[go: up one dir, main page]

JPS6319270A - Thermal head and manufacture thereof - Google Patents

Thermal head and manufacture thereof

Info

Publication number
JPS6319270A
JPS6319270A JP16402386A JP16402386A JPS6319270A JP S6319270 A JPS6319270 A JP S6319270A JP 16402386 A JP16402386 A JP 16402386A JP 16402386 A JP16402386 A JP 16402386A JP S6319270 A JPS6319270 A JP S6319270A
Authority
JP
Japan
Prior art keywords
layer
porous
substrate
insulating layer
thermal head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16402386A
Other languages
Japanese (ja)
Inventor
Akihiko Yoshida
昭彦 吉田
Atsushi Nishino
敦 西野
Nobuyuki Yoshiike
信幸 吉池
Yoshihiro Watanabe
善博 渡辺
Masahiro Hiraga
將浩 平賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16402386A priority Critical patent/JPS6319270A/en
Publication of JPS6319270A publication Critical patent/JPS6319270A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/335Structure of thermal heads

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To obtain a substrate provided with a heat-accumulating layer having a high heat-accumulating property and a smooth surface, by providing a porous insulator layer on a substrate formed of a metal, a ceramic or the like, heating a surface part of the insulator layer for a short time to render only the surface part non-porous and smooth, and providing an electrode layer, a heat generating resistor layer and a surface protective layer on the non-porous layer thus obtained. CONSTITUTION:A heat-accumulating layer comprises an insulating layer 2 provided on a substrate 1 formed of a metal, a ceramic or the like, and an electrode layer 3, a resistor layer 4 and a surface protective layer 5 which are provided on the insulating layer 2. The insulating layer 2 comprises a porous layer 2a near the substrate 1 and a non-porous dense layer 2b at a surface part of the layer 2. The insulating layer 2 is formed of a glass, a glass ceramic, a crystallized glass or the like. To provide the insulating layer, a substrate 17 provided with a porous insulating layer 16 prepared beforehand is placed on a substrate support 14, a vacuum is drawn in a vacuum chamber 10, and the temperature of a heater 13 is raised to a desired temperature through heating electrodes 11, 12. After energization, the substrate is horizontally moved at a fixed velocity by a support-driving mechanism 15 to sequentially heat uniformly the surface of the substrate 17.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はプリンタに用いるサーマルヘッドおよびその製
造方法に関するものであり、高熱効率で小型のサーマル
ヘッドに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a thermal head used in a printer and a method for manufacturing the same, and more particularly to a compact thermal head with high thermal efficiency.

従来の技術 サーマルヘッドは、絶縁性基板上に抵抗発熱要素を有す
るものであり、第5図a、bに示すように薄膜、厚膜の
二つの型のものが開発されている。
A conventional thermal head has a resistance heating element on an insulating substrate, and two types, thin film and thick film, have been developed as shown in FIGS. 5a and 5b.

第5図aは薄膜型のものであシ、アルミナ基板50上の
ガラスグレーズ層51とこの層上の5iTaなどの抵抗
体膜52、Cτ−Cuなどの電極膜53、S iO2よ
構成る酸化防止膜54、SiCなどより成る坩摩耗膜5
5から基本的に構成され、いずれもスパッタリング、蒸
着などの方式によって形成される。一方、厚膜型のもの
は、第5図すに示すものであり、アルミナ基板eOの表
面のガラスグレーズ層61、この層の上のAu電極層6
2RuO2・ガラスより成る発熱抵抗体層63、S z
 O2よ構成る表面保護層64から構成され、いずれも
ペースト材料の印刷焼成により形成される。この二つの
型のもの以外に厚膜、薄膜併用型のものも考案されてい
る。
FIG. 5a shows a thin film type, which consists of a glass glaze layer 51 on an alumina substrate 50, a resistor film 52 such as 5iTa on this layer, an electrode film 53 such as Cτ-Cu, and an oxidized film made of SiO2. Prevention film 54, crucible wear film 5 made of SiC, etc.
5, and all of them are formed by methods such as sputtering and vapor deposition. On the other hand, the thick film type is shown in FIG.
Heat generating resistor layer 63 made of 2RuO2/glass, S z
It is composed of a surface protective layer 64 made of O2, and both are formed by printing and firing a paste material. In addition to these two types, thick-film and thin-film combination types have also been devised.

