その外周壁62、浮子5の制約下に砥粒を含有する磁
性流体中で遊動し、被研磨物3の下面あるいは上下面が
研磨される。
FIGS. 2A and 2B are diagrams for explaining another specific example of simultaneously polishing a plurality of objects to be polished, similar to FIGS. 1A and 1B, and FIG. 2A is a view from above. Fig. 2
Figure B is a side sectional view. In this case, the plurality of objects 3 to be polished are placed between the drive disk 6 and the float 5 so as to float in the magnetic fluid z containing abrasive grains. When an external magnetic field is applied to this from below, the magnetic fluid containing abrasive grains 2
The float 5 immersed therein floats up, and the abrasive grains present above are pressed against the lower surface of the object 3 to be polished. When the driving disk 6 is rotated about the vertical axis 61, the object to be polished 3 is rotated by the disk 6.
, the outer peripheral wall 62 and the float 5 float in a magnetic fluid containing abrasive grains, and the lower surface or upper and lower surfaces of the object 3 to be polished are polished.

第3A図及び第3B図はリング又は円板の側面を研磨す
る場合を説明するための図で、第3A図は上方から見た
図、第3B図は側断面図である。
3A and 3B are diagrams for explaining the case of polishing the side surface of a ring or disk, with FIG. 3A being a view seen from above and FIG. 3B being a side sectional view.

リング又は円板状の被研磨物3を水平回転軸61に取り
付けて回転させ、砥粒を含有する磁性流体中2に浸漬し
た浮子5を浮上させてその上方に存在する砥粒を回転す
るリング又は円板状の被研磨物3の側面に押しつければ
、その側面が効率的に研磨される。この場合浮子5の中
心に回転軸7を設けることが望ましい。
A ring or disk-shaped object 3 to be polished is attached to a horizontal rotating shaft 61 and rotated, and a float 5 immersed in a magnetic fluid 2 containing abrasive grains floats to rotate the abrasive grains present above it. Alternatively, if it is pressed against the side surface of the disc-shaped object 3 to be polished, that side surface will be efficiently polished. In this case, it is desirable to provide the rotating shaft 7 at the center of the float 5.

第4rI4は深溝を有する円柱を研磨する場合を説明す
るための図である。深溝を有する円柱状の被研磨物3を
治具63で水平に支持し回転させると共に、深溝に対応
する凹凸形状を有する浮子51を使用してその上方に存
在する砥粒を回転する被研磨物3の下面に押しつければ
、その側面が深溝部分まで効率的に研磨される。この場
合浮子51が不規則な横揺れをしないようにガイドビン
71で横方向の運動を規制している。
The fourth rI4 is a diagram for explaining the case of polishing a cylinder having a deep groove. A cylindrical workpiece 3 having deep grooves is horizontally supported and rotated by a jig 63, and a float 51 having an uneven shape corresponding to the deep grooves is used to rotate the abrasive grains present above the workpiece. 3, the side surface will be efficiently polished down to the deep grooves. In this case, the guide bin 71 restricts the lateral movement so that the float 51 does not swing irregularly.

第5図は細孔を有する被研磨物3の細孔内を研磨する場
合を説明するための図で、ホルダー64に固定した被研
磨物の細孔35が水平方向になるように設置し、細孔3
5の内部に針状の浮子52を挿入する。被研磨物3を水
平往復運動させると細孔35内部が効率的に研磨される
FIG. 5 is a diagram for explaining the case of polishing the inside of the pores of the object 3 to be polished, which has pores. Pore 3
A needle-shaped float 52 is inserted into the inside of 5. When the object 3 to be polished is horizontally reciprocated, the inside of the pore 35 is efficiently polished.

細孔35の断面が円形であり、外形も円柱あるいは正多
角柱である場合には、被研磨物3を回転′M動させても
よい、リング内面あるいはパイプ内面を研磨する場合も
被研磨面形状に合わせた浮子を磁場による浮力によって
内面方向に作用させることにより、同様な方法で行うこ
とができる。
When the cross section of the pore 35 is circular and the outer shape is also a cylinder or a regular polygonal prism, the object 3 to be polished may be rotated.When polishing the inner surface of a ring or pipe, the surface to be polished This can be accomplished in a similar manner by applying the buoyant force of a magnetic field to the inner surface of a float adapted to the shape.

