[go: up one dir, main page]

JPS6318602A - Manufacture of permanent magnet of rare earth-iron system - Google Patents

Manufacture of permanent magnet of rare earth-iron system

Info

Publication number
JPS6318602A
JPS6318602A JP61161956A JP16195686A JPS6318602A JP S6318602 A JPS6318602 A JP S6318602A JP 61161956 A JP61161956 A JP 61161956A JP 16195686 A JP16195686 A JP 16195686A JP S6318602 A JPS6318602 A JP S6318602A
Authority
JP
Japan
Prior art keywords
rare earth
permanent magnet
alloy
powder
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61161956A
Other languages
Japanese (ja)
Inventor
Tetsuhiko Mizoguchi
徹彦 溝口
Akihiko Tsutai
津田井 明彦
Isao Sakai
勲 酒井
Koichiro Inomata
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61161956A priority Critical patent/JPS6318602A/en
Priority to EP87103413A priority patent/EP0248981B1/en
Priority to KR870002117A priority patent/KR880000992A/en
Priority to DE87103413T priority patent/DE3786426T2/en
Publication of JPS6318602A publication Critical patent/JPS6318602A/en
Priority to US07/311,389 priority patent/US4935075A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a high-performance permanent magnet by producing crystalline thin bands of a permanent magnet alloy of the rare earth-iron system, and then stacking, heating and integrating them, or grinding them and kneading them in a binder for molding. CONSTITUTION:An alloy represented by the formula I is used (where R is Y and at least one of the rare earth elements; M is one or more combination containing Ga of Ga, A, Ti; and B, Fe, Co are contained with the atomic ratios alpha-delta of equation II). If Nd and Pr are contained in R to 70% or more and a part of B is substituted by C, N or the like to about 80%, high BHmax is obtained. This molten alloy is jetted onto a cooling body rotating at a predetermined speed. The obtained crystalline thin bands are stacked and integrated at 600-1100 deg.C, 0.1-2 tons/cm<2>. Alternately, the alloy ingot is made into powder of 5-30mum (0<beta<=0.95). After receiving surface treatment for anti-oxidizing and improvement of bond properties with resin, it is kneaded with 10wt.% thermoelastic resin 6 and injection molded. With this arrangement, a permanent magnet of high magnetic flux density, coercive force and Curie point and large energy product is obtained.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は希土類鉄系永久磁石の製造方法に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a method for manufacturing a rare earth iron permanent magnet.

(従来の技術) 従来から希土類Co系の永久磁石が知られている。(Conventional technology) Rare earth Co-based permanent magnets have been known for a long time.

この永久磁石は高いエネルギー積を有しているため広い
分野で用いられている。最近、さらに高いエネルギー積
(例えば308GOe)を有する希土類鉄系の永久磁石
が研究されている。この希土類鉄系永久磁石は、高いエ
ネルギー積に加え、Co系に比べFeが主体であるため
、安価であるというメリットも有し、有望な材料である
This permanent magnet has a high energy product and is therefore used in a wide range of fields. Recently, rare earth iron-based permanent magnets having even higher energy products (for example, 308 GOe) have been studied. This rare earth iron-based permanent magnet is a promising material because it has a high energy product and also has the advantage of being inexpensive compared to Co-based magnets because it is mainly composed of Fe.

この希土類鉄系の永久磁石は5通常の方法すなわち合金
形成後粉砕・焼結という方法でlfJ造されるが、粉砕
後磁場中プレス等の工程が必要であり、工程がM1雑で
あるという欠点に加え、製造工程中特に粉砕工程での不
純物混入の恐れがあり、安定した磁気特性が得にくいと
いう欠点があった。
This rare earth iron-based permanent magnet is manufactured using the 5 normal method, that is, grinding and sintering after alloy formation, but it requires steps such as pressing in a magnetic field after grinding, and has the disadvantage that the process is complicated. In addition, there is a risk of contamination with impurities during the manufacturing process, particularly during the pulverization process, and there is a drawback that stable magnetic properties are difficult to obtain.