ところでサーマルヘッドでは、電極を通じて発熱抵抗体
に通電しドツト当たり0.1〜1Wのエネルギーを印加
し、抵抗体を発熱させる。この発熱の応答および二手ル
ギー効率は高速および発熱効率大の必要があるが、この
ために、第5図a、bで述べたように熱良導性のアルミ
ナ基板50 、60と発熱抵抗体52.63との間に蓄
熱層としてガラスグレーズ層51.61を設け、できる
だけ発熱体の温度上昇速度を速かにする努力がされてい
る。第6図は一般の無アルカリガラスグレーズ層を用い
た時のこの層の厚さと立上り速度との関係を見たもので
あるが、この層の厚さが0〜100μmの間では厚い層
を用いたほどその蓄熱効果が顕著になっていくことがわ
かる。
By the way, in a thermal head, electricity is applied to a heating resistor through an electrode, and energy of 0.1 to 1 W is applied per dot, thereby causing the resistor to generate heat. This heat generation response and two-handed energy efficiency require high speed and high heat generation efficiency, but for this purpose, as described in FIGS. Efforts have been made to provide a glass glaze layer 51, 61 as a heat storage layer between the heating element and the heating element 51, 63 to increase the rate of temperature rise of the heating element as much as possible. Figure 6 shows the relationship between the thickness of a general alkali-free glass glaze layer and the rising speed.If the thickness of this layer is between 0 and 100 μm, a thick layer should be used. It can be seen that the heat storage effect becomes more pronounced as the temperature increases.

このようにガラスグレーズ層は、その熱伝導率が小さな
ことが要求される。一方で、このグレーズ層の表面に形
成される発熱体は4本〜16本/鳩の分解能が必要であ
り、グレーズ層の表面の平滑性も要求される。結晶化ガ
ラスは熱伝導率が低いが、その結晶化の度合が進行しす
ぎると表面平滑性が失なわれていく。現在までK、サー
マルヘッドとして使用可能な表面平滑性Ra (0,2
μmを有するグレーズ層では、その熱伝導率が0.7W
/mKが最小であり、これ以下の熱伝導性を有するグレ
ーズ層で表面平滑なものは得られていない。
Thus, the glass glaze layer is required to have low thermal conductivity. On the other hand, the heating elements formed on the surface of this glaze layer need to have a resolution of 4 to 16 pieces/piece, and the surface of the glaze layer is also required to be smooth. Crystallized glass has low thermal conductivity, but if the degree of crystallization progresses too much, the surface smoothness will be lost. Until now, K, surface smoothness Ra (0,2
For the glaze layer with μm, its thermal conductivity is 0.7W
/mK is the minimum, and no glaze layer with a smooth surface has been obtained having a thermal conductivity lower than this value.

サーマルヘッドは、年々高速化、高熱効率化の方向にあ
り、さらに高性能な蓄熱層をもった基板の開発が必要に
なっている。
Thermal heads are becoming faster and more efficient year by year, and there is a need to develop substrates with even higher performance heat storage layers.

発明が解決しようとする問題点 本発明は、上で述べたような状況に鑑み、さらに蓄熱性
が高くなおかつ表面が平滑な蓄熱層を有する基板を開発
しようとするものでおり、従来よりも高熱効率で、高速
印字に対応するサーマルヘッドを得ようとするものであ
る。
Problems to be Solved by the Invention In view of the above-mentioned circumstances, the present invention seeks to develop a substrate having a heat storage layer with a smooth surface and a higher heat storage ability, and which is capable of handling higher heat than before. The aim is to create a thermal head that is efficient and compatible with high-speed printing.