本発明による浮子を用いる研磨方法は、以上の具体例に
限定されるものではなく、砥粒を含有する磁性流体を用
いる各種の研磨方法に応用可能である。
The polishing method using a float according to the present invention is not limited to the above specific example, but can be applied to various polishing methods using a magnetic fluid containing abrasive grains.

実施例1 第7図に示した装置を使用し、第1表に示す条件で研磨
した。試験結果を第2表に示す。
Example 1 Using the apparatus shown in FIG. 7, polishing was carried out under the conditions shown in Table 1. The test results are shown in Table 2.

第1表 なお研磨率は、試験片下面の端部の断面曲線より求めた
Table 1 The polishing rate was determined from the cross-sectional curve of the end of the lower surface of the test piece.

比較例1 浮子を使用しなかった以外は、実施例1と同じ装とを用
い、同様な条件で研磨試験を行った。結果を第2表に示
す、この場合の研磨率も、実施例1と同様に試験片下面
の端部の断面曲線より求めた。
Comparative Example 1 A polishing test was conducted under the same conditions using the same equipment as in Example 1, except that no float was used. The results are shown in Table 2. The polishing rate in this case was also determined from the cross-sectional curve of the end of the lower surface of the test piece in the same manner as in Example 1.

第  2  表 浮子を使用した場合(実施例1)、浮子を使用しない場
合(比較例1)の60倍の研磨率が得られる。
Table 2 When a float is used (Example 1), a polishing rate 60 times higher than when no float is used (Comparative Example 1) is obtained.

ハ8発明の効果 本発明の研磨方法は、砥粒を含有する磁性流体中で行わ
れるので、被研磨物への加工力の負荷系が柔構造であり
、従って過負荷や衝撃力が発生しにくく、セラミックな
どの脆性材料やアルミニウムなどの延性材料など難加工
性材料の研磨を損傷あるいは加工変質などの発生を最小
に抑制しつつ行うことができる。
C8 Effects of the Invention Since the polishing method of the present invention is carried out in a magnetic fluid containing abrasive grains, the loading system for applying processing force to the object to be polished has a flexible structure, and therefore overload and impact force do not occur. It is possible to polish difficult-to-work materials such as brittle materials such as ceramics and ductile materials such as aluminum while minimizing the occurrence of damage or deterioration due to processing.

また研磨による発熱を効率よく除去できるので、上記柔
構造負荷の効果と相俟って高速研磨が可撤となり、研磨
効率が向上する。
Furthermore, since the heat generated by polishing can be efficiently removed, combined with the effect of the soft structural load mentioned above, high-speed polishing becomes possible and polishing efficiency improves.

さらに本発明における最大の特色は、従来の磁性流体を
用いる研磨方法では加工圧力は主として砥粒の浮力によ
るが、砥粒の浮力は加工圧としては小さいために研磨率
が非常に小さいのに対し、本発明では浮子を用いるため
にその浮力によって砥粒が被研磨面に強く押しつけられ
、加工圧が著しく高められると同時に浮子が研磨方向へ
の抵抗体となる結果、研磨率が顕著に向上することであ
る。
Furthermore, the greatest feature of the present invention is that in the conventional polishing method using magnetic fluid, the processing pressure is mainly due to the buoyancy of the abrasive grains, but the buoyancy of the abrasive grains is small as a processing pressure, so the polishing rate is very small. In the present invention, since a float is used, the abrasive grains are strongly pressed against the surface to be polished by the buoyant force, and the processing pressure is significantly increased. At the same time, the float acts as a resistance body in the polishing direction, and as a result, the polishing rate is significantly improved. That's true.