一方、近年、フェライトや希土類コバルト磁石の製造方
法の主流であった焼結法に代わって、熱可塑性樹脂をバ
インダーとし、射出成形法を用いた製造方法が開発され
ている。これは、焼結法では製造困雛な薄肉磁石やラジ
アル異方性を有する磁石でも、射出成形法を用いれば比
較的容易に製造できるためである。こうしたことから、
フェライトあるいは希土類コバルト磁石においては、数
年前から射出成形磁石の製造が始められ、現在ブラウン
管用センタリング磁石やモータ等大きな市場を形成する
までに発展している。
On the other hand, in recent years, instead of the sintering method that has been the mainstream method for manufacturing ferrite and rare earth cobalt magnets, a manufacturing method using an injection molding method using a thermoplastic resin as a binder has been developed. This is because even thin-walled magnets or magnets with radial anisotropy, which are difficult to manufacture using the sintering method, can be manufactured relatively easily using the injection molding method. For these reasons,
Regarding ferrite or rare earth cobalt magnets, production of injection molded magnets began several years ago, and has now developed to the point where it has formed a large market for centering magnets for cathode ray tubes, motors, etc.

しかし、最近登場した前記超高性能((!1lIILa
つ≧35MGOe)の希土類鉄系磁石においては、より
性能の高い射出成形磁石が期待されるにもかかわらず、
未だ工業レベルでの射出成形法が離党されるには到って
いない、その大きな原因は、現在のところ良好な磁石特
性(特に保磁力特性)を有する磁石合金粉末は急冷リボ
ンを粉砕してからのものでないと得られないこと、一方
急冷リボンを粉砕した(発明が解決しようとする問題点
) 本発明は以上の点を考慮してなされたもので。
However, the ultra-high performance (!1lIILa
Although injection molded magnets with higher performance are expected for rare earth iron-based magnets (35MGOe),
The injection molding method has not yet been abandoned at the industrial level, and the main reason for this is that, at present, magnetic alloy powder with good magnetic properties (especially coercive force properties) is produced only after pulverizing the quenched ribbon. On the other hand, the present invention was made in consideration of the above points.

高磁束密度、高保磁力及び高キュ≠り一点を有しエネル
ギー積の大きい希土類・鉄系永久磁石を容易に得ること
のできる希土類・鉄系永久磁石の製造方法を提供するこ
とを目的とする。
An object of the present invention is to provide a method for producing a rare earth/iron permanent magnet that can easily obtain a rare earth/iron permanent magnet having a high magnetic flux density, high coercive force, high cue, and a large energy product.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、希土類・鉄系永久磁石合金を溶湯急冷法で作
成した場合、その薄帯はg帯面に対し、垂直方向にC軸
が配向することをみいだしたことを基本とするものであ
る。
(Means for Solving the Problems) The present invention provides that when a rare earth/iron permanent magnet alloy is produced by a molten metal quenching method, the C-axis of the ribbon is oriented perpendicularly to the G-band surface. It is based on what we have discovered.

すなわち、本発明は溶湯急冷法により希土類・鉄系永久
磁石合金からなる結晶質薄帯を得る第1の工程、第1の
工程により得られた配向性結晶質薄帯を積層後加熱によ
り一体化する工程、もしくは第1の工程により得られた
配向性結晶質薄帯を10〜100声程度に粉砕後、樹脂
等のバインダー中で混練し、磁場中もしくは無磁場中で
成形固化し一体化する工程、とを有する希土類鉄系永久
磁石の製造方法である。
That is, the present invention involves a first step of obtaining a crystalline ribbon made of a rare earth/iron permanent magnet alloy by a molten metal quenching method, and a method of integrating the oriented crystalline ribbons obtained in the first step by heating after laminating them. or the oriented crystalline ribbon obtained in the first step is crushed to about 10 to 100 tones, kneaded in a binder such as resin, and then molded and solidified in a magnetic field or in the absence of a magnetic field to be integrated. A method for manufacturing a rare earth iron permanent magnet, comprising the steps of:

希土類・鉄系永久磁石合金は、イツトリウム及びC8,
Pr、Nd、SI!1等の希土類金M(希土類元素と複
数種含むミツシュメタル(M、M)でも良い)から選ば
れた少なくとも一種及び鉄を主成分として、さらに安定
化のためのB、C等の非金属を含むものである。例えば
Bを例にとれば、 R1−a−p−’i−5”aFepCoyM6R:Y、
希土類 M : Ga、Al、Tiのうち、Gaを含む一種以上
の組合せ。
Rare earth/iron permanent magnet alloys include yttrium and C8,
Pr, Nd, SI! The main components are at least one selected from the 1st class rare earth gold M (or metals containing multiple rare earth elements (M, M)) and iron, and further contain non-metals such as B and C for stabilization. It is something that For example, taking B as an example, R1-a-p-'i-5''aFepCoyM6R:Y,
Rare earth M: A combination of one or more of Ga, Al, and Ti, including Ga.

