JPS6319499A - High purity gas maintaining vessel - Google Patents
High purity gas maintaining vesselInfo
- Publication number
- JPS6319499A JPS6319499A JP15871686A JP15871686A JPS6319499A JP S6319499 A JPS6319499 A JP S6319499A JP 15871686 A JP15871686 A JP 15871686A JP 15871686 A JP15871686 A JP 15871686A JP S6319499 A JPS6319499 A JP S6319499A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- cylinder
- pressure
- high purity
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C1/00—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
- F17C1/10—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge with provision for protection against corrosion, e.g. due to gaseous acid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0104—Shape cylindrical
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0607—Coatings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0636—Metals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2209/00—Vessel construction, in particular methods of manufacturing
- F17C2209/21—Shaping processes
- F17C2209/2172—Polishing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/05—Ultrapure fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0107—Single phase
- F17C2223/0123—Single phase gaseous, e.g. CNG, GNC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/05—Improving chemical properties
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、高純度ガスを維持する容器に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to containers for maintaining high purity gases.
さらに詳しくは、半導体工業等で要求される高純度ガス
、特に微細粒子および容器内表面でのガスの吸脱着を、
減じる為に、ガス接触面を電解複合研磨した耐圧金属容
器に関する。More specifically, we will focus on the adsorption and desorption of high-purity gases required in the semiconductor industry, especially fine particles and gases on the inner surface of containers.
This invention relates to a pressure-resistant metal container whose gas contact surface is subjected to electrolytic composite polishing in order to reduce the amount of gas.
(従来の技術)
圧縮ガスや液化ガス充填用容器ボンベ(以下「ボンベ」
という。)は、ガスの貯蔵、運搬の手段として工業用を
はじめ、医療用、一般家庭用等に広く使用されているが
、ガスの需要量の伸長とともに、利用されるボンベの種
類及び数は、年々増加の傾向にある。(Conventional technology) Container cylinders (hereinafter referred to as “cylinders”) for filling compressed gas or liquefied gas
That's what it means. ) are widely used as a means of storing and transporting gas in industrial, medical, and household uses, but as the demand for gas increases, the types and number of cylinders used are changing year by year. It is on the rise.
その中でも、近年半導体工業のめざましい発展につれて
、高純度の多種類のガスが、大量に使われるようになる
と同時にデンベ内でのガスの超高純度維持など、解決す
べき重大な問題が提起されるようになった。Among these, in recent years, with the remarkable development of the semiconductor industry, large quantities of various types of high-purity gases have come to be used, and at the same time serious problems have been raised that need to be solved, such as maintaining the ultra-high purity of gases in the cellar. It became so.
高集積化、高性能化が進み、最小加工寸法が、サブミク
ロンオーダーの超LSIが製造される今日では、がスそ
のもののさらなる超高純度比はもちろん、ガス供給系即
ちボンベ、配管及びその部材等のシステムから混入する
微細な粒子パーティクル(以下「・り−ティクル」とい
う。)や、内表面から放出される水分や、空気成分等の
ガス不純物の混入がLSIの結晶欠陥、薄膜膜質不良、
成膜工yチングの均一性不良、パターン欠陥などの原因
となシ製品化率の低下をきたしたり、成膜スピードがダ
ウンし、生産性に影響を与えたり、LSIの高集積化、
高性能化が進むにつれて、深刻になりつつある。Nowadays, as ultra-LSIs are manufactured with higher integration and higher performance, and the minimum processing size is on the submicron order, not only the ultra-high purity ratio of the gas itself, but also the gas supply system, such as cylinders, piping, and their components. Microscopic particles (hereinafter referred to as "li-ticles") mixed in from systems such as systems, moisture released from the inner surface, and gaseous impurities such as air components can cause crystal defects in LSIs, poor thin film quality,
This can lead to poor uniformity in film deposition process, pattern defects, etc., resulting in a decrease in product conversion rate, a decrease in film deposition speed, and affecting productivity.
As performance increases, this problem is becoming more serious.
これらの問題を解決するため、ステンレス製の/?イゾ
、各種バルブ類、レギュレーター等、配管及びその部材
の接ガス面の平滑化、メインラインから配管系のガス滞
留部全−掃するなどの工夫が施されるなど、高性能材料
、高性能プロセスが開発され、順次解決の方向に進んで
いる。To solve these problems, stainless steel/? High-performance materials and high-performance processes have been adopted, such as smoothing the gas-contact surfaces of piping and its components such as IZO, various valves, regulators, etc., and cleaning all the gas retention parts of the piping system from the main line. have been developed and progress is being made in the direction of solutions.