また浮子の形状を被研磨面の形状に応じて適宜に変える
ことにより、複雑な表面の研磨が可能である。
Further, by appropriately changing the shape of the float depending on the shape of the surface to be polished, it is possible to polish a complicated surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図及び第1B図、第2A図及び第2B図、第3A
図及び第3B図、第4図ならびに第5図はそれぞれ本発
明の具体的実施態様を説明するための図、第6A図、第
6B図及び第6C図は本発明で使用する浮子の部分拡大
断面構造例を示す図、第7図は実施例1で用いた装置を
示す図、第8図は従来法を説明するための図である。
Figure 1A and Figure 1B, Figure 2A and Figure 2B, Figure 3A
Figures 3B, 4, and 5 are diagrams for explaining specific embodiments of the present invention, respectively, and Figures 6A, 6B, and 6C are partially enlarged views of the float used in the present invention. FIG. 7 is a diagram showing an example of a cross-sectional structure, FIG. 7 is a diagram showing the apparatus used in Example 1, and FIG. 8 is a diagram for explaining a conventional method.

Claims (1)

【特許請求の範囲】 1 砥粒を含有する磁性流体中に浮子を浸漬し、磁性流
体に外部磁場を作用させることにより浮子に浮力を与え
、その浮力によって浮子の作用面と被研磨物との間の砥
粒を被研磨物に押しつけると共に、被研磨物と砥粒を含
有する磁性流体との間に相対運動を与えることよりなる
被研磨物の研磨方法。 2 被研磨物を水平往復運動又は回転運動又は振動させ
ることにより被研磨物と砥粒を含有する磁性流体との間
に相対運動を与える特許請求の範囲第1項記載の研磨方
法。 3 外部磁場を変動させて砥粒を含有する磁性流体を流
動させることにより被研磨物と砥粒を含有する磁性流体
との間に相対運動を与える特許請求の範囲第1項記載の
研磨方法。 4 浮子として、その作用面に多数の溝又は凹部を設け
たものを使用する特許請求の範囲第1項記載の研磨方法
。 5 浮子として、磁性流体と砥粒のための多数の連通孔
を有するものを使用する特許請求の範囲第1項記載の研
磨方法。 6 被研磨物が浮子と駆動治具との間に挟まれて砥粒を
含有する磁性流体中に浮遊している特許請求の範囲第1
項記載の研磨方法。 7 磁性流体に作用させる外部磁場として、隣り合う磁
石の極が互いに異なるように組合せた磁石群を用いる特
許請求の範囲第1項記載の研磨方法。
[Claims] 1. A float is immersed in a magnetic fluid containing abrasive grains, and an external magnetic field is applied to the magnetic fluid to give a buoyant force to the float. A method for polishing an object to be polished, which comprises pressing abrasive grains between the objects to be polished and applying relative motion between the object to be polished and a magnetic fluid containing abrasive grains. 2. The polishing method according to claim 1, wherein relative motion is imparted between the object to be polished and the magnetic fluid containing abrasive grains by horizontally reciprocating, rotating or vibrating the object. 3. The polishing method according to claim 1, wherein relative motion is imparted between the object to be polished and the magnetic fluid containing abrasive grains by varying an external magnetic field and causing the magnetic fluid containing abrasive grains to flow. 4. The polishing method according to claim 1, wherein a float having a large number of grooves or recesses on its working surface is used. 5. The polishing method according to claim 1, wherein a float having a large number of communication holes for the magnetic fluid and the abrasive grains is used. 6. Claim 1, in which the object to be polished is sandwiched between a float and a driving jig and suspended in a magnetic fluid containing abrasive grains.
Polishing method described in section. 7. The polishing method according to claim 1, which uses a group of magnets in which adjacent magnets have different poles as the external magnetic field that acts on the magnetic fluid.
JP62026443A 1987-02-09 1987-02-09 Polishing method using magnetic fluid Granted JPS63196368A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62026443A JPS63196368A (en) 1987-02-09 1987-02-09 Polishing method using magnetic fluid
SE8800380A SE464565B (en) 1987-02-09 1988-02-05 PROCEDURES FOR GRINDING USING A MAGNETIC FLUID AND DEVICE THEREOF
US07/152,937 US4821466A (en) 1987-02-09 1988-02-05 Method for grinding using a magnetic fluid and an apparatus thereof
DE3803773A DE3803773A1 (en) 1987-02-09 1988-02-08 GRINDING METHOD USING A MAGNETIC FLUID AND DEVICE THEREFOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62026443A JPS63196368A (en) 1987-02-09 1987-02-09 Polishing method using magnetic fluid

