JPS63187159A - Current detector - Google Patents
Current detectorInfo
- Publication number
- JPS63187159A JPS63187159A JP62019535A JP1953587A JPS63187159A JP S63187159 A JPS63187159 A JP S63187159A JP 62019535 A JP62019535 A JP 62019535A JP 1953587 A JP1953587 A JP 1953587A JP S63187159 A JPS63187159 A JP S63187159A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- substrate
- yoke
- magnetoresistive element
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 20
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 239000010409 thin film Substances 0.000 claims description 27
- 230000005291 magnetic effect Effects 0.000 abstract description 36
- 230000004907 flux Effects 0.000 abstract description 4
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 abstract description 2
- 238000001514 detection method Methods 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract description 2
- 239000012528 membrane Substances 0.000 abstract 4
- 238000000034 method Methods 0.000 abstract 3
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 229920006395 saturated elastomer Polymers 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 14
- 239000010408 film Substances 0.000 description 13
- 230000001681 protective effect Effects 0.000 description 6
- 238000004804 winding Methods 0.000 description 5
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、インバータ駆動回路、プリンタ印字ヘッド駆
動回路、ファクシミリの′社話線ライン入力回路等にお
ける1回路に流れる電流の大きさ及びその極性を判別す
る電流検出器に関する。[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to the magnitude and polarity of the current flowing through one circuit in an inverter drive circuit, a printer print head drive circuit, a facsimile telephone line input circuit, etc. This invention relates to a current detector that determines.
〈従来の技術〉
一部を引出して示した第7図に従来の電流検出器の1例
を示す。円周形状をなす磁気回路の一部に空隙71金も
うけた強磁性体コア7に検出すべき電流を通すコイル巻
線9が施こされ、長さ稲の空隙71の近傍にその基板面
をX、Z方向に合わせてMRセンサともいう強磁性体薄
膜の磁気抵抗素子旦が固定されている。<Prior Art> An example of a conventional current detector is shown in FIG. 7, which is partially shown. A coil winding 9 for passing the current to be detected is applied to a ferromagnetic core 7 with an air gap 71 formed in a part of the circumferential magnetic circuit, and the substrate surface is placed near the air gap 71 with a length of , a magnetoresistive element made of a ferromagnetic thin film, also called an MR sensor, is fixed in the Z direction.
第8図(atはX、2面に平行に磁気抵抗素子旦のノソ
ターン図であり、抵抗値R′1R5RζRSの4個の磁
気抵抗素子ストライフ’81.82,83.84で構成
され、これらのうち81と82は互に平行で接近してお
り(間隔約50μ程度)、一方83゜84は81と82
とそれぞれ互に直角方向に向いている。そしてこの磁気
抵抗素子ストライf81と82にその長さ方向と直角方
向の磁場を感知させ一方同スドライブ83と84には磁
場を感知させないで使用する。従って磁気抵抗素子旦と
しての等何回路は第8図(blに示すようになっている
。FIG. 8 (at is the noso-turn diagram of the magnetoresistive element parallel to the two planes, which is composed of four magnetoresistive element strife '81.82, 83.84 with resistance value R'1R5RζRS, Of these, 81 and 82 are parallel to each other and close to each other (about 50μ apart), while 83°84 is parallel to 81 and 82.
and are oriented at right angles to each other. The magnetoresistive element stripes f81 and f82 are used to sense a magnetic field in a direction perpendicular to their length, while the stripes f83 and 84 are used without sensing a magnetic field. Therefore, the equivalent circuit as a magnetoresistive element is as shown in FIG. 8 (bl).
空隙710両エツジの側面の間にこのエツジに沿って磁
気抵抗素子エレメントR1・R2がお互にほぼ平行とな
るように磁気抵抗素子巻の位置が調整されている。従っ
て空隙71からのもれ磁束のうち、X、Z面内方向でZ
方向の磁場が磁気抵抗素子エレメント81.82に作用
し、出力電圧vou tを生じさせる。一方磁気抵抗素
予巻の基板10の裏面にはバイアス磁石101がはりつ
けられており。The position of the magnetoresistive element winding is adjusted so that the magnetoresistive element elements R1 and R2 are substantially parallel to each other along this edge between the side surfaces of both edges of the air gap 710. Therefore, out of the leakage magnetic flux from the air gap 71, Z
A magnetic field in the direction acts on the magnetoresistive element 81.82, producing an output voltage vout. On the other hand, a bias magnet 101 is attached to the back surface of the substrate 10 of the magnetoresistive pre-wound.