0.001≦α≦0.5 0.5≦β≦0.95 0<γ≦0.3 0くδ≦0.1 α+β+γ+δ<1.0 ここでα(0,001,β>0.95.γ〉0.3だと
保磁力が向上せず永久磁石合金としては不適当であり、
α>0.5. β〈0.5だと磁束密度が低下し、やは
り永久磁石としては不適当である。
0.001≦α≦0.5 0.5≦β≦0.95 0<γ≦0.3 0 δ≦0.1 α+β+γ+δ<1.0 Here α(0,001, β>0.95 If γ>0.3, the coercive force will not improve and it will be unsuitable as a permanent magnet alloy.
α>0.5. When β<0.5, the magnetic flux density decreases, making it unsuitable as a permanent magnet.

希土類元素のうちでもNd及びPrは特に高い(BH)
、aにを得るのに有効な元素であり、Rとしてこの2元
素のうち少なくとも1種を含有することが好ましい、こ
のNd、 PrのR量中の割合は70%以上(R量全部
でもよい)であることが望ましい。
Among rare earth elements, Nd and Pr are particularly high (BH)
, a, and preferably contains at least one of these two elements as R.The proportion of Nd and Pr in the R amount is 70% or more (the R amount may be the entire amount) ) is desirable.

Bと同等なものとしてC,N、Si、P、Ga等が挙げ
られる。これらの元素でBの一部を置換してもよい、こ
れにより焼結性の向上ひいてはBr。
Examples of materials equivalent to B include C, N, Si, P, Ga, and the like. A part of B may be replaced with these elements, thereby improving sinterability and thus Br.

(Bo)mayの増大を図ることができる。この場合の
置換量はBの80%程度までとすることが望ましい。
(Bo) may be increased. In this case, it is desirable that the amount of substitution is up to about 80% of B.

Coはキュtり一温度の上昇、ひいては磁石の温度特性
改善あるいは耐食性の向上に有効な元素である。
Co is an element that is effective in increasing the cutting temperature and, in turn, improving the temperature characteristics or corrosion resistance of the magnet.

Ga、Al、Tiのうち、Gaを含む一種以上の組合せ
からなるものは保磁力の向上及び耐食性の向上に有効な
元素であるが、原子比で0.1を超えるとBrの低下が
顕著となる。
Among Ga, Al, and Ti, elements consisting of a combination of one or more types including Ga are effective elements for improving coercive force and improving corrosion resistance, but when the atomic ratio exceeds 0.1, a decrease in Br is noticeable. Become.

このような希土類・鉄系永久磁石合金は、溶湯急冷法で
薄帯化すると、ある冷却条件下でその薄帯面に対して垂
直方向にC軸が配向する。これはSm −Co系ではみ
られない現象である。製造に際しては、非晶質合金と同
様な方法をとる。すなわち、冷却されている回転冷却体
上に合金溶湯を噴出し薄帯化する。
When such a rare earth/iron permanent magnet alloy is formed into a thin ribbon by a molten metal quenching method, the C-axis is oriented perpendicularly to the surface of the ribbon under certain cooling conditions. This is a phenomenon not seen in Sm-Co systems. The manufacturing process is similar to that used for amorphous alloys. That is, the molten alloy is ejected onto the cooling rotary cooling body to form a thin ribbon.

この時回転冷却体の回転速度が大きすぎると、薄帯が非
晶質化してしまい、配向かなく永久磁石として働かなく
なる。又、回転速度が遅いと結晶質とはなるものの、結
晶粒が柱状晶となり配向性が劣化してしまい、磁気特性
が悪くなる。このように考えると、回転冷却体の表面速
度が3〜20m/秒の範囲であることが好ましい。
At this time, if the rotational speed of the rotary cooling body is too high, the ribbon becomes amorphous and is not oriented and does not function as a permanent magnet. On the other hand, if the rotation speed is slow, although the material becomes crystalline, the crystal grains become columnar and the orientation deteriorates, resulting in poor magnetic properties. Considering this, it is preferable that the surface speed of the rotary cooling body is in the range of 3 to 20 m/sec.