しかし、ガスが最も長時間滞留し、コンタミネーション
が最も起シ易く超高純度ガスを供給するのに最も大きな
影響のあるボンベの適切なりリーン化技術がなく、従来
より使用されているボンベを何の工夫もなく、半導体高
純度ガス用として、使用しているのが現状である。However, there is no appropriate lean technology for the cylinders in which gas remains for the longest time, where contamination is most likely to occur, and which has the greatest impact on supplying ultra-high purity gas. At present, it is used for semiconductor high-purity gases without any innovations.
ボンベは、高圧ガス取締法の容器保安規則にのっと9、
マンガン鋼、ステンレス鋼、アルミニウム合金、クロム
モリブデン鋼等を材料として、エアハルト法やマンネス
マン法によって製作される。The cylinder must comply with the Container Safety Regulations of the High Pressure Gas Control Law9.
Manufactured using manganese steel, stainless steel, aluminum alloy, chromium molybdenum steel, etc., using the Erhardt method or the Mannesmann method.
しかし、ボンベの底部及び頭部の熱間加工による肌あれ
、底部成形時の型押工具による傷、熱処理によυポーラ
スな表面酸化皮膜が形成されるなど微細なパーティクル
や、ガス成分を包蔵、吸着しやすい表面になっている。However, the skin roughness caused by hot processing on the bottom and head of the cylinder, scratches caused by the embossing tool during bottom molding, and the formation of a porous surface oxide film due to heat treatment, which may contain fine particles and gas components. It has a surface that is easy to absorb.
また、バルブ取付ネジが、チー・ぐ−内ネジ式のため、
バルブ取付時にボンベ内に金属粉末が混入し、パーティ
クル発生の原因になるなど構造上も問題がある。In addition, since the valve mounting screw is an internal thread type,
There are also structural problems such as metal powder getting mixed into the cylinder when the valve is installed, causing particles to be generated.
これらの問題を解決するために、ボンベの内面処理とし
て、テフロン系、塩化ビニル等の樹脂コーティング法な
どが試みられているが、樹脂とボンベ内壁との接着強度
が低く、使用中に剥離したりガス透過性が問題となった
り、樹脂中の可塑剤がガス中に溶解しガスの品質を低下
させたり、まだ幾多の欠点があり完成された技術とはい
いがたい。そのほかにも、リン酸亜鉛、リン酸マンガン
等のリン酸塩の浸漬又はスプレーによるコーティング、
即ちノぐ−カーライジング法などもあるが、超高純度ガ
スを充填するボンベに使用できる技術とはいえない。In order to solve these problems, attempts have been made to coat the inner surface of the cylinder with resins such as Teflon and vinyl chloride, but the adhesive strength between the resin and the inner wall of the cylinder is low and it may peel off during use. The technology still has many drawbacks, such as gas permeability being a problem and the plasticizer in the resin dissolving into the gas, degrading the quality of the gas, and it is difficult to say that this technology is complete. In addition, coating by dipping or spraying with phosphates such as zinc phosphate and manganese phosphate,
That is, although there is a nog-curling method, it cannot be said to be a technique that can be used for cylinders filled with ultra-high purity gas.
(発明が解決しようとする問題点と手段)本発明者らは
、ノ4−ティクルの発生量及びガス吸着量の少ないボン
ベの製作工程中に内表面を、電解複合研磨法により鏡面
仕上げすることによって、目的を達成できることを感知
した。(Problems and Means to be Solved by the Invention) The present inventors have developed a method of mirror-finishing the inner surface using an electrolytic composite polishing method during the production process of a cylinder that generates fewer particles and has a smaller amount of gas adsorption. I realized that I could achieve my goal by doing so.
本発明は、上記の発見に基づいてなされたもので、電解
複合研磨法によって、ボンベ内表面に極めて平滑な、緻
密な不動態化皮膜を形成することによって、微細す・り
−ティクルが発生しにくく、しかもガス吸着量の少ない
ボンベを提供することを目的とする。The present invention was made based on the above discovery, and by forming an extremely smooth and dense passivation film on the inner surface of the cylinder using an electrolytic composite polishing method, fine scratches are generated. To provide a cylinder that is difficult to use and has a small amount of gas adsorption.
本発明でいう容器は、一般的には、ボンベという名称で
販売されている耐圧金属容器である。その材質は、マン
ガン鋼、ステンレス鋼、アルミニウム合金、クロムモリ
ブデン鋼等の材料に適用され、金属容器であればこれら
に制限されるものではない。The container referred to in the present invention is generally a pressure-resistant metal container sold under the name of cylinder. The material may be manganese steel, stainless steel, aluminum alloy, chromium molybdenum steel, etc., but is not limited to these as long as it is a metal container.