磁気抵抗素子エレメント81.82に第8図(alに示
すようにバイアス磁界H6が加えられている。A bias magnetic field H6 is applied to the magnetoresistive element elements 81 and 82 as shown in FIG. 8 (al).
第9図は磁気抵抗素予巻単独での2方向平行磁界に対す
る出力電圧V。ut対印加磁界特性である。FIG. 9 shows the output voltage V for a two-direction parallel magnetic field using only a magnetoresistive pre-winding. ut vs. applied magnetic field characteristics.
バイアス磁界H′Bにより出力カーブは印加磁界の正と
負に対し非対称となり1%性カーブ中A点、B点、C点
間を正、負電流の大きさ及び極性反転に利用する。Due to the bias magnetic field H'B, the output curve becomes asymmetrical with respect to the positive and negative applied magnetic fields, and the points between points A, B, and C in the 1% curve are used to change the magnitude and polarity of the positive and negative currents.
第10図は第7図の従来例でのコイル9に加えられるア
ン被アターンに対する磁気抵抗素子巻の出力電圧V。u
tの特性例を示すものである。ここでi方向(7) 7
7ベアタ一ン時の最大のもれ磁束強度はバイアス磁界H
′B以下で飽和するように磁気回路が調整されている。FIG. 10 shows the output voltage V of the magnetoresistive element winding with respect to the unturned applied to the coil 9 in the conventional example of FIG. 7. u
This shows an example of the characteristics of t. Here, i direction (7) 7
7 The maximum leakage magnetic flux strength at one time is the bias magnetic field H
The magnetic circuit is adjusted so that it saturates below 'B.
第10図の特性より、正、負両方向の電流絶対値及び極
性を判別できる。From the characteristics shown in FIG. 10, the absolute value and polarity of the current in both positive and negative directions can be determined.
〈発明が解決しようとする問題点〉
ここで通常強磁性体コア7の空隙71の空隙長は100
〜200μであり一方磁気抵抗素子冬の磁気抵抗素子エ
レメントの81.82間の間隔は50μ程度であり、従
って空隙71エツジ内へ磁気抵抗素子ニレメン)81
、82をおさめるためには10μ程度の組立精度を必要
とし1組立工数及び調整工数が高価で、しかも特性のバ
ラツキが大きいという欠点を有する。又、@性体コア7
とコイル9を組立てた大きさが通常の磁気抵抗素子巻よ
りも大型化するために(通常10mm角程度0大きさと
なる)電流検出器全体として小型化する事が困難となっ
ていた。<Problem to be solved by the invention> Here, the gap length of the gap 71 of the ferromagnetic core 7 is usually 100
~200μ, while the spacing between the magnetoresistive elements (81.82) is around 50μ, so that the magnetoresistive element (Ni element) into the air gap 71 edge is 81
, 82 requires an assembly precision of about 10μ, the assembly man-hours and adjustment man-hours are expensive, and the characteristics have a large variation. Also, @ sex body core 7
Since the assembled size of the coil 9 and the coil 9 is larger than that of a normal magnetoresistive element winding (usually about 10 mm square), it has been difficult to miniaturize the current detector as a whole.
したがって本発明の目的は、従来に比べ組立。Therefore, it is an object of the present invention to improve assembly compared to the prior art.
調整工数が少なく、コストが安く、シかも特性のバラツ
キが少なく、又小型化された電流検出器を提供しようと
するものである。It is an object of the present invention to provide a current detector that requires fewer adjustment steps, is inexpensive, has less variation in characteristics, and is miniaturized.