Publications (2)

Publication Number Publication Date
JPS63196368A true JPS63196368A (en) 1988-08-15
JPH0541395B2 JPH0541395B2 (en) 1993-06-23

Family

ID=12193649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62026443A Granted JPS63196368A (en) 1987-02-09 1987-02-09 Polishing method using magnetic fluid

Country Status (1)

Country Link
JP (1) JPS63196368A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7071440B2 (en) 2003-07-09 2006-07-04 Newfrey Llc Stud welding apparatus
KR100997898B1 (en) 2008-09-26 2010-12-02 인하대학교 산학협력단 Channel formation method on biochip
CN107116455A (en) * 2017-05-03 2017-09-01 宁波工程学院 A kind of micro- texture former of inner surface self-centering based on jet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62173166A (en) * 1985-08-08 1987-07-30 Jgc Corp Sphere polishing method using magnetic fluid and polishing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62173166A (en) * 1985-08-08 1987-07-30 Jgc Corp Sphere polishing method using magnetic fluid and polishing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7071440B2 (en) 2003-07-09 2006-07-04 Newfrey Llc Stud welding apparatus
KR100997898B1 (en) 2008-09-26 2010-12-02 인하대학교 산학협력단 Channel formation method on biochip
CN107116455A (en) * 2017-05-03 2017-09-01 宁波工程学院 A kind of micro- texture former of inner surface self-centering based on jet
CN107116455B (en) * 2017-05-03 2019-02-22 宁波工程学院 A jet-based auto-centering microtexture forming device for inner surface

Also Published As

Publication number Publication date
JPH0541395B2 (en) 1993-06-23

Similar Documents

Publication Publication Date Title
US4821466A (en) Method for grinding using a magnetic fluid and an apparatus thereof
US5125191A (en) Abrasive flow machining with an in situ viscous plastic medium
CN103372806B (en) Automatic polishing equipment for surface treatment of complex curved surface contour part
US5232875A (en) Method and apparatus for improving planarity of chemical-mechanical planarization operations
US3906678A (en) Automatic specimen polishing machine and method
EP0318135A2 (en) Abrading tool and process of manufacturing the same
US10710207B2 (en) Method and apparatus for performing targeted polishing via manipulation of magnetic-abrasive fluid
WO1994004313A1 (en) Magnetorheological polishing devices and methods
JP2009034812A (en) Flat double-side polishing method and flat double-side polishing apparatus
JPS63196368A (en) Polishing method using magnetic fluid
JPH0911114A (en) Surface finish process method
KR20160054409A (en) METHOD OF POLISHING A SiC SUBSTRATE
JP2007021661A (en) Mirror polishing method and mirror polishing apparatus for complex shaped body
JPS62173166A (en) Sphere polishing method using magnetic fluid and polishing device
CN1164396C (en) Chamfering method of rare earth alloy
JPWO2006030854A1 (en) Polishing method and polishing apparatus for complex shapes
JPH0248169A (en) Grinder with magnetic fluid
JPH01271163A (en) Polishing device using magnetic fluid
JPH08257897A (en) Method and device for polishing sphere provided with float having hole in center and circulating device of magnetic fluid containing abrasive grain
JPH01234160A (en) Polishing and polishing device
JPH01271164A (en) Polishing device using magnetic fluid
TW202402451A (en) Adaptable polishing pad and curved surface polishing structure
JPH01271167A (en) Polishing device using magnetic fluid
JPH01271161A (en) Polishing device using magnetic fluid
CN1104306C (en) Method for processing using beam of magnetic line of force and apparatus and carriage member

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term