容器に充填されるガスは、圧縮ガスと液化ガスの双方を
含み、容器から放出されるとガス状となるものである。The gas filled in the container includes both compressed gas and liquefied gas, and becomes gaseous when released from the container.
本発明により、高純度ガスを維持する為に、ガスとの接
触面(内表面)の少なくとも主要面積を電解複合研磨す
ることにより、内表面を鏡面化し、・ぐ−ティクルを著
しく減少させ、かつ内表面に吸脱着されるガス量を減じ
、これらのガスによる汚染や腐食等を防止することが可
能となったのである。According to the present invention, in order to maintain high purity gas, at least the main area of the surface in contact with the gas (inner surface) is subjected to electrolytic composite polishing, thereby making the inner surface mirror-finished, significantly reducing particles, and This makes it possible to reduce the amount of gas adsorbed and desorbed onto the inner surface and prevent contamination and corrosion caused by these gases.
又、ボンベの口金部を外ネジにすることは、微粒子の発
生の抑止に効果がある。Furthermore, using an external thread for the mouthpiece of the cylinder is effective in suppressing the generation of particulates.
■ ボンベに使用される材料は先にも述べたように、高
圧ガス取締法の規定に基づく、容器保安規則に適合する
ものが用いられる。■ As mentioned earlier, the materials used for the cylinders are those that comply with container safety regulations based on the provisions of the High Pressure Gas Control Law.
すなわち、ステンレス鋼、炭素鋼、マンがン鋼、クロム
モリブデン鋼、アルミニウム合金(JISH4000の
種類5052.及び5056と同一化学成分のもの)等
の材料で、熱処理材あるいは非熱処理材が用いられる。That is, heat-treated or non-heat-treated materials such as stainless steel, carbon steel, manganese steel, chromium-molybdenum steel, and aluminum alloy (having the same chemical composition as JISH4000 types 5052 and 5056) are used.
■ 高圧ガスボンベ、液化ガスボンベの製作方法は、熱
処理材を用いた場合は次の工程を経る。■ The manufacturing method for high-pressure gas cylinders and liquefied gas cylinders involves the following steps when heat-treated materials are used.
イ、継目なし鋼管 →口、定尺切断 →ノ・、底部熱間
加工→二、底部型押→ホ頭部熱間加工→へ、熱処理→ト
、ネックリンク糖→チ、ネジ部切削→す、内部洗浄→ヌ
、耐圧テスト
なお、非熱処理材を用いる場合には、熱処理を必要とし
ない。又、ビレットからボンベを製作する場合には、穿
孔、熱伸、頭部熱間加工を経て、前記への工程に入る。A, Seamless steel pipe → Mouth, Cutting to length → No., Bottom hot processing → Two, Bottom embossing → E Head hot processing → To, Heat treatment → G, Neck link sugar → H, Thread part cutting → S , Internal cleaning → Nu, Pressure test Note that heat treatment is not required when non-heat treated materials are used. In addition, when producing a cylinder from a billet, the above steps are performed after drilling, heat stretching, and hot working of the head.
しかし、この方法で製作するボンベは、内表面が啄めて
凸凹がひどく多くのひだが存在し、・セーティクルを包
蔵し、ガス吸着量が膨大であり、充填高純度ガスの品質
低下の原因となる。However, the cylinders manufactured using this method have an extremely scratched and uneven inner surface with many folds, contain a seal, and absorb a huge amount of gas, which can cause a decline in the quality of the high-purity gas filled. Become.
そこで、これらの欠点を改善するため、へ底部型押とホ
0頭部熱間加工、(非熱処理材の場合は頭部加工)の工
程の間に電解複合研磨工程を加えて内表面が完全な平滑
面を有するボンベの製作法を開発した。Therefore, in order to improve these defects, an electrolytic composite polishing process was added between the bottom embossing, the head hot processing (head processing in the case of non-heat-treated materials), and the inner surface was perfected. We have developed a method for manufacturing cylinders with smooth surfaces.