問題点を解決するだめの手段 本発明は、金属、セラミックなどの基体上の多孔質絶縁
体層と、この多孔質絶縁体層上のこの層と一体となり、
かつ、この層より多孔度の低い絶縁体層と、この絶縁体
層上の相対向する電極1発熱抵抗体2表面保護層とから
構成されるサーマルヘッドである。
Means for Solving the Problems The present invention provides a porous insulator layer on a substrate such as metal or ceramic, and this layer on the porous insulator layer is integrated with the porous insulator layer,
The thermal head is composed of an insulating layer having a lower porosity than this layer, and a surface protective layer of the electrode 1 and heating resistor 2 facing each other on the insulating layer.

さらに本発明は、金属、セラミックなどの基体上に多孔
質絶縁体層を形成し、この多孔質絶縁体層の表面部を輻
射エネルギーを用いて、この層の軟化点もしくは融点近
くまで短時間加熱し、表面部のみを非多孔質化、平滑化
し、つづいてこの非多孔質層上に、厚膜印刷焼成法もし
くは蒸着、スパッタリング法などにより、電極層2発熱
抵抗層。
Furthermore, the present invention involves forming a porous insulating layer on a substrate such as metal or ceramic, and heating the surface of the porous insulating layer using radiant energy for a short period of time to a point close to the softening point or melting point of this layer. Then, only the surface portion is made non-porous and smooth, and then the electrode layer 2 heat-generating resistive layer is formed on this non-porous layer by a thick film printing method, vapor deposition, sputtering method, or the like.

表面保護層を形成することを特徴とするサーマルヘッド
の製造性である。
This is the manufacturability of a thermal head characterized by forming a surface protective layer.

作  用 本発明によれば、表面が平滑で緻密な非多孔質絶縁層と
、この層の下の多孔質絶縁層との二重層を金属、セラミ
ックなどの基体上に有する基板を用いているため、この
多孔質層中の空気層により絶縁体層の熱伝導性は著しく
低下し、発熱抵抗体からの熱の蓄熱性が大きくなる。ま
た、この絶縁層の表面部は、本発明の表面加熱法により
平滑にされRa (0,2txo  になるために、こ
の上に6〜16本/闘の解像度で発熱抵抗層、電極層を
形成することが可能になる。
According to the present invention, a substrate is used which has a double layer of a non-porous insulating layer with a smooth and dense surface and a porous insulating layer below this layer on a base material such as metal or ceramic. Due to the air layer in this porous layer, the thermal conductivity of the insulating layer is significantly reduced, and the heat storage capacity of the heat generating resistor is increased. In addition, the surface of this insulating layer is smoothed by the surface heating method of the present invention, and in order to achieve Ra (0.2txo), a heating resistor layer and an electrode layer are formed thereon at a resolution of 6 to 16 lines/layer. It becomes possible to do so.

このように本発明のサーマルヘッドに用いる基板は、表
面の平滑性が従来のガラスグレーズ層のそれに近く、こ
の層の多孔性に起因する低熱伝導性のために、この基板
上に微細なパターンを形成でき、しかも発熱効率の優れ
たサーマルヘッドを提供する。
As described above, the surface smoothness of the substrate used in the thermal head of the present invention is close to that of a conventional glass glaze layer, and due to the low thermal conductivity caused by the porosity of this layer, a fine pattern can be formed on this substrate. To provide a thermal head which can be formed and has excellent heat generation efficiency.

実施例 本発明のサーマルヘッドに用いる基板およびその製造法
についてその概要と具体的実施例とを図面に従って説明
する・ 第1図は本発明のサーマルヘッドの基本構成を示す図で
ある。金属、セラミックのような基体1の上の絶縁層2
と、この層の上の電極層3、抵抗層4、表面保護層5と
から構成される。このうち絶縁層2は基体1に近い方で
多孔性層2aであり、表面部は非多孔性で緻密な層2b
になっている。
EXAMPLES An overview and specific examples of the substrate used in the thermal head of the present invention and its manufacturing method will be explained with reference to the drawings. FIG. 1 is a diagram showing the basic configuration of the thermal head of the present invention. An insulating layer 2 on a substrate 1 such as metal or ceramic
and an electrode layer 3, a resistance layer 4, and a surface protection layer 5 on this layer. Among these, the insulating layer 2 is a porous layer 2a near the base 1, and the surface part is a non-porous dense layer 2b.
It has become.