〈問題点を解決するための手段〉
本発明によれば、基板の一方の面上に、一部分に空隙が
設けられ主部分に検出すべき電流を通すための多層配線
された薄膜コイルを施した強磁性体薄膜ヨークと、可変
抵抗として動作する対の磁気抵抗素子エレメントを前記
空隙内に配置した強磁性体の磁気抵抗素子・ぐターンと
を設け、該基板の他方の面上の前記対の磁気抵抗素子エ
レメントに対する位置にバイアス永久磁石を設けて成る
電流検出器が得られる。<Means for Solving the Problems> According to the present invention, a thin film coil with a gap formed in a part and a multilayer wiring for passing the current to be detected is provided on one surface of the substrate. A ferromagnetic thin film yoke and a ferromagnetic magnetoresistive element magnet in which a pair of magnetoresistive element elements operating as a variable resistance are disposed in the air gap are provided, and the pair of magnetoresistive elements on the other surface of the substrate are provided. A current detector is obtained comprising a biasing permanent magnet in position relative to the magnetoresistive element.
〈実施例〉
第1図は本発明の一実施例を示す図、第2図は第1図に
おけるA A’での断面図、第3図は第1図におけるB
B’での断面図、第4図は等価回路図である。<Example> Fig. 1 is a diagram showing an embodiment of the present invention, Fig. 2 is a sectional view taken at A A' in Fig. 1, and Fig. 3 is a sectional view taken at B in Fig. 1.
The cross-sectional view at B' and FIG. 4 are equivalent circuit diagrams.
基板4(ガラス基板、あるいはアルミナ基板)の上に蒸
着あるいはス・ぞフタ−等の手段により強磁性体磁気抵
抗素子・母ターンl 、 Fe−Ni合金の強磁性体薄
膜ヨーク2.及び薄膜コイル1が形成され2表面全体が
絶縁保護膜6 (SiO2膜等の無機質の膜、あるいは
ポリイミド等の有機質の膜等)で覆われている。A ferromagnetic magnetoresistive element/mother turn 1 and a ferromagnetic thin film yoke of Fe--Ni alloy are formed on the substrate 4 (glass substrate or alumina substrate) by means of vapor deposition or sintering. A thin film coil 1 is formed, and the entire surface of the coil 2 is covered with an insulating protective film 6 (an inorganic film such as a SiO2 film, or an organic film such as a polyimide film, etc.).
強磁性体薄膜ヨーク2の磁気回路の一部分には空隙21
(空隙長tg)がもうけられ、空隙21内には強磁性磁
気抵抗素子パターン↓の磁気抵抗素子エレメント11及
び12(抵抗はR1及びR2)が配置されている。Fe
−Ni合金の磁気抵抗素子エレメント11,12.13
.14は互にブリッジ接続されており、その等価回路は
第4図に示すとおりであり、ブリッジ辺のうち互に対抗
している磁気抵抗素子エレメント11と12が互に接近
して空隙21内にあり9強磁性体薄膜ヨーク2からの空
隙向磁場H及びあとに詳しく説明するバイアス永久磁石
5からのバイアス磁場HBを検知しく但しHは図には記
入してない)、一方他の対抗した磁気抵抗素子エレメン
ト13.14は空隙21の外部にあり、第1図の例では
11.12とほぼ直角方向に配置されており2強磁性体
薄膜ヨーク2の空隙内の磁場及びもれ磁場を検知しない
。なお。A gap 21 is provided in a part of the magnetic circuit of the ferromagnetic thin film yoke 2.
(gap length tg), and magnetoresistive element elements 11 and 12 (resistances are R1 and R2) of the ferromagnetic magnetoresistive element pattern ↓ are arranged in the air gap 21. Fe
-Ni alloy magnetoresistive element elements 11, 12.13
.. 14 are bridge-connected to each other, and the equivalent circuit thereof is as shown in FIG. (However, H is not shown in the figure), while the other opposing magnetic field is detected. Resistance element elements 13 and 14 are located outside the air gap 21, and in the example shown in FIG. do not. In addition.
エレメント13.14は磁場を検知しない位置であれは
必ずしも直方方向にこだわらない。The elements 13 and 14 do not necessarily have to be in the rectangular direction as long as they are located at positions where no magnetic field is detected.
第2図の断面図(第1図のAA’方向)のように。As shown in the cross-sectional view in FIG. 2 (direction AA' in FIG. 1).