■ 本発明で適用する電解複合研磨法とは、電解により
陽極性の被研磨金属を電解溶出させると共に、被研磨金
属の表面に生成された、不働態化酸化皮膜を研磨砥粒に
よる擦過作用で表面を鏡面加工する方法で研磨砥粒に一
定以上の速度を与えて研磨面を擦過すると同時に、不、
動態化型、電解液を介して数A/crrL2以下の電解
電流速度で、研磨面に溶出と酸化の陽極反応を発生させ
ることを特徴とする方法である。(特公昭57−477
59.同58−19409)。■ The electrolytic composite polishing method applied in the present invention is to electrolytically elute the anodic metal to be polished, and at the same time remove the passivation oxide film generated on the surface of the metal to be polished by the abrasive action of abrasive grains. This is a method of polishing the surface to a mirror finish, giving the abrasive grains a speed above a certain level to abrade the polished surface, and at the same time,
This method is characterized by generating an anodic reaction of elution and oxidation on the polishing surface at an electrolytic current rate of several A/crrL2 or less through an electrolytic solution. (Tokuko Sho 57-477
59. 58-19409).
さらに具体的に第一図で説明する。第一図は、この発明
の鏡面加工法に使用される工具の、−’Aを示し1は駆
動軸に接続され駆動装置により回転仲
される工具、2は、工具1の下部に形成されたA板から
なる円板状の陰極、3は陰極2の下面に十字状に形成さ
れた露出面、4は陰極2の中央に透設された電解液5の
流出口、6は陰極2の下面の露出面3及び流出口4を除
いて全面貼付された研磨砥粒、7は電気的に絶縁性をも
つ塗料などの薄膜であシ、陰極2の周面および工具1の
周面から無益な漏れ電流の流出を防止し、電解液5は、
工具1の駆動軸を介して、電解液供給装置から圧送され
、流出口4から露出面3と、被研磨金属(図示せず)と
の間隙に供給され、工具の外へ放出される。そして工具
1の陰極2と被研磨金属に直流あるいはノクルス性の電
圧の陰極側と陽極側がそれぞれ接続される。This will be explained in more detail with reference to FIG. Figure 1 shows −'A of the tool used in the mirror finishing method of the present invention, 1 is a tool connected to a drive shaft and rotated by a drive device, and 2 is a tool formed at the bottom of tool 1. A disk-shaped cathode made of plate A; 3 is an exposed surface formed in a cross shape on the lower surface of the cathode 2; 4 is an outlet for the electrolytic solution 5 provided through the center of the cathode 2; 6 is the lower surface of the cathode 2 The abrasive grains 7 are pasted on the entire surface except for the exposed surface 3 and the outlet 4, and 7 is a thin film of electrically insulating paint, which removes useless waste from the circumferential surface of the cathode 2 and the circumferential surface of the tool 1. To prevent leakage current from flowing out, the electrolytic solution 5
The electrolyte is fed under pressure from the electrolyte supply device through the drive shaft of the tool 1, supplied from the outlet 4 to the gap between the exposed surface 3 and the metal to be polished (not shown), and discharged out of the tool. The cathode 2 of the tool 1 and the metal to be polished are connected to the cathode and anode sides of a direct current or Noculus voltage, respectively.
そして、研磨加工に際し、工具1の陰極2と被研磨金属
間に前記のとおり電圧全印加するとともに、その間に電
解液5を供給し、陰極2を被研磨金属に押付けつつ回転
することにより、電解作用で被研磨金属の陽極溶解を行
い、かつ被研磨金属の表面の凸凹部に生成された不働態
化酸化皮膜のうち、その凸部を研磨砥粒6により、擦過
除去し被研磨金属の凸部を優先的選択的に電解溶出し鏡
面に仕上げる。During the polishing process, the full voltage is applied as described above between the cathode 2 of the tool 1 and the metal to be polished, and the electrolytic solution 5 is supplied in between, and the cathode 2 is rotated while being pressed against the metal to be polished. The metal to be polished is anodic-dissolved by the action, and the convex parts of the passivated oxide film generated on the uneven parts of the surface of the metal to be polished are removed by abrasion by the abrasive grains 6, and the convex parts of the metal to be polished are removed. The parts are preferentially electrolytically eluted and finished to a mirror surface.
研磨する一例を述べると、+ 120−$1500のS
iC系砥粒で初期表面粗さが、5〜1oμmRmaxの
SU8.316ボンベ内表面を擦過する場合、不動態化
型電解液に20 % NaNOs水溶液を用いて電解電
流密度をO〜6A/CrIL2の範囲で変えて、研磨し
た結果、粗さを0.1μmRmaxの内表面を得た。To give an example of polishing, +120-$1500 S
When abrading the inner surface of a SU8.316 cylinder with an initial surface roughness of 5 to 1 μmRmax using iC-based abrasive grains, use a 20% NaNOs aqueous solution as the passivation type electrolyte and adjust the electrolytic current density to 0 to 6 A/CrIL2. As a result of polishing within a range, an inner surface with a roughness of 0.1 μmRmax was obtained.