この絶縁層2の材料は、ガラス、ガラスセラミック、結
晶化ガラスなどから成るが、この層を本発明のような二
つの層を有するように形成するために、基体上に多孔質
絶縁層をまず形成し、この絶縁層の表面部のみを、その
軟化点に近い温度で短時間加熱する。この加熱は輻射エ
ネルギーによる方法が最も有効である。第2図は、本発
明の基板の表面加熱溶融装置の一例である。すなわち、
真空室10内の加熱電極11.12とヒータ13、基板
架台14、および架台駆動機構15とから成る装置で、
基板架台14の上に予め調製した多孔質絶縁層16を有
する基板1了を設置する。真空室10を真空にした後、
加熱電極11.12を通じてヒータ13に通電し、ヒー
タ13の温度を所望の温度まで昇温する。この温度は、
ビューイングポート18を通してパイロメータ19を用
いて測定する。ここで用いるヒータ13は、黒鉛。
The material of this insulating layer 2 is glass, glass ceramic, crystallized glass, etc., but in order to form this layer to have two layers as in the present invention, a porous insulating layer is first formed on the substrate. Then, only the surface portion of this insulating layer is heated for a short time at a temperature close to its softening point. The most effective method for this heating is radiant energy. FIG. 2 is an example of the apparatus for heating and melting the surface of a substrate according to the present invention. That is,
A device consisting of heating electrodes 11 and 12 in a vacuum chamber 10, a heater 13, a substrate pedestal 14, and a pedestal drive mechanism 15,
A substrate 1 having a previously prepared porous insulating layer 16 is placed on the substrate pedestal 14. After evacuating the vacuum chamber 10,
Electricity is applied to the heater 13 through the heating electrodes 11 and 12 to raise the temperature of the heater 13 to a desired temperature. This temperature is
Measurements are made using a pyrometer 19 through the viewing port 18. The heater 13 used here is made of graphite.

SiC,Ta、W、’Moなどを棒状、板状にしたもの
で、基板17とは0.1〜10mmの距離に保たれる。
It is made of SiC, Ta, W, 'Mo, etc. into a rod or plate shape, and is kept at a distance of 0.1 to 10 mm from the substrate 17.

通電後、架台駆動機構16により基板を水平に定速で移
動し、基板17の表面を順次均一に加熱していく。具体
的には直径1態の黒鉛ヒータ2oの下部を基板を1態/
渡の速度で移動させる。第2図で21は真空排気系へ至
ることを示す矢印である・また基板とヒータとの相対的
な熱容量の関係から、基板架台14に予備加熱機構25
を設け、ヒータ13の輻射エネルギーを有効に利用する
ことも効果的である。
After energization, the substrate is moved horizontally at a constant speed by the gantry drive mechanism 16, and the surface of the substrate 17 is sequentially and uniformly heated. Specifically, the lower part of the graphite heater 2o with a diameter of 1 state is connected to the substrate in 1 state/
Move at the speed of crossing. In FIG. 2, numeral 21 indicates an arrow leading to the vacuum evacuation system. Also, due to the relative heat capacity relationship between the substrate and the heater, the preheating mechanism 25 is attached to the substrate mount 14.
It is also effective to provide a heater 13 and effectively utilize the radiant energy of the heater 13.