基板4の裏面の空隙21近傍にはバイアス永久磁石5が
接着剤等を用いてはりつけられていて、磁気抵抗素子ニ
レメン1−11.12の長さ方向と直角方向にバイアス
磁場HBが常に印加されている。なおこの場合も強磁性
体ヨーク2からの磁場を示すHは省略しである。磁気抵
抗素子エレメント11゜12.13.14の膜厚は通常
500X前後に選ばれ、又強磁性体ヨーク2の厚みは、
磁気抵抗素子エレメントの膜厚の2倍以上(1000λ
以上)とする。磁気抵抗素子エレメント、11.12の
幅は10〜20μ程度で長さは1間前後であり1両エレ
メントの間隔は通常40〜50μに選ばれる。A bias permanent magnet 5 is attached to the back surface of the substrate 4 in the vicinity of the gap 21 using an adhesive or the like, and a bias magnetic field HB is always applied in a direction perpendicular to the length direction of the magnetoresistive element Niremen 1-11.12. ing. Note that in this case as well, H indicating the magnetic field from the ferromagnetic yoke 2 is omitted. The film thickness of the magnetoresistive element 11゜12.13.14 is usually selected to be around 500X, and the thickness of the ferromagnetic yoke 2 is
At least twice the film thickness of the magnetoresistive element (1000λ
above). The width of the magnetoresistive element 11.12 is about 10 to 20 microns, the length is about 1 inch, and the spacing between each element is usually selected to be 40 to 50 microns.
空隙21の空隙長tgは、磁気抵抗素子↓の・Pターン
配線をさまたげない範囲にてなるべく小さい値に設定さ
れ1通常100μ前後が適当である。The gap length tg of the gap 21 is set to a value as small as possible without interfering with the P-turn wiring of the magnetoresistive element ↓, and is usually approximately 100 μm.
薄膜コイル3の断面を示す第3図において、第1層目の
薄膜コイルノ’?ターン31の上にS + 02等の絶
縁保護膜61が形成され、その上に強磁性体薄膜ヨーク
2が形成され、ついで第2の絶縁保護膜62及び第2層
目の薄膜コイル・ξターン32が形成されている。ここ
で絶縁保護膜61及び62はその幅がほぼ強磁性体薄膜
ヨーク2の幅より若干大トナっており、従りて薄膜コイ
ル・ぐターン31゜32のヨーク2外側の端部分には絶
縁保護膜はかかっておらず、第2層目の薄膜コイルノや
ターン32は斜め方向となっており1強磁性体薄膜ヨー
ク2の外側にて第1層、第2層の薄膜コイルパターン3
1.32は電気的に接続されており1巻数ターン(m常
10〜20ターン)のコイルが形成すれる。In FIG. 3, which shows the cross section of the thin film coil 3, the first layer thin film coil No'? An insulating protective film 61 such as S+02 is formed on the turn 31, a ferromagnetic thin film yoke 2 is formed on it, and then a second insulating protective film 62 and a second layer of thin film coil/ξ turn are formed. 32 is formed. Here, the width of the insulating protective films 61 and 62 is slightly larger than the width of the ferromagnetic thin film yoke 2, and therefore, the outer end portions of the yoke 2 of the thin film coil grooves 31 and 32 are insulated. There is no protective film, and the thin film coil patterns 32 of the second layer are diagonal.
1.32 are electrically connected to form a coil with several turns per turn (usually 10 to 20 turns).
以上のような構成になっているので、端子5゜6に検出
電流工を通ずる事により1強磁性体薄膜ヨーク2に対し
て起磁力が発生し、空隙21内には薄膜コイルlのアン
ペアターンに比例した@場が発生しヨーク材質(Fe−
Nj )が飽和磁束に達するまでほぼ直線的に増加する
。With the above configuration, a magnetomotive force is generated against the ferromagnetic thin film yoke 2 by passing the detection current wire through the terminal 5. A @ field proportional to is generated and the yoke material (Fe-
Nj) increases almost linearly until it reaches the saturation magnetic flux.