又、同様の方法でマンガン鋼、アルミニウム合金等も研
磨することが出来る。Furthermore, manganese steel, aluminum alloy, etc. can also be polished using the same method.
■ 従来、がスボンベのバルブ取付孔にテーパー雌ネジ
を切り、一方がンベバルブの脚部にテーペー雄ネジを切
り、デンベロのバルブ取付孔にパルプの脚部をチー・ぐ
−ネジ嵌合することにより高圧下で気密を確保するのが
一般的な方法であるが、ネジの嵌合面が非常に高い面圧
で摺擦して、金属磨耗微粉を発生し、高純度ガスの品質
低下の一因となっている。■ Conventionally, by cutting a tapered female thread in the valve mounting hole of the valve, cutting a tapered male thread in the leg of the valve, and fitting the leg of the pulp into the valve mounting hole of the valve. The common method is to ensure airtightness under high pressure, but the mating surfaces of screws rub against each other under extremely high surface pressure, generating metal abrasion fine powder, which is a contributing factor to the deterioration of the quality of high-purity gas. It becomes.
そこで?ンベ内表面全電解複合研磨に:り鏡面仕上げす
ると同時に、ボンベの口金部を外洋ノタイプとし、例え
ば実願昭61−67875に示されるバルブを使用する
ことによって相乗効果がありさらにパーティクルの発生
を抑止することが出来る。Therefore? For complete electrolytic composite polishing of the inner surface of the cylinder: At the same time, by mirror-finishing the cylinder mouthpiece and using the valve shown in Utility Model Application No. 61-67875, for example, a synergistic effect can be obtained and the generation of particles can be suppressed. You can.
(実施例)
以下に実施例と比較例を示し、本発明全具体的に説明す
る。(Example) Examples and comparative examples are shown below to specifically explain the present invention.
実施例1
第2図に示した装置を用いて、電解研磨法により内表面
を鏡面仕上げしたクリーンボンベ(以下「クリーンボン
ベ」という。)、通常のSUSボンへ(比較例1)、通
常のマンガン鋼のボンベ(比較例2)から発生する・母
−ティクルを測定した。Example 1 Using the apparatus shown in Fig. 2, a clean cylinder whose inner surface was polished to a mirror finish by electrolytic polishing (hereinafter referred to as "clean cylinder"), an ordinary SUS cylinder (comparative example 1), and ordinary manganese were transferred. The base tickle generated from the steel cylinder (Comparative Example 2) was measured.
測定法を第2図にしたがって説明する。The measurement method will be explained with reference to FIG.
■ 0.01μm以上のパーティクルを保留出来るライ
ンフィルター12.14.バルブ13+15+17.1
8.及びダスト計19を結ぶラインに、ボンベ11に充
填したマザーがス、即ち高純度窒素ガス、又はフロン1
4を流しダスト計で・ゼーティクルが、カウントされな
くなるまで洗浄した。■ Line filter that can retain particles larger than 0.01 μm 12.14. Valve 13+15+17.1
8. In the line connecting the dust meter 19 and the mother gas filled in the cylinder 11, high-purity nitrogen gas or Freon 1
4 was washed with a dust meter until zeticles were no longer counted.
■ 次に、バルブ17を閉、バルブ20,21゜を開と
し、テストボンベラインを十分に洗浄した。(2) Next, valve 17 was closed and valves 20 and 21° were opened to thoroughly clean the test cylinder line.
■ 引続き、バルブ17,21.を閉、テストボンベ2
2.の元バルブを開とし、テストボンベ22に圧力計1
6を見ながらマザーガスを30に9/crn2. Gの
圧力に達するまで充填した。■ Continue with valves 17, 21. Close test cylinder 2
2. Open the main valve and insert the pressure gauge 1 into the test cylinder 22.
While looking at 6, change the mother gas to 30 to 9/crn2. It was filled until a pressure of G was reached.
なお、測定に先立って、ボンベ22に30に!9/cr
rL2.Gまで充填するのに要する時間が、20分にな
るようにあらかじめニードルバルブ13の開度を調節し
た。In addition, before the measurement, please add 30 to 22 in the cylinder! 9/cr
rL2. The opening degree of the needle valve 13 was adjusted in advance so that the time required to fill up to G was 20 minutes.