ガラスなどの絶縁層は、その軟化温度、溶融温度まで加
熱すると、軟化、溶融して多孔質なものは緻密に、表面
は平滑になる。本発明で用いる多孔質絶縁層を通常の溶
融炉の中に基板ご設置して軟化、溶融しようとすると絶
縁層の表面は平滑になるが、絶縁層の深さ方向全体が緻
密になってしまい、多孔質蓄熱層が残らず、本発明の構
成の基板が得られない。また基体にステンレス鋼板、ア
ルミナセラミック板などを用いるため、表面絶縁層の軟
化点、溶融温度までこれらの基体を昇温すると 基体自
身が変態、破壊してしまうことがあシ、基板としての実
使用が困難になる。
When an insulating layer such as glass is heated to its softening temperature or melting temperature, it softens and melts, and the porous layer becomes dense and the surface becomes smooth. If you try to soften and melt the porous insulating layer used in the present invention by placing the substrate in a normal melting furnace, the surface of the insulating layer will become smooth, but the entire depth of the insulating layer will become dense. In this case, no porous heat storage layer remains and the substrate having the structure of the present invention cannot be obtained. In addition, since stainless steel plates, alumina ceramic plates, etc. are used for the substrate, if these substrates are heated to the softening point or melting temperature of the surface insulating layer, the substrate itself may be transformed and destroyed, making it difficult to actually use it as a substrate. becomes difficult.

第3図は本発明の基板の絶縁層(第1図の(2))およ
びその製造過程を模式的に拡大して示したものである。
FIG. 3 is a schematic enlarged view of the insulating layer ((2) in FIG. 1) of the substrate of the present invention and the manufacturing process thereof.

すなわち、MqCo3などの発泡剤の作用で得られた多
孔質絶縁層3oはその表面31の表面粗度が大きく層内
に気泡が多く存在する。これを第2図の装置を用いると
、その表面部のみが緻密平滑になり表面層311と多孔
層312とに分かれた多孔質絶縁層301になる。表面
層3111はRa(0,2μmで平滑であるため、16
本/鶏の配線が可能になり、なおかつこの下の多孔層3
12の気泡313の作用により多孔層312の熱伝導性
が著しく低下するため、サーマルヘッドとしての高速印
字、高エネルギー効率が達成される。
That is, the porous insulating layer 3o obtained by the action of a foaming agent such as MqCo3 has a large surface roughness on its surface 31, and many air bubbles are present in the layer. When the apparatus shown in FIG. 2 is used, only the surface portion becomes dense and smooth, resulting in a porous insulating layer 301 divided into a surface layer 311 and a porous layer 312. The surface layer 3111 is smooth with Ra (0.2 μm, so 16
The wiring of this / chicken is now possible, and the porous layer 3 below this
Since the thermal conductivity of the porous layer 312 is significantly reduced by the action of the 12 air bubbles 313, high-speed printing and high energy efficiency as a thermal head are achieved.

次に本発明の具体的な実施例について述べる。Next, specific examples of the present invention will be described.

〔実施例1〕 SiO2,B2o32MqOの組成のガラスフリットと
MqCO3とを粉砕混合し、粒度10μm〜30μmに
分級する。これをイソプロピルアルコール中ニ分散5し
、微量の水分を添加する。得られたスラリーを用いて電
着法により上記フリットとMqCO3との電着層をステ
ンレス板上に形成する。900℃で焼成することにより
ステンレス板上に多孔質ホーロ層を形成する(厚さ1.
5μm、多孔度50%)。
[Example 1] A glass frit having a composition of SiO2, B2o32MqO and MqCO3 are pulverized and mixed, and then classified into particle sizes of 10 μm to 30 μm. This was dispersed in isopropyl alcohol and a trace amount of water was added. Using the obtained slurry, an electrodeposition layer of the frit and MqCO3 is formed on a stainless steel plate by an electrodeposition method. A porous hollow layer is formed on the stainless steel plate by firing at 900°C (thickness 1.
5 μm, porosity 50%).