第5図は空隙21内の発生磁場対薄膜コイル1のアンペ
アターンとの関係を示す図である。ここで飽和磁界強度
H1はバイアス磁界強度HBよりも若干小さくなるよう
に設定される(ヨーク2の幅あるいは膜厚の調整により
設定する)。FIG. 5 is a diagram showing the relationship between the magnetic field generated in the air gap 21 and the ampere turns of the thin film coil 1. Here, the saturation magnetic field strength H1 is set to be slightly smaller than the bias magnetic field strength HB (set by adjusting the width or film thickness of the yoke 2).
第6図は第1図での磁気抵抗素子↓の出力電圧Vout
(2−3端子)対薄膜コイルlのアンペアターンの関
係を示す図でありl H4≦HBの関係より正方向、負
方向A T (−AT、から+AT、の間)に対してほ
ぼ直線的な関係が得られる。従って直線範囲E、F、G
の間で任意のしきい値電圧v4.v5を選択すれば、対
応した正方向のアンペアターン+AT4と負方向のアン
ペアターン−AT5が検出でき。Figure 6 shows the output voltage Vout of the magnetoresistive element↓ in Figure 1.
(Terminal 2-3) This is a diagram showing the relationship between the ampere turns of the thin film coil l. From the relationship H4≦HB, it is almost linear in the positive direction and negative direction AT (between -AT and +AT). A good relationship can be obtained. Therefore, the linear range E, F, G
Any threshold voltage between v4. If v5 is selected, the corresponding positive direction ampere turn +AT4 and negative direction ampere turn -AT5 can be detected.
巻数nとの関係で第1図の5,6間の電流+工と−I及
び正、負極性が判別できる。In relation to the number of turns n, the current between 5 and 6 in FIG. 1 can be distinguished between positive and negative polarities.
上の説明から分るように、磁気抵抗素子ニレメン)11
.12と薄膜ヨーク2の空隙21との相対関係は、膜作
成時のパターンマスクの合わせの精度に依存し、数μ程
度の精度は極めて容易に得られる。従って、従来の例の
第7図に示すような装置に必要な精度を簡単に得ること
ができ、又位置合わせの組立工数をほとんど必要とせず
、特性のバラツキも格段に改善される。As can be seen from the above explanation, the magnetoresistive element Niremen) 11
.. The relative relationship between the thin film yoke 12 and the gap 21 of the thin film yoke 2 depends on the accuracy of alignment of pattern masks during film production, and an accuracy of several microns can be obtained extremely easily. Therefore, the accuracy required for the conventional device shown in FIG. 7 can be easily obtained, almost no assembly man-hours are required for positioning, and the variation in characteristics is significantly improved.
又、第1図の装置は同一基板上に磁気抵抗素子。Furthermore, the device shown in FIG. 1 has a magnetoresistive element on the same substrate.
薄膜ヨーク及び薄膜コイルが形成されるため、薄型化し
た形体であり、明らかに従来例よりも小型化される。な
お前述の実施例Vi直流電流を検出する場合について説
明しているが、交流であっても使用できることはいうま
でもない。Since a thin film yoke and a thin film coil are formed, the structure is thinner and clearly smaller than the conventional example. It should be noted that, although the above-mentioned Example Vi describes the case where direct current is detected, it goes without saying that even alternating current can be used.
〈発明の効果〉
以上本発明によれば、従来の電流検出器よりも組立、調
整工数が少なく、コストが安く、特性のバラツキの少な
く、又薄型化された小型の電流検出器を提供できるもの
である。<Effects of the Invention> According to the present invention, it is possible to provide a small current detector that requires fewer assembly and adjustment steps than conventional current detectors, is lower in cost, has less variation in characteristics, and is thinner. It is.
第1図は本発明による1実施例を示す図、第2図は、第
1図でのA A’断面図、第3図は第1図でのB B’
断面図、第4図は、第1図中の磁気抵抗素子の等価回路
図、第5図は第1図でのヨーク空隙向磁場対コイルアン
被アターン特性を示す図、第6図は第1図での磁気抵抗
素子出力電圧対コイルアンにアターン特性を示す図、第
7図は、従来の1奥物例を示す図、第8図(alは磁気
抵抗素子の・ぐターン図、第8図(blはその等価回路
図、第9図は磁気抵抗素子の出力電圧対印加磁界特住を
示す図。
第10図は第7図での磁気抵抗素子の出力電圧対コイル
アン被アターン特性を示す図である。
記号の説明:1は磁気抵抗素子パターン、11゜12.