■ 次に、バルブ15を閉とし、バルブ17を開とし、
ダスト計にて、ガス中のパーティクル全10分間測定し
た。なお、バルブ18はニードルバルブで、テストボン
ベ22の圧力が30k19/(−:、Gのとき、IQL
/minの流量になるようにあらかじめ調節しておいた
。また、ダスト計19を通過し24のラインから放出さ
れるガス量は、300mL/minで一定であり、残り
のガスは)ぐイパスライン23を経由しブローされる。■ Next, close the valve 15, open the valve 17,
Particles in the gas were measured for a total of 10 minutes using a dust meter. In addition, the valve 18 is a needle valve, and when the pressure of the test cylinder 22 is 30k19/(-:, G, IQL
The flow rate was adjusted in advance to be 1/min. Further, the amount of gas that passes through the dust meter 19 and is released from the line 24 is constant at 300 mL/min, and the remaining gas is blown through the air pass line 23.
■ テストボンベ22の充填圧力、30 ′に9/c!
rL2. Gを開始点とする・ぐ−ティクルを測定後、
つづいて圧力10kg/ctrt” 、 Gを開始点と
する、ノぞ−テイクルを測定した。■ Filling pressure of test cylinder 22, 9/c at 30'!
rL2. After measuring the particle with G as the starting point,
Subsequently, the nozzle takele was measured at a pressure of 10 kg/ctrt'' with G as the starting point.
測定結果は、第1表に示したように著しいクリーン効果
(パーティクルの個数の減少)が認められた。As shown in Table 1, the measurement results showed a significant cleaning effect (reduction in the number of particles).
比較例1
通常のSUS 、t”ンベを、テス)&ンベに選び実施
例1と同様に、発生するパーティクルを測定し、結果を
第1表にしめした。Comparative Example 1 A normal SUS, t'' frame was selected as a T&S frame, and the generated particles were measured in the same manner as in Example 1, and the results are shown in Table 1.
比較例2
通常のマンガン鋼ボンベを、テストボンベに選び実施例
2と同様に、発生するツク−ティクルを測定し、結果を
第1表にしめした。Comparative Example 2 An ordinary manganese steel cylinder was selected as a test cylinder and the generated tsukuticle was measured in the same manner as in Example 2, and the results are shown in Table 1.
実施例2
クリーンボンベ内表面から真空系で放出されるガスのそ
れぞれの分圧を測定した。第3図により測定法を説明す
る。測定ボンベ31に真空排気系として排気速度300
1/seeのターボ分子ポンプ34と排気速度2307
/secをもつ拡散2ンf35を直結させ、さらに90
1/minの油回転ポンプ36を用いて装置を構成した
。真空度はヌードイオンゲージ33で測定し分圧は質量
分析計32で測定した。測定時の温度は、20’Cで1
〜2時間真空排気し、続いて160〜180°Cに加熱
し60Hrベーキングし、室温に冷却する方法によった
。測定結果を第4図、第5図に示したが、第4図は、た
て軸に放出ガス中の820分圧、横軸に時間をと9.8
20分圧の経時変化を示したもので放出ガス量が少ない
ほど高真空度に達する。第5図には、(CO十N2)分
圧の時間的変化を示した。なおベーキングし室温冷却後
の820分圧は7.9XIQ−12Torr 。Example 2 The partial pressure of each gas released from the inner surface of a clean cylinder in a vacuum system was measured. The measurement method will be explained with reference to FIG. The measurement cylinder 31 is pumped at a pumping speed of 300 as a vacuum pumping system.
1/see turbo molecular pump 34 and pumping speed 2307
Directly connect the diffusion 2-in f35 with /sec, and further 90
The apparatus was constructed using a 1/min oil rotary pump 36. The degree of vacuum was measured with a nude ion gauge 33, and the partial pressure was measured with a mass spectrometer 32. The temperature at the time of measurement was 1 at 20'C.
It was evacuated for ~2 hours, then heated to 160-180°C, baked for 60 hours, and cooled to room temperature. The measurement results are shown in Figures 4 and 5. In Figure 4, the vertical axis shows the 820 partial pressure in the released gas, and the horizontal axis shows time and 9.8
It shows the change in pressure over time for 20 minutes, and the smaller the amount of released gas, the higher the degree of vacuum. FIG. 5 shows the temporal change in partial pressure (of CO and N2). The 820 partial pressure after baking and cooling to room temperature was 7.9XIQ-12Torr.
(Co + N2 )の分圧は1.OX 10−1′T
orrO高真空度に到達し、ボンベの内表面からの脱ガ
ス量が極めて少いことを示している。The partial pressure of (Co + N2) is 1. OX 10-1'T
The orrO high vacuum degree was reached, indicating that the amount of gas degassed from the inner surface of the cylinder was extremely small.