つづいて第2図に示す装置を用いてこのホーロ層面を加
熱する。ヒータには黒鉛棒を用い、ノくイロメータによ
91400℃に昇温し、ヒーターホーロ面の距離は1.
0柵としだ。基板の移動速度は1w/SeCであり、室
内の真空度は1O−6Torrで行った。
Subsequently, the surface of this hollow layer is heated using the apparatus shown in FIG. A graphite rod was used as the heater, and the temperature was raised to 91,400°C using a thermometer, and the distance between the heater hollow surface was 1.
0 fence. The moving speed of the substrate was 1 w/SeC, and the degree of vacuum in the room was 1 O-6 Torr.

このようにして得られた基板上に厚膜印刷法により金電
極層40 、 RuO2・ガラス抵抗層41゜ガラス表
面保護層42を形成しサーマルヘッド(12本/−)と
した(第4図)。43はステンレス鋼板、44は多孔質
ホーロ層、45はこの層の表面の平滑ホーロ層である。
On the substrate thus obtained, a gold electrode layer 40, a RuO2/glass resistance layer 41°, and a glass surface protective layer 42 were formed by thick film printing to form a thermal head (12/-) (Fig. 4). . 43 is a stainless steel plate, 44 is a porous hollow layer, and 45 is a smooth hollow layer on the surface of this layer.

〔実施例2〕 厚さ0.5■のアルミナセラミック板の表面に実施例−
1の組成のガラスフリットを印刷し、900℃で焼成す
る。実施例−1と同じ方法でガラス層の表面を加熱し、
さらに実施例−1と同じく電極。
[Example 2] Example-
A glass frit having the composition No. 1 is printed and fired at 900°C. Heating the surface of the glass layer in the same manner as in Example-1,
Furthermore, the same electrode as in Example-1.

抵抗、保護層を形成する0 記、世較例1〕 実施例−1で多孔質ガラス層を得た後、表面加熱工程を
経ないで直接、電極層などの形成を行った0 〔比較例2〕 従来の表面粗さ0.1のホーロ基板を用いたサーマルヘ
ッド。
[Comparative Example 1] After obtaining the porous glass layer in Example-1, electrode layers and the like were directly formed without going through the surface heating process. 2] A thermal head using a conventional hollow substrate with a surface roughness of 0.1.

〔比較例3〕 従来の表面粗さ0.05のグレーズアルミナセラミック
基板を用いたサーマルヘッド。
[Comparative Example 3] A thermal head using a conventional glazed alumina ceramic substrate with a surface roughness of 0.05.

以上のサーマルヘッド、基板の特性比較を表に示すO 発明の効果 以上のように、本発明サーマルヘッドは、表面が平滑で
なおかつ内部に多孔質層を有する一体二重層構造の基板
を用いているため、高解像度で蓄熱性の優れたものにな
り、高速印字、高熱効率の要求に応え得る高性能となる
A comparison of the characteristics of the thermal head and the substrate described above is shown in the table below. Effects of the Invention As described above, the thermal head of the present invention uses a substrate with an integrated double layer structure that has a smooth surface and a porous layer inside. Therefore, it has high resolution and excellent heat storage properties, and has high performance that can meet the demands for high speed printing and high thermal efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のサーマルヘッドの断面構成
図、第2図は同サーマルヘッドに用いる基板の製造装置
の構成図、第3図は同サーマルヘッドに用いる基板の絶
縁層の内容を示す拡大模式図、第4図は本発明の他の実
施例のサーマルヘッドの断面構成図、第5図は従来例の
サーマルヘッドの断面構成図、第6図は同サーマルヘッ
ドのガラスグレーズ層の厚さと抵抗体温度立上り性能と
の関係を示す図である。 1・・・・・・基体、2・・・・・・絶縁層、2a・・
・・・・多孔性層、2b・・・・・・非多孔性層、3・
・・・・・電極層、4・・・・・・抵抗層、6・・・・
・・表面保護層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図 第2図 第 3 図 、71/ 第 5 図 第6図 時間(msec)
Fig. 1 is a cross-sectional configuration diagram of a thermal head according to an embodiment of the present invention, Fig. 2 is a configuration diagram of a manufacturing apparatus for a substrate used in the thermal head, and Fig. 3 is a content of an insulating layer of a substrate used in the thermal head. FIG. 4 is a cross-sectional configuration diagram of a thermal head according to another embodiment of the present invention, FIG. 5 is a cross-sectional configuration diagram of a conventional thermal head, and FIG. 6 is a glass glaze layer of the same thermal head. FIG. 3 is a diagram showing the relationship between the thickness of the resistor and the resistance temperature rise performance. 1...Base body, 2...Insulating layer, 2a...
...Porous layer, 2b...Non-porous layer, 3.
...Electrode layer, 4...Resistance layer, 6...
...Surface protective layer. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure 2 Figure 3, 71/ Figure 5 Figure 6 Time (msec)