このようにして得られた結晶質薄帯は以下の方法で一体
化・磁石化される。第1の方法は所望の形状となるよう
に結晶質薄帯を積層し、加熱により一体化させるもので
ある。加熱温度は組成により異なるが、一体化のために
は600℃以上が必要であり、液相晶出を防止するため
β00℃以下であることが好ましい、処理時間は0.1
H〜5H程度で十分である。
The crystalline ribbon thus obtained is integrated and magnetized by the following method. The first method is to stack crystalline ribbons in a desired shape and integrate them by heating. The heating temperature varies depending on the composition, but it is required to be at least 600°C for integration, and preferably below β00°C to prevent liquid phase crystallization. The processing time is 0.1
About H to 5H is sufficient.

またより大きいエネルギー積を得るため、加熱一体化の
際0.1〜2ton/ad程度の加圧をすることが好ま
しい。
In addition, in order to obtain a larger energy product, it is preferable to apply a pressure of about 0.1 to 2 ton/ad during heating and integration.

第2の方法は上記合金インゴットをショークラッシャー
Vこより粗粉砕し、更にジェットミル等を用いて平均粒
径が5〜30.の磁石粉末とする。この磁石粉末にシラ
ン系カップリング剤等による表面処理を施し、磁石粉末
の酸化を防ぐとともに。
The second method is to coarsely crush the above alloy ingot using a show crusher V, and then use a jet mill or the like to reduce the average particle size to 5 to 30. magnetic powder. This magnet powder is surface treated with a silane coupling agent, etc. to prevent oxidation of the magnet powder.

熱可塑性樹脂との結合性を良好にする。Improves bondability with thermoplastic resin.

つづいて1表面処理後の磁石粉末と熱可塑性樹脂とを混
合し、乳バチあるいは攪伴型混線機で良く混ぜあわせる
。この時の磁石粉末との比率は、重量比で樹脂が3〜1
0%、好ましくは6〜10%とする。これは3%未満で
は磁石粉末の機械的性質の劣化が著しく、一方10%を
超えると磁気特性の劣化が生じるためである。なお、熱
可塑性樹脂としては、ナイロン6、ナイロン66などの
ポリアミド系、エチレン、ポリプロピレンなどのポリオ
レフィン系、塩化ビニル、ポリエステル等種々の樹脂を
用いることができる。
Next, the magnet powder after the first surface treatment and the thermoplastic resin are mixed and mixed well using a pestle or an agitating mixer. At this time, the ratio of resin to magnet powder is 3 to 1 by weight.
0%, preferably 6-10%. This is because if it is less than 3%, the mechanical properties of the magnet powder will deteriorate significantly, while if it exceeds 10%, the magnetic properties will deteriorate. As the thermoplastic resin, various resins such as polyamides such as nylon 6 and nylon 66, polyolefins such as ethylene and polypropylene, vinyl chloride, and polyester can be used.

次いで、上記混合粉末を温間磁場中で射出成形法により
成形し、永久磁石を製造する。この時の加熱温度は23
0〜300℃、加圧力は0.3〜2 ton/ QJ、
印加磁場は15kOa以上とする。加熱温度が230℃
未満では混合粉末の流動性が悪く、磁石粉末と樹脂との
混合が不十分となり、成形体の不均一性が増加するとと
もに磁気特性が劣化する。一方、300℃を超えると樹
脂が分解してガスが発生するため、空孔の介在等により
良好な磁石特性が得られなくなる。
Next, the mixed powder is molded by injection molding in a warm magnetic field to produce a permanent magnet. The heating temperature at this time is 23
0~300℃, pressurizing force 0.3~2 ton/QJ,
The applied magnetic field is 15 kOa or more. Heating temperature is 230℃
If it is less than this, the fluidity of the mixed powder will be poor, the mixing of the magnet powder and the resin will be insufficient, the non-uniformity of the compact will increase, and the magnetic properties will deteriorate. On the other hand, if the temperature exceeds 300° C., the resin will decompose and gas will be generated, making it impossible to obtain good magnetic properties due to the presence of pores and the like.

(実施例) 本発明の実施例を以下に説明する。(Example) Examples of the present invention will be described below.