比較例3
通常のSUS 304ボンベ内表面から真空系で放出さ
れるガ゛スの分圧を実施例2と同一条件で測定した。Comparative Example 3 The partial pressure of gas released from the inner surface of an ordinary SUS 304 cylinder in a vacuum system was measured under the same conditions as in Example 2.
室温冷却後の820分圧は1.3X10−10Torr
、(C0+N2)の分圧は1.9 X 10−10To
rrまでしか到達しなかった。820 partial pressure after cooling to room temperature is 1.3X10-10Torr
, the partial pressure of (C0+N2) is 1.9 x 10-10To
It only reached rr.
又測定時間とN20の分圧変化を第4図、測定時間と(
CO十N2)分圧変化を第5図に示した。Figure 4 shows the measurement time and N20 partial pressure change, and the measurement time and (
Figure 5 shows the change in partial pressure of CO and N2.
(本発明の効果)
本発明の容器を用いることにより、パーティクルの発生
量が極めて少なく、しかも内表面から放出されるガス量
も著るしく減少することが可能となり、高純度ガスが維
持されるのである。(Effects of the present invention) By using the container of the present invention, the amount of particles generated is extremely small, and the amount of gas released from the inner surface can also be significantly reduced, maintaining high purity gas. It is.
第1図(a)図はこの発明に使用される工具の1例の下
面図、同(15)図は(a1図のs −s’断面図、第
2図はパーティクル測定装置、第3図はガス分圧測定装
置、第4図はベーキングによる820分圧の変化図、第
5図はベーキングによるCO+N2分圧の変化図である
。
1・・・工具、2・・・陰極、3・・・露出面、4・・
・流出口、5・・・電解液、6・・・研磨砥粒、11・
・・マザーガス、19・・・ダスト計、22・・・テス
)&ンベ、31・・・測定ボンベ、32・・・質量分析
計、34・・・ターボ分子ポンプ。
1れギ已り1@1〆、 喝ヤづ3s捧氏゛145、h
(しり・236.ン第1図
第2図
第3図
窮
第4図
TIME (hr)
1 クリ−″)ボンベ 2 : 5UIS 304
ボシベ第5図
TIME(ハr)Fig. 1(a) is a bottom view of an example of a tool used in the present invention, Fig. 1(15) is a s-s' sectional view of Fig. a1, Fig. 2 is a particle measuring device, Fig. 3 is a gas partial pressure measuring device, Figure 4 is a diagram of changes in 820 partial pressure due to baking, and Figure 5 is a diagram of changes in CO+N2 partial pressure due to baking. 1...Tool, 2...Cathode, 3...・Exposed surface, 4...
・Outlet, 5... Electrolyte, 6... Polishing abrasive grain, 11.
...Mother gas, 19...Dust meter, 22...Tess) & 31...Measurement cylinder, 32...Mass spectrometer, 34...Turbo molecular pump. 1 leg passing 1 @ 1〆, shouting Yazu 3s dedication Mr.゛145, h
(236.n Figure 1 Figure 2 Figure 3 Figure 4 TIME (hr) 1 Clean'') Cylinder 2: 5UIS 304
Boshibe Figure 5 TIME (Haru)
Claims (1)
徴とする高純度ガス維持容器。A high-purity gas maintenance container characterized by having the gas contacting surface of the pressure-resistant metal container subjected to electrolytic composite polishing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61158716A JPH0743078B2 (en) | 1986-07-08 | 1986-07-08 | High-purity gas maintenance container |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61158716A JPH0743078B2 (en) | 1986-07-08 | 1986-07-08 | High-purity gas maintenance container |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6319499A true JPS6319499A (en) | 1988-01-27 |
JPH0743078B2 JPH0743078B2 (en) | 1995-05-15 |
Family
ID=15677788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61158716A Expired - Fee Related JPH0743078B2 (en) | 1986-07-08 | 1986-07-08 | High-purity gas maintenance container |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0743078B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992015005A1 (en) * | 1991-02-18 | 1992-09-03 | Osaka Sanso Kogyo Kabushiki-Kaisha | Device for sampling gas |
EP0542927A1 (en) * | 1990-08-09 | 1993-05-26 | Extrude Hone Corporation | Orbital electrochemical machining |
JPH0926093A (en) * | 1995-07-12 | 1997-01-28 | Teisan Kk | Internal surface treatment method for high pressure gas container |
WO2005088185A1 (en) * | 2004-03-10 | 2005-09-22 | Zeon Corporation | Apparatus for producing gas, vessel for supplying gas and gas for use in manufacturing electronic device |
WO2008072046A1 (en) * | 2006-12-13 | 2008-06-19 | Toyota Jidosha Kabushiki Kaisha | Pressure container |
US8590705B2 (en) | 2010-06-11 | 2013-11-26 | Air Products And Chemicals, Inc. | Cylinder surface treated container for monochlorosilane |