13.14は磁気抵抗素子エレメント、2は強磁性体薄
膜ヨーク、21は空隙、良は薄膜コイル、31.32は
薄膜コイルパターン、4は基板、5はバイアス永久磁石
、6.61.62は絶縁保護膜、7は強磁性体コア、7
1は空隙、旦は磁気抵抗素子、81,82,83.84
は磁気抵抗素子ストライプ、9はコイル、10は基板。
101はバイアス磁石、Hは(強磁性体薄膜ヨークから
の)磁場、HBはバイアス磁場、Hlは飽和磁界強度を
それぞれあられしている。
第1図
第2図
1\zl
第3図
第5図
第6図
第7図
第8図
第9図
バイアス磁石付き
第10図Fig. 1 is a diagram showing one embodiment of the present invention, Fig. 2 is a sectional view of A A' in Fig. 1, and Fig. 3 is a sectional view of B B' in Fig. 1.
4 is an equivalent circuit diagram of the magnetoresistive element in FIG. 1, FIG. 5 is a diagram showing the yoke air gap direction magnetic field versus coil unturning characteristics in FIG. 1, and FIG. Figure 7 is a diagram showing the turn characteristic of the magnetoresistive element output voltage versus coil angle, Figure 7 is a diagram showing an example of a conventional example, Figure 8 (al is the turn diagram of the magnetoresistive element, Figure 8 ( bl is its equivalent circuit diagram, and Fig. 9 is a diagram showing the output voltage of the magnetoresistive element versus applied magnetic field characteristic. Fig. 10 is a diagram showing the output voltage of the magnetoresistive element in Fig. 7 versus coil unturning characteristic Explanation of symbols: 1 is a magnetoresistive element pattern, 11° 12.
13.14 is a magnetoresistive element element, 2 is a ferromagnetic thin film yoke, 21 is an air gap, Good is a thin film coil, 31.32 is a thin film coil pattern, 4 is a substrate, 5 is a bias permanent magnet, 6.61.62 is a Insulating protective film, 7 is a ferromagnetic core, 7
1 is the air gap, dan is the magnetoresistive element, 81, 82, 83.84
9 is a magnetoresistive element stripe, 9 is a coil, and 10 is a substrate. 101 is a bias magnet, H is a magnetic field (from a ferromagnetic thin film yoke), HB is a bias magnetic field, and Hl is a saturation magnetic field strength. Figure 1 Figure 2 1\zl Figure 3 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure with bias magnet Figure 10
Claims (1)
分に検出すべき電流を通すための多層配線された薄膜コ
イルを施した強磁性体薄膜ヨークと、可変抵抗として動
作する対の磁気抵抗素子エレメントを前記空隙内に配置
した強磁性体の磁気抵抗素子パターンとを設け、該基板
の他方の面上の前記対の磁気抵抗素子エレメントに対す
る位置にバイアス永久磁石を設けて成る電流検出器。1. A ferromagnetic thin film yoke with a gap formed in a part on one side of the substrate and a thin film coil with multilayer wiring for passing the current to be detected in the main part, and a pair of thin film coils that operate as variable resistors. a ferromagnetic magnetoresistive element pattern in which a magnetoresistive element is arranged in the air gap; and a bias permanent magnet is provided at a position relative to the pair of magnetoresistive elements on the other surface of the substrate. vessel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62019535A JPS63187159A (en) | 1987-01-29 | 1987-01-29 | Current detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62019535A JPS63187159A (en) | 1987-01-29 | 1987-01-29 | Current detector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63187159A true JPS63187159A (en) | 1988-08-02 |
Family
ID=12002022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62019535A Pending JPS63187159A (en) | 1987-01-29 | 1987-01-29 | Current detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63187159A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04148868A (en) * | 1990-10-12 | 1992-05-21 | Murata Mfg Co Ltd | Current signal detection device |
JPH04148870A (en) * | 1990-10-12 | 1992-05-21 | Murata Mfg Co Ltd | Detection coil |