実施例1 Nd0.17 Bo、06 Fe0.59 Co0.1
6 Ga0.02なる組成を有する合金を溶湯急冷法を
用いて薄帯化した。
Example 1 Nd0.17 Bo, 06 Fe0.59 Co0.1
An alloy having a composition of 6 Ga0.02 was formed into a thin ribbon using a molten metal quenching method.

すなわち約10m/秒で回転するロール表面に石英ノズ
ルを介して溶湯合金をアルゴンガス圧により射出冷却し
て幅10nm、厚さ100μsの結晶質薄帯を得た。得
られた′f4帯をX線回折装置により測定した結果を第
1図に、また比較のために合金粉末材のX線回折の結果
を第2図に示す。
That is, a molten alloy was injected and cooled by argon gas pressure through a quartz nozzle onto the surface of a roll rotating at about 10 m/sec to obtain a crystalline ribbon with a width of 10 nm and a thickness of 100 μs. The results of measuring the obtained 'f4 band using an X-ray diffraction apparatus are shown in FIG. 1, and for comparison, the results of X-ray diffraction of the alloy powder material are shown in FIG.

合金粉末材に比較して溶湯急冷′gt帯の場合、リボン
面に対して垂直方向にC軸が配向していることがわかる
It can be seen that, compared to the alloy powder material, in the case of the molten metal quenched 'gt zone, the C axis is oriented in the direction perpendicular to the ribbon surface.

溶湯急冷法で得られた薄帯を長さLowのたんざく状に
切断し、100枚積層させ、2ton/a+?の圧力で
加圧成形しつつ700℃X 10m1nの加熱処理を行
なった。得られた磁気特性を第1表に示す。
The thin strip obtained by the molten metal quenching method was cut into strips with a length of Low, and 100 strips were laminated to produce a 2 ton/a+? Heat treatment at 700° C. x 10 ml was performed while pressure molding was carried out at a pressure of 10 ml. The obtained magnetic properties are shown in Table 1.

実施例2 Nd0.10 Pr0.08 Bo、10 Fe0.5
6 Goo、14 Ga0.0IAI20.01なる磁
石合金の薄帯を作成しフレーク状のまま積層後、2to
n/cJの圧力で加圧成形しつつ680℃X 10m1
nの加熱処理を行なった。得られた磁気特性を第1表に
示す。
Example 2 Nd0.10 Pr0.08 Bo, 10 Fe0.5
6 Goo, 14 Ga0.0IAI20.01 thin strips of magnetic alloy were created and laminated in flake form, then 2to
680℃ x 10m1 while pressure molding with n/cJ pressure
A heat treatment of n was performed. The obtained magnetic properties are shown in Table 1.

実施例3 Nd0.15 Bo、06 Fe0.61 CoO,1
6GaO,02なる磁石合金の薄帯を作成し実施例1と
同様に積層し、2ton/fflの圧力で加圧成形しつ
つ710℃X 20+*inの加熱処理を行なった。得
られた結果を第1表に示す。
Example 3 Nd0.15 Bo,06 Fe0.61 CoO,1
Thin strips of magnetic alloy 6GaO,02 were prepared and laminated in the same manner as in Example 1, and heat treated at 710° C. x 20+*in while being press-formed at a pressure of 2 tons/ffl. The results obtained are shown in Table 1.

実施例4 Nd0.15 Bo、08 FeO,59GoO,16
Ga0.01 TlO,01なる磁石合金の薄帯を作成
し、実施例1と同様に積層し、2 ton /−の圧力
で加圧成形しつつ700℃X lominの加熱処理を
行なった。得られた結果を第1表に示す。
Example 4 Nd0.15 Bo, 08 FeO, 59 GoO, 16
Thin strips of magnetic alloy Ga0.01 TlO,01 were prepared, laminated in the same manner as in Example 1, and heat-treated at 700° C. The results obtained are shown in Table 1.

なお、比較のため実施例1〜4と同様の組成を有し、粉
末焼結法で作成された永久磁石の特性もあわせて示す6 (以下余白) 第1表 第1表から明らかなように、本発明方法を用いることに
より、従来法に比べ保磁力(i)Ic)及びエネルギー
f!((BH)wax)が向上することがわかる。
For comparison, the characteristics of a permanent magnet having the same composition as Examples 1 to 4 and made by the powder sintering method are also shown. , by using the method of the present invention, the coercive force (i) Ic) and energy f! can be reduced compared to the conventional method. It can be seen that ((BH)wax) is improved.

これは粉砕工程がなく、不純物混入の恐れがないこと、
また、積層加熱処理による効果と思われる。
This means that there is no crushing process, so there is no risk of contamination with impurities.
Also, this seems to be an effect of the lamination heat treatment.

また従来の粉末焼結法の粉砕・磁場中プレスとつた工程
が省略でき、製造が容易である。
In addition, the conventional powder sintering process of crushing, pressing in a magnetic field, and other steps can be omitted, making manufacturing easy.

実施例5 実施例1〜4で得た溶湯急冷薄帯をボールミルにて平均
粒径30.まで粉砕した。
Example 5 The melt quenched ribbons obtained in Examples 1 to 4 were milled in a ball mill to reduce the average particle size to 30. crushed to.

これは各磁石粉末にシラン系カップリング剤を塗布した
後、ナイロンを6重量%加えて混合し、加熱温度280
℃、成形圧力2ton/a#、印加磁場15koeの条
件で射出成形し、永久磁石を製造した。
After applying a silane coupling agent to each magnet powder, 6% by weight of nylon is added and mixed, and the heating temperature is 280.
C, a molding pressure of 2 ton/a#, and an applied magnetic field of 15 koe were injection molded to produce a permanent magnet.

これらの永久磁石の磁石特性を調べた結果を第2表に示
す。
Table 2 shows the results of investigating the magnetic properties of these permanent magnets.

第2表 第2表から明らかなように、本発明法を用いることによ
り、容易に10MGOeを越える特性を有する射出成形
磁石を製造することができる。
As is clear from Table 2, by using the method of the present invention, injection molded magnets having characteristics exceeding 10 MGOe can be easily produced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明によれば従来法における粉
砕、磁場中プレス等の工程を省略することができ、大幅
な工程の簡略化が達成されるとともに、従来不可能であ
った射出成形タイプの永久磁石も製造でき、しかも得ら
れる永久磁石の磁気特性も改善される。
As explained above, according to the present invention, it is possible to omit processes such as crushing and pressing in a magnetic field in the conventional method, and to achieve a significant simplification of the process, as well as to achieve injection molding, which was previously impossible. permanent magnets can also be produced, and the magnetic properties of the obtained permanent magnets are also improved.

【図面の簡単な説明】 第1図は本発明に係るNdO,17Bo、06 Fe0
.59CoO,16Ga0.02薄帯のxlIi1回折
図。 第2図はNd0.17 Bo、06 Fe0.59 C
oO,16Ga0.02粉末のX線回折図。 代理人 弁理士 則 近 憲 佑 同  竹花喜久男 2(9(deg) 2e (deg) 第2図
[Brief explanation of the drawings] Figure 1 shows NdO, 17Bo, 06 Fe0 according to the present invention.
.. xlIi1 diffraction diagram of 59CoO,16Ga0.02 ribbon. Figure 2 shows Nd0.17 Bo, 06 Fe0.59 C
X-ray diffraction diagram of oO,16Ga0.02 powder. Agent Patent attorney Yudo Noriyuki Chika Kikuo Takehana 2 (9 (deg) 2e (deg) Figure 2

Claims (1)

【特許請求の範囲】 (1)溶湯急冷法により作成された R_1_−_α_−_β_−_γ_−_δB_αFe_
βCo_γM_δ(α、β、γ、δは原子比)ここでR
:Y及び希土類元素の少なくとも一種M:Ga、Al、
Tiうち、Gaを含む一種以上の組合せ、 0.001≦α≦0.5 0.5≦β≦0.95 0<γ≦0.3 0<δ≦0.1 α+β+γ+δ<1 で表わされる組成を有する希土類鉄系永久磁石合金薄帯
を用いることを特徴とする希土類鉄系永久磁石の製造方
法。 (2)溶湯急冷法により作成された R_1_−_a_−_β_−_γ_−_δB_αFe_
βCo_γM_δ(α、β、γ、δは原子比)ここでR
:Yおよび希土類元素の少なくとも一種M:Ga、Al
、Tiうち、Gaを含む一種以上の組合せ、 0.001≦α≦0.5 0.5≦β≦0.95 0<γ≦0.3 0<δ≦0.1 α+β+γ+δ<1 で表わされる組成を有する希土類鉄系永久磁石合金から
成る結晶質薄帯を加熱して一体化することを特徴とする
特許請求の範囲第1項記載の希土類鉄系永久磁石の製造
方法。 (3)溶湯急冷法により作成された R_1_−_a_−_β_−_γ_−_δB_αFe_
βCo_γM_δ(α、β、γ、δは原子比)ここでR
:Yおよび希土類元素の少なくとも一種M:Ga、Al
、Tiうち、Gaを含む一種以上の組合せ、 0.001≦α≦0.5 0<β≦0.95 0<γ≦0.3 0<δ≦0.1 α+β+γ+δ<1 で表わされる組成を有する希土類鉄系永久磁石合金から
成る結晶質薄帯をバインダーと混合して一体化すること
を特徴とする特許請求の範囲第1項記載の希土類鉄系永
久磁石の製造方法。
[Claims] (1) R_1_-_α_-_β_-_γ_-_δB_αFe_ created by molten metal quenching method
βCo_γM_δ (α, β, γ, δ are atomic ratios) where R
: Y and at least one rare earth element M: Ga, Al,
A combination of one or more Ti and Ga, 0.001≦α≦0.5 0.5≦β≦0.95 0<γ≦0.3 0<δ≦0.1 α+β+γ+δ<1 A method for manufacturing a rare earth iron permanent magnet, characterized by using a rare earth iron permanent magnet alloy ribbon having the following properties. (2) R_1_-_a_-_β_-_γ_-_δB_αFe_ created by molten metal quenching method
βCo_γM_δ (α, β, γ, δ are atomic ratios) where R
: Y and at least one rare earth element M: Ga, Al
, Ti, a combination of one or more types including Ga, 0.001≦α≦0.5 0.5≦β≦0.95 0<γ≦0.3 0<δ≦0.1 α+β+γ+δ<1 A method for producing a rare earth iron permanent magnet according to claim 1, characterized in that crystalline ribbons made of a rare earth iron permanent magnet alloy having the following composition are heated and integrated. (3) R_1_-_a_-_β_-_γ_-_δB_αFe_ created by molten metal quenching method
βCo_γM_δ (α, β, γ, δ are atomic ratios) where R
: Y and at least one rare earth element M: Ga, Al
, Ti, a combination of one or more types including Ga, 0.001≦α≦0.5 0<β≦0.95 0<γ≦0.3 0<δ≦0.1 α+β+γ+δ<1 2. A method for producing a rare earth iron permanent magnet according to claim 1, wherein the crystalline ribbon made of a rare earth iron permanent magnet alloy is mixed with a binder and integrated.
JP61161956A 1986-06-12 1986-07-11 Manufacture of permanent magnet of rare earth-iron system Pending JPS6318602A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61161956A JPS6318602A (en) 1986-07-11 1986-07-11 Manufacture of permanent magnet of rare earth-iron system
EP87103413A EP0248981B1 (en) 1986-06-12 1987-03-10 Permanent magnet and permanent magnetic alloy
KR870002117A KR880000992A (en) 1986-06-12 1987-03-10 Permanent magnet
DE87103413T DE3786426T2 (en) 1986-06-12 1987-03-10 Permanent magnet and permanent magnet alloy.
US07/311,389 US4935075A (en) 1986-06-12 1989-02-16 Permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61161956A JPS6318602A (en) 1986-07-11 1986-07-11 Manufacture of permanent magnet of rare earth-iron system

Publications (1)

Publication Number Publication Date
JPS6318602A true JPS6318602A (en) 1988-01-26

Family

ID=15745255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61161956A Pending JPS6318602A (en) 1986-06-12 1986-07-11 Manufacture of permanent magnet of rare earth-iron system

Country Status (1)

Country Link
JP (1) JPS6318602A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647504A (en) * 1986-10-14 1989-01-11 Hitachi Metals Ltd Magnetic anisotropic magnetic powder, magnetic anisotropic pressurized powder magnet, magnetic anisotropic bond magnet, and manufacture thereof
JPH01297807A (en) * 1988-05-26 1989-11-30 Daido Steel Co Ltd Manufacture of permanent magnet
JPH0252407A (en) * 1988-08-17 1990-02-22 Santoku Kinzoku Kogyo Kk Quenched thin strip magnet with high residual magnetic flux density
JPH03148804A (en) * 1987-07-23 1991-06-25 Hitachi Metals Ltd Permanent magnet excellent in thermal stability and manufacture thereof
WO1998035364A1 (en) * 1997-02-06 1998-08-13 Sumitomo Special Metals Co., Ltd. Method of manufacturing thin plate magnet having microcrystalline structure
WO1998036428A1 (en) * 1997-02-14 1998-08-20 Sumitomo Special Metals Co., Ltd. Thin plate magnet having microcrystalline structure
JP2011003662A (en) * 2009-06-17 2011-01-06 Toyota Motor Corp Permanent magnet and method of manufacturing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647504A (en) * 1986-10-14 1989-01-11 Hitachi Metals Ltd Magnetic anisotropic magnetic powder, magnetic anisotropic pressurized powder magnet, magnetic anisotropic bond magnet, and manufacture thereof
JPH03148804A (en) * 1987-07-23 1991-06-25 Hitachi Metals Ltd Permanent magnet excellent in thermal stability and manufacture thereof
JPH01297807A (en) * 1988-05-26 1989-11-30 Daido Steel Co Ltd Manufacture of permanent magnet
JPH0252407A (en) * 1988-08-17 1990-02-22 Santoku Kinzoku Kogyo Kk Quenched thin strip magnet with high residual magnetic flux density
WO1998035364A1 (en) * 1997-02-06 1998-08-13 Sumitomo Special Metals Co., Ltd. Method of manufacturing thin plate magnet having microcrystalline structure
US6386269B1 (en) 1997-02-06 2002-05-14 Sumitomo Special Metals Co., Ltd. Method of manufacturing thin plate magnet having microcrystalline structure
CN1111879C (en) * 1997-02-06 2003-06-18 住友特殊金属株式会社 Manufacture method with thin slice magnet of microstructure
WO1998036428A1 (en) * 1997-02-14 1998-08-20 Sumitomo Special Metals Co., Ltd. Thin plate magnet having microcrystalline structure
CN1111880C (en) * 1997-02-14 2003-06-18 住友特殊金属株式会社 Thin slice magnet with microstructure
JP2011003662A (en) * 2009-06-17 2011-01-06 Toyota Motor Corp Permanent magnet and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP3171558B2 (en) Magnetic materials and bonded magnets
KR101687981B1 (en) Rare-earth permanent magnetic powders, bonded magnet comprising same, and device using bonded magnet
US5049203A (en) Method of making rare earth magnets
EP0924717B1 (en) Rare earth-iron-boron permanent magnet and method for the preparation thereof
JPS60254708A (en) Manufacture of permanent magnet
JPH0257662A (en) Rapidly cooled thin strip alloy for bond magnet
EP1127358B1 (en) Sm (Co, Fe, Cu, Zr, C) COMPOSITIONS AND METHODS OF PRODUCING SAME
JP2002015907A (en) Switching spring magnet powder and its manufacturing method
JPS6318602A (en) Manufacture of permanent magnet of rare earth-iron system
JPH0353505A (en) Bonded magnet and magnetization thereof
JP3247508B2 (en) permanent magnet
JP3370013B2 (en) Rare earth magnet material and rare earth bonded magnet using the same
JPH09263913A (en) Hard magnetic alloy compacted body and its production
JPS6329908A (en) Manufacture of r-fe-b rare earth magnet
JPS6373502A (en) Manufacture of rare earth magnet
JPH10154610A (en) Method for producing anisotropic magnet powder, anisotropic magnet powder and anisotropic bonded magnet
JPS62208609A (en) Resin-bonded permanent magnet and manufacture of its magnetic powder
JP3795694B2 (en) Magnetic materials and bonded magnets
JPH03222304A (en) Manufacture of permanent magnet
JP3180269B2 (en) Manufacturing method of rare earth-transition metal-boron bonded magnet
JPH1088273A (en) Alloy raw material for rare earth permanent magnet, alloy powder for rare earth permanent magnet and production of rare earth permanent magnet
JPS63209107A (en) Manufacture of magnetic powder for bonded magnet
JP2000260614A (en) Composite anisotropic bonded magnet
JPH04304380A (en) Production of magnetic powder for anisotropic bonded magnet
JPH02118054A (en) permanent magnet material