Claims (6)

【特許請求の範囲】[Claims] (1)金属、セラミックなどの基体上の多孔質絶縁体層
と、前記多孔質絶縁体層より多孔度の低い材料からなり
前記多孔質絶縁体層上に形成された第2の絶縁体層と、
この第2の絶縁層上に形成された相対向する電極および
発熱抵抗体と前記形成層の表面を被う表面保護層とから
構成されるサーマルヘッド。
(1) A porous insulator layer on a substrate such as metal or ceramic, and a second insulator layer formed on the porous insulator layer and made of a material with lower porosity than the porous insulator layer. ,
A thermal head comprising opposing electrodes and a heating resistor formed on the second insulating layer, and a surface protective layer covering the surface of the forming layer.
(2)多孔質絶縁層および多孔度の低い絶縁層が、少な
くともB、Si、P、Pbのいずれかひとつ以上および
アルカリ土類金属元素をその組成とするガラス、結晶化
ガラス、ガラスセラミックなどより成るものであること
を特徴とする特許請求の範囲第1項記載のサーマルヘッ
ド。
(2) The porous insulating layer and the insulating layer with low porosity are made of glass, crystallized glass, glass ceramic, etc. whose composition is at least one of B, Si, P, and Pb and an alkaline earth metal element. A thermal head according to claim 1, characterized in that the thermal head comprises:
(3)多孔度の低い絶縁層の表面粗度Raが0.2μm
以下であることを特徴とする特許請求の範囲第1項記載
のサーマルヘッド。
(3) The surface roughness Ra of the insulating layer with low porosity is 0.2 μm
The thermal head according to claim 1, characterized in that:
(4)金属、セラミックなどの基体上に多孔質絶縁層を
形成し、この多孔質絶縁層の表面部を輻射エネルギーを
用いてこの層の軟化点もしくは融点近くまで短時間加熱
し表面部のみをより非多孔質化平滑化し、つづいてこの
非多孔質層上に、厚膜印刷焼成法もしく蒸着・スパッタ
リング法などにより、電極層、発熱抵抗層、表面保護層
を形成することを特徴とするサーマルヘッドの製造法。
(4) A porous insulating layer is formed on a substrate such as metal or ceramic, and the surface of this porous insulating layer is heated for a short time using radiant energy to the softening point or close to the melting point of this layer. The non-porous layer is smoothed to make it more non-porous, and then an electrode layer, a heating resistor layer, and a surface protective layer are formed on the non-porous layer by a thick film printing method or a vapor deposition/sputtering method. Thermal head manufacturing method.
(5)多孔質絶縁層を、ガラスフリットと金属の炭酸塩
、有機発泡材料、フライマッシュ、などとを混合したも
のを基体上に担持し焼成して形成することを特徴とする
特許請求の範囲第4項記載のサーマルヘッドの製造法。
(5) Claims characterized in that the porous insulating layer is formed by supporting a mixture of glass frit, metal carbonate, organic foam material, fly mash, etc. on a substrate and firing it. 4. The method for manufacturing a thermal head according to item 4.
(6)輻射エネルギーによる加熱を、真空中、不活性ガ
ス中、大気中のいずれかで、炭素、SiC、SiMo、
Taのいずれかのヒータを加熱し、かつ多孔質層上を走
査加熱することを特徴とする特許請求の範囲第4項記載
のサーマルヘッドの製造法。
(6) Heating by radiant energy in vacuum, inert gas, or air, carbon, SiC, SiMo,
5. The method of manufacturing a thermal head according to claim 4, wherein the porous layer is heated by heating one of the heaters made of Ta, and the porous layer is scanned and heated.
JP16402386A 1986-07-11 1986-07-11 Thermal head and manufacture thereof Pending JPS6319270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16402386A JPS6319270A (en) 1986-07-11 1986-07-11 Thermal head and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16402386A JPS6319270A (en) 1986-07-11 1986-07-11 Thermal head and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6319270A true JPS6319270A (en) 1988-01-27

Family

ID=15785323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16402386A Pending JPS6319270A (en) 1986-07-11 1986-07-11 Thermal head and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6319270A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272783A (en) * 1988-04-25 1989-10-31 Fujikura Ltd Enameled base plate and production thereof
JPH03128256A (en) * 1989-10-14 1991-05-31 Rohm Co Ltd Thermal printing head and its manufacture
JPH0483812U (en) * 1990-11-29 1992-07-21
US7390078B2 (en) 2005-06-30 2008-06-24 Lexmark International, Inc. Reduction of heat loss in micro-fluid ejection devices
US20090102891A1 (en) * 2007-10-23 2009-04-23 Keitaro Koroishi Heating resistor element, manufacturing method for the same, thermal head, and printer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272783A (en) * 1988-04-25 1989-10-31 Fujikura Ltd Enameled base plate and production thereof
JPH03128256A (en) * 1989-10-14 1991-05-31 Rohm Co Ltd Thermal printing head and its manufacture
JPH0483812U (en) * 1990-11-29 1992-07-21
US7390078B2 (en) 2005-06-30 2008-06-24 Lexmark International, Inc. Reduction of heat loss in micro-fluid ejection devices
US20090102891A1 (en) * 2007-10-23 2009-04-23 Keitaro Koroishi Heating resistor element, manufacturing method for the same, thermal head, and printer
US8144175B2 (en) * 2007-10-23 2012-03-27 Seiko Instruments Inc. Heating resistor element, manufacturing method for the same, thermal head, and printer
US8850691B2 (en) 2007-10-23 2014-10-07 Seiko Instruments Inc. Manufacturing method for a heating resistor element

Similar Documents

Publication Publication Date Title
EP1463380A1 (en) Ceramic heater
WO2006006391A1 (en) Wafer heating equipment and semiconductor manufacturing equipment
JPH107435A (en) Glass ceramic wiring substrate and its production
JPS6319270A (en) Thermal head and manufacture thereof
CN208440276U (en) A kind of ceramic base micro-hotplate
CN110085346B (en) Heating resistor slurry adaptive to silicon nitride substrate and preparation method and application thereof
KR970705823A (en) THERMAL HEAD AND ITS MANUFACTURE
JP3669056B2 (en) Manufacturing method of ceramic multilayer wiring board
JPS6042069A (en) Thermal print head
JP4359927B2 (en) Wafer heating apparatus and manufacturing method thereof
JPH06295779A (en) Ceramic heater
JP3074625B2 (en) Thermal print head and method of manufacturing the same
JP3152696B2 (en) Glaze substrate and method of manufacturing the same
JPS55114579A (en) Thin-film type thermal recording head
JPH02129883A (en) heating body
JP2883738B2 (en) Method of manufacturing sensor for detecting temperature and / or flow
JP3305764B2 (en) Method for manufacturing substrate for thermal head
JP2002110321A5 (en)
JP2664714B2 (en) Heater panel
JPS5955042A (en) Method and apparatus for heat transfer through liquid phase
JPS60141569A (en) Thermal head
JP2002075598A5 (en)
CN117518759A (en) Technological method for improving fixing effect of ceramic heating strip
JPH04209588A (en) Metallic substrate
JPH06287088A (en) Glazed ceramic base plate and its production