JP2006514283A (en) * | 2003-02-11 | 2006-04-27 | アレグロ・マイクロシステムズ・インコーポレーテッド | Integrated sensor |
JP2007159480A (en) * | 2005-12-14 | 2007-06-28 | Mochizuki Tekkosho:Kk | Apparatus for evenly delivering granule |
JP2013083585A (en) * | 2011-10-12 | 2013-05-09 | Alps Green Devices Co Ltd | Current sensor |
JP2013234958A (en) * | 2012-05-10 | 2013-11-21 | Murata Mfg Co Ltd | Current detecting device |
JP2018054460A (en) * | 2016-09-29 | 2018-04-05 | 大同特殊鋼株式会社 | Thin film magnetic sensor |
EP3477322A1 (en) * | 2017-10-27 | 2019-05-01 | Melexis Technologies SA | Magnetic sensor with integrated solenoid |
-
1987
- 1987-01-29 JP JP62019535A patent/JPS63187159A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04148868A (en) * | 1990-10-12 | 1992-05-21 | Murata Mfg Co Ltd | Current signal detection device |
JPH04148870A (en) * | 1990-10-12 | 1992-05-21 | Murata Mfg Co Ltd | Detection coil |
JP2006514283A (en) * | 2003-02-11 | 2006-04-27 | アレグロ・マイクロシステムズ・インコーポレーテッド | Integrated sensor |
JP2007159480A (en) * | 2005-12-14 | 2007-06-28 | Mochizuki Tekkosho:Kk | Apparatus for evenly delivering granule |
JP2013083585A (en) * | 2011-10-12 | 2013-05-09 | Alps Green Devices Co Ltd | Current sensor |
JP2013234958A (en) * | 2012-05-10 | 2013-11-21 | Murata Mfg Co Ltd | Current detecting device |
JP2018054460A (en) * | 2016-09-29 | 2018-04-05 | 大同特殊鋼株式会社 | Thin film magnetic sensor |
EP3477322A1 (en) * | 2017-10-27 | 2019-05-01 | Melexis Technologies SA | Magnetic sensor with integrated solenoid |
US20190128974A1 (en) * | 2017-10-27 | 2019-05-02 | Melexis Technologies Sa | Magnetic sensor with integrated solenoid |
CN109724630A (en) * | 2017-10-27 | 2019-05-07 | 迈来芯电子科技有限公司 | Magnetic Sensor with integrated solenoid |
US10788546B2 (en) | 2017-10-27 | 2020-09-29 | Melexis Technologies Sa | Magnetic sensor with integrated solenoid |
CN109724630B (en) * | 2017-10-27 | 2021-07-23 | 迈来芯电子科技有限公司 | Magnetic sensor with integrated solenoid |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4506214A (en) | Measuring transformer | |
US9891293B2 (en) | Magnetic sensor device preventing concentration of magnetic fluxes to a magnetic sensing element | |
WO2011043193A1 (en) | Magnetic balance current sensor | |
JPH0897488A (en) | Magnetism detector | |
JP2002303536A (en) | Rotation angle detecting sensor | |
US6819101B2 (en) | Magnetic detector | |
JP3260921B2 (en) | Movable body displacement detection device | |
JPH06130088A (en) | Current sensor | |
JPS63187159A (en) | Current detector | |
JP2020178045A (en) | Magneto Resistive Sensor and Its Manufacturing Method | |
JP2000193407A (en) | Magnetic positioning device | |
JP4953569B2 (en) | Thin film magnetoresistive element and magnetic sensor using thin film magnetoresistive element | |
JPH0870149A (en) | Magnetoresistance element | |
JP4110468B2 (en) | Magneto-impedance element | |
JP3144051B2 (en) | Current detector | |
JP2000098012A (en) | Magnetic field sensor | |
JPH01105178A (en) | Current detector | |
JPH06244477A (en) | Magnetoresistance element | |
JP2002094140A (en) | Magnetic impedance effect element | |
JPS63198876A (en) | Current detector | |
JPH0563254A (en) | Magnetoresistive composite element | |
JP3449160B2 (en) | Magnetoresistive element and rotation sensor using the same | |
JPH09231517A (en) | Magnetic reluctance sensor | |
JP2001305163A (en) | Current sensor | |
JPH0894728A (en) | Magnetic field sensor and its manufacture |