JP2018138824A (en) * | 2018-04-25 | 2018-09-06 | 東横化学株式会社 | Storage container |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5413060A (en) * | 1977-06-30 | 1979-01-31 | Sato Kikuo | Liquid insulating vessel |
JPS5745375U (en) * | 1980-08-28 | 1982-03-12 |
-
1986
- 1986-07-08 JP JP61158716A patent/JPH0743078B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5413060A (en) * | 1977-06-30 | 1979-01-31 | Sato Kikuo | Liquid insulating vessel |
JPS5745375U (en) * | 1980-08-28 | 1982-03-12 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0542927A1 (en) * | 1990-08-09 | 1993-05-26 | Extrude Hone Corporation | Orbital electrochemical machining |
WO1992015005A1 (en) * | 1991-02-18 | 1992-09-03 | Osaka Sanso Kogyo Kabushiki-Kaisha | Device for sampling gas |
JPH0926093A (en) * | 1995-07-12 | 1997-01-28 | Teisan Kk | Internal surface treatment method for high pressure gas container |
WO2005088185A1 (en) * | 2004-03-10 | 2005-09-22 | Zeon Corporation | Apparatus for producing gas, vessel for supplying gas and gas for use in manufacturing electronic device |
WO2008072046A1 (en) * | 2006-12-13 | 2008-06-19 | Toyota Jidosha Kabushiki Kaisha | Pressure container |
US8087537B2 (en) | 2006-12-13 | 2012-01-03 | Toyota Jidosha Kabushiki Kaisha | Pressure container |
US8590705B2 (en) | 2010-06-11 | 2013-11-26 | Air Products And Chemicals, Inc. | Cylinder surface treated container for monochlorosilane |
JP2018138824A (en) * | 2018-04-25 | 2018-09-06 | 東横化学株式会社 | Storage container |
Also Published As
Publication number | Publication date |
---|---|
JPH0743078B2 (en) | 1995-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4475981A (en) | Metal polishing composition and process | |
JPS6319499A (en) | High purity gas maintaining vessel | |
CN110453186A (en) | A kind of rotation nichrome target and preparation method thereof | |
JP2002524312A (en) | Method of manufacturing sputter target with improved finish | |
CN108505022B (en) | Electroless nickel-plating method for diamond micropowder, nickel-plated diamond micropowder, its products and uses | |
CN110527943A (en) | The device and method that magnesium and magnesium alloy anticorrosion are handled with supercritical carbon dioxide | |
JPH09195031A (en) | Method for passivating in piping path of high purity gas | |
CN109706516B (en) | Polishing method and seal joint | |
CN109333004A (en) | A kind of the processing of sphere technique and seal ball-valve of ceramic seal ball-valve | |
JPH04289028A (en) | Method for treating carbon steel made cylinder | |
CN115007848B (en) | A kind of coating that slows down the crevice corrosion of aluminum-copper connecting body and its preparation method and application | |
US2731361A (en) | Catalyzed deposition of metals from the gaseous state | |
CN114525568A (en) | Cr-modified nano diamond wear-resistant coating | |
CN1817520A (en) | Antioxidative method for superfine chemical nickel powder | |
JPH10324368A (en) | High purity isopropyl alcohol storage container | |
CN117512735B (en) | Hard anodic oxidation method for aluminum alloy | |
CN102059593B (en) | Abrasive flow for finish machining of aluminum alloy wheel and manufacturing method thereof | |
CN116463622B (en) | Amorphous coating and preparation method thereof | |
CN111663164A (en) | Highlight process for high-brightness surface of rotating shaft of notebook computer | |
CN111534232A (en) | Grinding and polishing slurry and mirror panel preparation method | |
CN113278970B (en) | Preparation method of superhydrophobic tungsten trioxide coating on magnesium alloy surface | |
JPS63309325A (en) | Production of u-tube made of stainless steel | |
CN115679302B (en) | A cobalt plating solution, cobalt-coated carbonyl iron powder material and preparation method thereof | |
CN207793421U (en) | A kind of production equipment of silica membrane | |
JPH0349688B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |