[go: up one dir, main page]

JPS63182301A - Novel cellulose ether sodium salt and its manufacture - Google Patents

Novel cellulose ether sodium salt and its manufacture

Info

Publication number
JPS63182301A
JPS63182301A JP1304187A JP1304187A JPS63182301A JP S63182301 A JPS63182301 A JP S63182301A JP 1304187 A JP1304187 A JP 1304187A JP 1304187 A JP1304187 A JP 1304187A JP S63182301 A JPS63182301 A JP S63182301A
Authority
JP
Japan
Prior art keywords
salt
degree
viscosity
substitution
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1304187A
Other languages
Japanese (ja)
Inventor
Fuminobu Takahashi
高橋 文伸
Minoru Suzuki
實 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS Co Ltd
Original Assignee
Dai Ichi Kogyo Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Kogyo Seiyaku Co Ltd filed Critical Dai Ichi Kogyo Seiyaku Co Ltd
Priority to JP1304187A priority Critical patent/JPS63182301A/en
Publication of JPS63182301A publication Critical patent/JPS63182301A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

PURPOSE:To produce an exceedingly salt-resistant cellulose ether sodium salt having a corrosion resistance to polyvalent metal ions, by etherifying cellulose by means of sulfoethylation followed by carbomethylation. CONSTITUTION:Cellulose is mercerized, and then etherified first by means of complete sulfoethylation followed by carbomethylation to to produce a cellulose ether sodium salt having a degree of substitution of the carboxymethy group of 0.2-1.0, degree of substitution of the sulfoethyl group of 0.4-1.0 and an exceedingly-salt-resistant coefficient K<=0.15, which is represented by the formula. In the formula, eta0 is the viscosity [mPa.s] of the above sample having a concentration of 2wt.% in a fresh water system: and eta1 is the viscosity [mPa.s] of the above sample having a concentration of 2wt.% in a 4wt.% aqueous CaCl2 solution system. The resulting cellulose ether sodium salt is most suitable as an additive for cementing in petroleum excavation as well as as an additive fir an aqueous solution or a slurry containing polyvalent metal salts, such as glazes, cosmetics etc.

Description

【発明の詳細な説明】 l梁上の利用分野) 本発明は新規なセルロースエーテルナトリウム塩及びそ
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Application on Beams) The present invention relates to a novel cellulose ether sodium salt and a method for producing the same.

近年石油掘削におけるセメンティング用添加剤を始め釉
薬、化粧料等における添加剤において。
In recent years, it has been used as an additive for cementing in oil drilling, as well as for glazes, cosmetics, etc.

金属塩を含む水溶液またはスラリーに添加する場合、従
来の一価の金属塩に対する耐用性やゲル化を故意に行な
わせる用途とは全く別種の溶液物性即ち多価金属イオン
の存在する系にあり乍らも溶液としては水溶液と変わら
ぬ溶液粘性を維持し。
When added to an aqueous solution or slurry containing a metal salt, the physical properties of the solution are completely different from those of conventional monovalent metal salt resistance and gelation, that is, a system in which polyvalent metal ions exist. However, as a solution, it maintains the same viscosity as an aqueous solution.

またスラリーとしても良好な分散性を維持できる極めて
優れた機能を提供する物質が強く求められている。
There is also a strong need for a substance that provides an extremely excellent function of maintaining good dispersibility as a slurry.

(従来の技術とその欠点) これまでの耐用性といえば、−価の金属イオンNa”、
に+等に対する耐性が殆どであって、耐食塩性という意
味合が強い。
(Conventional technology and its drawbacks) So far, the durability has been limited to -valent metal ion Na'',
It is mostly resistant to corrosion, and has a strong meaning of salt resistance.

これらの性質に対し、Ca″等の多価金属イオンを含む
系にあり乍らも、多価イオンとの間における架橋または
キレートや、ポリマー鎖の広がりの抑制等が行なわれな
いことにより、粘度低下或いはゲル化、沈澱を生じない
様な安定性の高い物性は一価の金属イオンに対する耐性
とは全く別個の耐用性として区別されるべきである。
In contrast to these properties, even though the system contains polyvalent metal ions such as Ca'', the viscosity decreases due to the lack of crosslinking or chelation with polyvalent ions and the lack of suppression of polymer chain spreading. Highly stable physical properties that do not cause deterioration, gelation, or precipitation should be distinguished as durability, which is completely different from resistance to monovalent metal ions.

従って木発す1ではこの様に従来の耐用性を遥かに超越
した物性を超耐塩性と称し、下記の式によって表される
超耐塩性係a:kがk≦0.15に相当する物質につい
て超16J塩性を有すると評価するものである。
Therefore, Kibatsu 1 refers to physical properties that far exceed conventional durability as ultra-salt resistance, and refers to materials whose ultra-salt resistance coefficient a:k, expressed by the following formula, corresponds to k≦0.15. It is evaluated as having an ultra-16J salt property.

1ηl−η。1 耐塩性係a:に=□・・・・・・(1)η 0 この場合多価金属としてはCaに限らずMg。1ηl−η. 1 Salt tolerance coefficient a: ni=□・・・・・・(1)η 0 In this case, the polyvalent metal is not limited to Ca but Mg.

M n 、 Z n 、 P b等、またC’a源はC
aC12(7)他にCaBr2 、CaI2 、Ca 
(Now)21Ca (CHz Coo)2等を用いて
もよく、さらに塩水はそれらの塩の混合系であってもよ
い。
M n , Z n , P b etc., and the C'a source is C
aC12 (7) as well as CaBr2, CaI2, Ca
(Now) 21 Ca (CHz Coo) 2 or the like may be used, and the salt water may be a mixture of these salts.

(1)式においてに≦0.15でならば塩水系と清水系
の粘度差が15%以下であり、Ca″の存在する様な過
酷な系において粘性変化の殆どないことを意味する。
In formula (1), if ≦0.15, the difference in viscosity between the salt water system and the fresh water system is 15% or less, which means that there is almost no viscosity change in a harsh system such as the presence of Ca''.

これに対しk > 0.15の場合、η1くη。である
とき塩水溶液は不溶化等による粘度低下が起こり、η凰
〉η。では塩水溶液はCa”+との架橋等によるゲル化
が生じた訳で、溶液の流動性、均一性が失われ、殆ど実
用に耐えないものである。
On the other hand, when k > 0.15, η1 × η. When , the viscosity of the aqueous salt solution decreases due to insolubilization, etc., and η凰〉η. In this case, the aqueous salt solution undergoes gelation due to crosslinking with Ca''+, and the fluidity and uniformity of the solution are lost, making it almost impractical.

この様な方法による超耐塩性の評価は以下の理由による
The evaluation of super salt tolerance by such a method is based on the following reasons.

即ち塩水系においても溶液性が保持されるポリマーにつ
いて、2重量%ポリマー溶液のCaCl2水溶液の1(
Nll量%までの濃度に対する粘度変化率が小さい場合
は、CaCl2濃度の4!&量%において極小値を取っ
て清水系粘度に対する粘度変化率としては最大となる傾
向があり、その変化率が15%以下となる場合に関して
、塩水・清水に限らず溶液の粘性が安定であり且つ透明
性も良好である様に、明らかに多価イオンに対する耐性
を示すことによるものである。従ってkの値が0.15
以下であることによって、超耐塩性を有するとされるも
のである。
That is, for a polymer that maintains its solubility even in a salt water system, 1 (
If the rate of viscosity change with respect to the concentration up to N11% is small, the CaCl2 concentration of 4! The viscosity change rate with respect to fresh water system viscosity tends to be the maximum when it takes a minimum value at In addition, it has good transparency, which is clearly due to its resistance to multivalent ions. Therefore, the value of k is 0.15
It is considered to have super salt resistance if the following conditions are met.

つまり従来のセルロース゛糸誘導体のカルボキシメチル
セルロース(CMC)、カルボキシメチルヒドロキシエ
チルセルロース(CMHEC)、スルホエチルセルロー
ス(SEC)、スルホプロピルセルロース(SPC)、
メチルセルロース(MC)、ヒドロキシエチルセルロー
ス(HEC)。
In other words, conventional cellulose yarn derivatives such as carboxymethylcellulose (CMC), carboxymethylhydroxyethylcellulose (CMHEC), sulfoethylcellulose (SEC), and sulfopropylcellulose (SPC),
Methylcellulose (MC), hydroxyethylcellulose (HEC).

ヒドロキシプロピルセルロース(HPC)、メチルヒド
ロキシエチルセルロース(MHEC)、メチルヒドロキ
シプロピルセルロース(MHPC)等では上述の超耐塩
性を見い出し得ない。
The above-mentioned super salt tolerance cannot be found in hydroxypropylcellulose (HPC), methylhydroxyethylcellulose (MHEC), methylhydroxypropylcellulose (MHPC), and the like.

たとえば非イオン系であれば多価金属等の対イオンの影
響が少ないと考えられるが、その合成の過程において反
応系がアルカリ中の気液固相反応であることから、エー
テル置換基やエーテル置換基を構成するアルキレンオキ
シドの重合度の不均一な分布によって、多価金属塩を含
む水溶液に溶解させた場合、ポリマー鎖の拡散が抑制さ
れる等の理由により、一様に粘度増加或いはゲル化を生
ずる傾向にある。MC,HEC,RPCはその典型的な
例といっていい。
For example, if it is a non-ionic system, counter ions such as polyvalent metals may have little effect, but since the reaction system in the synthesis process is a gas-liquid solid phase reaction in an alkali, ether substituents and ether substituents Due to the uneven distribution of the degree of polymerization of the alkylene oxide that constitutes the group, when dissolved in an aqueous solution containing a polyvalent metal salt, the diffusion of the polymer chain is suppressed, resulting in a uniform increase in viscosity or gelation. tends to occur. MC, HEC, and RPC are typical examples.

またイオン性を有するセルロース誘導体として代表的な
CMCは、カルボキシメチル基(以下0M基と略す)が
多価金属イオンと架橋またはキレートを形成してゲル化
または不溶化を生じてしまうため、たとえば特開昭57
−164101号に紹介されている耐塩性に優れている
とされるCMCについても超耐塩性は認められない。
In addition, CMC, which is a typical ionic cellulose derivative, has carboxymethyl groups (hereinafter abbreviated as 0M groups) that form crosslinks or chelates with polyvalent metal ions, resulting in gelation or insolubilization. Showa 57
Even with CMC introduced in No. 164101, which is said to have excellent salt resistance, super salt resistance is not recognized.

エーテル置換基にイオン性と非イオン性を組合わせたカ
ルボキシメチルヒドロキシエチルセルロース(CMHE
C)の様なセルロース混合エーテルも、前出のHEC、
CMCと同様な傾向を示すに留まる。
Carboxymethyl hydroxyethyl cellulose (CMHE) has a combination of ionic and nonionic ether substituents.
Cellulose mixed ethers such as C) can also be used with the above-mentioned HEC,
It only shows the same trend as CMC.

さらに強7ニオン性を有し特開昭59−187078号
にポーリング泥水組成物として紹介されるSECは、多
価金属イオンを含む系での優れたウォーターロス減少能
を発揮するが1本発明請求範囲のスルホエチル2&(以
下SE基と略す)の置換度ではミクロゲル等が生じ、超
耐塩性は得られていない。
Furthermore, SEC, which has strong 7-ionic properties and is introduced as a Pauling mud water composition in JP-A No. 59-187078, exhibits an excellent ability to reduce water loss in systems containing polyvalent metal ions. When the degree of substitution of sulfoethyl 2& (hereinafter abbreviated as SE group) falls within this range, microgels etc. are formed, and ultra-salt resistance is not obtained.

また特公昭52−29267号に掘削泥水調整剤として
紹介されているカルボキシメチルスルホアルキルセルロ
ース(CMSAC)は、前記CMCのCM基の塩水系に
おける弱い解離性を補う目的としてスルホフルキル化し
ているが、製法上刃ルボキシメチル化剤(クロロ酢酸類
)とスルホアルキル化剤(2−クロロエタンスルホン酸
ナトリウム等)とが同時に混在する系でエーテル化反応
を実施するため1反応系に存在する過剰のNaOH等の
水酸化アルカリに対して、クロロ酢酸等の末端のハライ
ドがクロロエタンスルホン酸ナトリウムよりもアルカリ
セルロースと置換し易い性質を有する等、CM化が優先
的に進むことによって。
Carboxymethyl sulfoalkyl cellulose (CMSAC), which is introduced as a drilling mud conditioner in Japanese Patent Publication No. 52-29267, is sulfofurkylated to compensate for the weak dissociation of the CM group of CMC in a salt water system. Ueba Since the etherification reaction is carried out in a system in which a ruboxymethylating agent (chloroacetic acids) and a sulfoalkylating agent (sodium 2-chloroethanesulfonate, etc.) are mixed simultaneously, excess water such as NaOH present in one reaction system is used. With respect to alkali oxides, terminal halide such as chloroacetic acid has a property that it is easier to replace with alkali cellulose than sodium chloroethanesulfonate, and CM conversion progresses preferentially.

立体障害性の大きなSE基の置換反応が局部的に進み、
極めて不均一なエーテル置換反応となり。
The substitution reaction of SE groups with large steric hindrance proceeds locally,
This results in an extremely heterogeneous ether substitution reaction.

得られた生成物は水溶液でもミクロゲルが生じたり、よ
してCaCl2水溶液系では不溶化、或いは極端な増粘
傾向を示したりゲル化する等、It11酎塩性を有して
いない。
The obtained product does not have It11 salt properties, such as forming microgels even in an aqueous solution, becoming insolubilized, or exhibiting an extreme tendency to increase viscosity or gelation in an aqueous CaCl2 solution system.

(発明が解決しようとする問題点) この様にセルロース系において多価金属イオンに対する
耐塩性が期待される。即ち超耐塩性を有する物質は存在
していない状況であり、産業上重要な問題である。
(Problems to be Solved by the Invention) As described above, salt resistance against polyvalent metal ions is expected in cellulose-based materials. In other words, there is no substance with super salt resistance, and this is an important problem in industry.

(問題点を解決するための手段) この様な状況に鑑み本発明者等は、上記目的に従って超
耐塩性を有する物質を得るべく鋭意研究を行なった結果
1本発明に至ったものである。
(Means for Solving the Problems) In view of the above circumstances, the present inventors conducted intensive research in order to obtain a substance having ultra-salt resistance in accordance with the above-mentioned objective, and as a result, they arrived at the present invention.

即ち、セルロースをマーセル化した後、まず初めにスル
ホエチル化を完全に行ない2次いでカルボキシメチル化
をすることを必須条件とする方法でエーテル化を行なう
ことによって得られ、そのCM基の置換度が0.2〜1
.0及びSE基の置換度が0.4〜1.0であり、下記
の式で表わされる超耐塩性係数:kがk≦0.15であ
って、多価イオンの存在する系においても水溶液と比較
して損色がなく極めて安定性に優れていることを特徴と
する新規なセルロースエーテルナトリウム塩(以下CM
SECと略す)である。
That is, it is obtained by mercerizing cellulose and then etherifying it by a method that requires complete sulfoethylation and then carboxymethylation, and the degree of substitution of the CM group is 0. .2~1
.. The degree of substitution of 0 and SE groups is 0.4 to 1.0, and the ultra-salt resistance coefficient: k expressed by the following formula is k≦0.15, and even in a system where polyvalent ions exist, the aqueous solution is A novel cellulose ether sodium salt (CM
(abbreviated as SEC).

1 η l −η 01 超耐塩性係数:に=□ η 0 本発明のCMSECは以下の方法によって製造される。1 η l −η 01 Super salt tolerance coefficient: ni=□ η 0 The CMSEC of the present invention is manufactured by the following method.

セルロースとして通常使用される粉末パルプを攪拌機に
仕込み、対パルプ重量倍率3〜10倍の。
Powdered pulp, which is commonly used as cellulose, is placed in a stirrer at a ratio of 3 to 10 times the weight of the pulp.

イソプロピルアルコール等の炭素数が3以下の低級アル
コールと水との混合溶媒、並びに無水グルコース残へ当
たり2.0〜5.0モルのNaOH等の水酸化アルカリ
を仕込み、マーセル化を行なった後、まず初めに第一の
エーテル化反応として無水グルコース残基当たり0.5
〜3.0モルの2−クロロエタンスルホン酸ナトリウム
を加え、完全にスルホエチル化した後9次に第二のエー
テル化反応として、無水グルコース残基当たり0.3〜
2.0モルのクロロ酢酸を加え、カルボキシメチル化す
る0反応終了後酢酸で過剰のNaOHを中和し、80%
メタノールで数回精製し、乾燥することによって目的の
CMSECを得る。
A mixed solvent of a lower alcohol having 3 or less carbon atoms such as isopropyl alcohol and water, and 2.0 to 5.0 mol of alkali hydroxide such as NaOH per anhydrous glucose residue are charged and mercerized. First, as the first etherification reaction, 0.5
~3.0 mol of sodium 2-chloroethanesulfonate is added and after complete sulfoethylation, 9 then as a second etherification reaction, 0.3~3.0 moles per anhydroglucose residue are added.
After the completion of the carboxymethylation reaction by adding 2.0 mol of chloroacetic acid, neutralize excess NaOH with acetic acid to give 80%
Purify with methanol several times and dry to obtain the desired CMSEC.

つまりCMSECの様なセルロース混合エーテルの製造
方法において、生成物が超耐塩性を有するためには、均
一なエーテル化反応を行なうこと、そのためにセルロー
スの剛直な結晶構造をより大きく破壊しておくことが必
要であり、CM化よりもSE化を先行させることを必須
の条件とするものである。この様な方法でエーテル化反
応を行なえば、SE基の立体障害性のために置換されな
かったグルコース残基の未置換部分を次に行なうCM化
によって効果的に置換され、均一に分布した置換基を有
するCMSECが得られる。
In other words, in the production method of cellulose mixed ether such as CMSEC, in order for the product to have ultra-salt resistance, the etherification reaction must be carried out uniformly, and in order to do so, the rigid crystal structure of cellulose must be destroyed to a greater extent. is necessary, and it is an essential condition that the SE version precedes the CM version. If the etherification reaction is carried out in this manner, the unsubstituted portion of the glucose residue that was not substituted due to the steric hindrance of the SE group will be effectively substituted by the subsequent CM conversion, resulting in a uniformly distributed substitution. A CMSEC with groups is obtained.

使用するエーテル化剤の中でスルホエチル化剤としては
!¥種の化合物が存在するが9本発明における2−クロ
ロエタンスルホン酸ナトリウムであれば反応性が高く、
エーテル化剤としてはその製造過程で副生ずるエタンジ
スルホン酸ナトリウム或いはIll化ナトリウムを含ん
だままの粗製物であっても構わない、ビニルスルホン酸
ナトリウムはアルカリ中で容易に加水分解或いは工合し
易く、またアルキルサルトン類は毒性があり、工業上好
ましくない。
Among the etherification agents used, sulfoethylation agents are the best! There are compounds of ¥9, but sodium 2-chloroethanesulfonate in the present invention has high reactivity.
The etherifying agent may be a crude product that still contains sodium ethanedisulfonate or sodium llide, which is produced as a by-product in the manufacturing process. Sodium vinylsulfonate is easily hydrolyzed or synthesized in an alkali; Furthermore, alkyl sultones are toxic and are not preferred industrially.

他のハロアルキルスルホン酸ナトリウムの場合、たとえ
ばクロロメタンスルホン酸ナトリウムは反応性が低く厳
しい反応条件が要求されるため、物性上好ましくない影
響を与える。また炭素tJ&3以上のハロアルキルスル
ホン酸ナトリウムの場合、NaOH等の水酸化アルカリ
に対して容易に加水分解反応が進むため、エーテル化剤
としては不適である。
In the case of other sodium haloalkylsulfonates, for example, sodium chloromethanesulfonate has low reactivity and requires severe reaction conditions, which has an unfavorable effect on physical properties. In addition, in the case of sodium haloalkylsulfonate having carbon tJ&3 or more, the hydrolysis reaction easily proceeds with alkali hydroxide such as NaOH, so it is unsuitable as an etherification agent.

尚、得られたCMSECの性状分析および物性評価につ
いては次の方法に従った(以下同じ)。
In addition, the following method was followed for the property analysis and physical property evaluation of the obtained CMSEC (the same applies hereinafter).

(1)エーテル置換度(DS) 本発明品のエーテル置換度は、コロイド滴定法によるN
a含有量及び酸素フラスコ燃焼法によるイオウ含有量の
測定値よりSE化度、CM化度として算出される。
(1) Degree of ether substitution (DS) The degree of ether substitution of the product of the present invention is determined by colloid titration method.
The SE degree and the CM degree are calculated from the a content and the sulfur content measured by the oxygen flask combustion method.

■Na含有量(試料1g当りの結合Naに消費されたN
/400ポリビニル硫酸カリ ウム水溶液の量(腸1)) 試料0.3〜0.5gを精秤し水に溶解しその1150
を分取して過剰のN/200メチルグリコールキトサン
水溶液101を加えたvk、トルイジンブルーを指示薬
としてN/40Gポリビニル硫酸カリウム水溶液で滴定
し下記の計算式によりNa含有量:A(履1)を求めた
■Na content (N consumed by bound Na per 1g of sample)
/400 Amount of polyvinyl potassium sulfate aqueous solution (intestine 1)) Accurately weigh 0.3 to 0.5 g of the sample, dissolve it in water, and add 1150 g of the sample.
VK was added with excess N/200 methyl glycol chitosan aqueous solution 101, titrated with N/40G polyvinyl potassium sulfate aqueous solution using toluidine blue as an indicator, and the Na content: A (1) was calculated using the following formula. I asked for it.

A(■1)冨 □ X:試料無水物Ikg S:Nへ00ポリビニル硫酸カリウム水溶液滴定量1 bニブラフク滴定量11 ■イオウ含有量 試料3〜5量gを精秤して予め10%過酸化水素水とS
素を封入した燃焼フラスコ中で完全に燃焼させた後、吸
収液について強酸性H型のイオン交換樹脂を通してイオ
ン交換し、2−プロパツール801を加え、トリンメチ
レンブルーを指示薬として0.0IN過塩1g酸バリウ
ムで滴定し下記の計算式によりイオウ含有m:sc%)
を求めた。
A(■1)Tense □ X: Anhydrous sample Ikg S: To N00 Polyvinyl potassium sulfate aqueous solution titration 1 b Nibrafuku titration 11 ■ Sulfur content Accurately weigh 3 to 5 g of sample and pre-contain 10% peroxide Hydrogen water and S
After complete combustion in a combustion flask filled with hydrogen, the absorption liquid was ion-exchanged through a strongly acidic H-type ion exchange resin, 2-propatool 801 was added, and 1 g of 0.0 IN supersalt was added using trimethylene blue as an indicator. Sulfur content m:sc%) by titration with barium acid and the following calculation formula
I asked for

y:試料無水物量 s : 0.01N過塩素酸バリウム滴定量mlbニブ
ランク滴定量腸l ■、■より求めたAおよびSより、下記の式を用いてS
E化度、CM化度を計算した。
y: sample anhydride amount s: 0.01N barium perchlorate titration amount mlb blank titration amount intestine From A and S determined from ■ and ■, S using the following formula
The degree of E conversion and the degree of CM conversion were calculated.

SE化度=□ 3203−50S  −32A 182S(0,4A / S ) CM化度=□ 3203−505 −32A (2)、iff耐塩性 試料2%溶液および8%CaCl2水溶液を調製した後
、試料4%水溶液を等分し、一方に対して等重量分の純
水を加え、他方に対して等重量分の8%CaCl2水溶
液を加え、2重量%試料の清水溶液、及び2重量%試料
の4重量%CaCl2水溶液を調整した。夫々について
一昼夜放置した後、25℃、B型粘度計にて粘度測定を
行ない、下記の式に基ずいて超耐塩性係数kを求めた。
Degree of SE = □ 3203-50S -32A 182S (0,4A/S) Degree of CM = □ 3203-505 -32A (2), after preparing a 2% solution and an 8% CaCl2 aqueous solution of the if salt-resistant sample, Divide the 4% aqueous solution into equal parts, add an equal weight of pure water to one, add an equal weight of 8% CaCl2 aqueous solution to the other, and separate the fresh water solution of the 2% sample and the fresh water solution of the 2% sample. A 4% by weight CaCl2 aqueous solution was prepared. After leaving each sample for a day and night, the viscosity was measured at 25° C. using a B-type viscometer, and the ultra-salt resistance coefficient k was determined based on the following formula.

1ηビη。I Itli酎塩性耐数:に;□ η 0 (3)透明度 白黒線の敷板の上に立てた円筒形のガラス管に試料2%
溶液を入れていき、一定の光源の下で白黒の境目が確認
されなくなった円柱の高さをもって透明度(Cm)とし
た。
1η biη. I Itli Salt resistance: □ η 0 (3) Transparency Place 2% of the sample in a cylindrical glass tube placed on a black and white lined board.
The solution was poured into the cylinder, and the height of the cylinder at which the border between black and white was no longer visible under a constant light source was defined as the transparency (Cm).

(発明の効果) 本発明に従って得られるCMSECは次の様な特性、す
なわちCaCl2水溶液の4f1量%濃度において本発
明の製°法以外によるCMSECおよび他のセルロース
誘導体の溶液が大幅に粘度変化を生ずるのに対し1本発
明のCMSECについては何ら粘度変化が見られず、超
耐塩性と°して極めて優れた物性を有することから9石
油掘削におけるセメンティング用添加剤を初め゛、釉釉
薬化化粧料等多価金属塩含む水溶液またはスラリー用添
加剤として最適である。
(Effects of the Invention) The CMSEC obtained according to the present invention has the following characteristics, that is, the viscosity of CMSEC and solutions of other cellulose derivatives produced by methods other than the present invention significantly change at a concentration of 4f1% by weight in a CaCl2 aqueous solution. On the other hand, the CMSEC of the present invention shows no change in viscosity and has extremely excellent physical properties such as ultra-salt resistance. It is ideal as an additive for aqueous solutions or slurries containing polyvalent metal salts.

(実施例) 以下に1本発明の実施例を記載する。(Example) An example of the present invention will be described below.

尚、比較例としてCMC、SEC、CMHEC並びに本
発明以外の方法によるCMSECも記載する。
As comparative examples, CMC, SEC, CMHEC, and CMSEC performed by a method other than the present invention are also described.

実施例1 粉末パルプ70gを31容ニーグーに仕込み、2−プロ
パノール300 gと40%NaOH水溶液811.4
gを加え、35℃で40分混合した0次に2−クロロエ
タンスルホン酸ナトリウム48.8gを加え、80℃下
60分間反応し0次いで十分冷却後、80%クロロ酢酸
25.7gを加え、 so℃下60分間反応させ、終了
後50%酢酸水溶液にて過剰のNaOHを中和し、80
%メタノール:1000gにて数回精製して十分脱塩し
た後、8o℃で60分間乾燥してCMSECを得た。
Example 1 70 g of powder pulp was charged into a 31 volume Nigu, and 300 g of 2-propanol and 811.4 g of 40% NaOH aqueous solution were added.
Then, 48.8 g of sodium 2-chloroethanesulfonate was added and reacted for 60 minutes at 80° C. After cooling sufficiently, 25.7 g of 80% chloroacetic acid was added. ℃ for 60 minutes, and after completion, excess NaOH was neutralized with 50% acetic acid aqueous solution.
% methanol: After purifying several times and sufficiently desalting using 1000 g, the product was dried at 8° C. for 60 minutes to obtain CMSEC.

得られたCMSECは、SE化度0.55(2−クロロ
エタンスルホン酸ナトリウムの有効利用率84.6%)
、CM化度0.34 (クロロ酢酸の有効利用率がSO
,t) 、清水系の粘度(1@omPa * s及びk
 −0,08テあった。
The obtained CMSEC has an SE degree of 0.55 (effective utilization rate of sodium 2-chloroethanesulfonate 84.6%)
, CM degree 0.34 (effective utilization rate of chloroacetic acid is SO
, t), viscosity of fresh water system (1@omPa*s and k
There was -0.08 te.

実施例2 実施例1においテ40%NaOH水溶液811.4g。Example 2 Example 1: 811.4 g of 40% NaOH aqueous solution.

2−クロロエタンスルホン酸ナトリウム48.11g及
び@O%クロロ酢醜2S、7gの代りに、 40%Ma
il(水溶液108.0g、粗り一ロロエタンスルホン
酸ナトリウム 133.2g (2−クロロエタンスル
ホン酸ナトリウム分54重量%)及び80%クロロ酢#
22.5gを使用した以外は実施例1と同様の方法によ
ってCMSECを得た。
48.11 g of sodium 2-chloroethanesulfonate and 40% Ma instead of 7 g of @O% chloroacetic acid 2S
il (aqueous solution 108.0 g, crude sodium mono-chloroethanesulfonate 133.2 g (sodium 2-chloroethanesulfonate content 54% by weight) and 80% chloroacetic acid #
CMSEC was obtained in the same manner as in Example 1 except that 22.5 g was used.

実施例3 実施例1において粉末パルプの代りに粉末コツトンリン
ターパルプを使用し、さらに2−クロロエタンスルホン
酸ナトリウム46.8g及び60%クロロ酢酸25.7
.の代りに、2−クロロエタンスルホン酸ナトリウム3
2.11g及び60%クロロ酢酸40.8gを使用した
以外は実施例1と同様の方法によってCMSECを得た
Example 3 In Example 1, powdered cotton linter pulp was used instead of powdered pulp, and 46.8 g of sodium 2-chloroethanesulfonate and 25.7 g of 60% chloroacetic acid were added.
.. Sodium 2-chloroethanesulfonate 3 instead of
CMSEC was obtained in the same manner as in Example 1 except that 2.11 g and 40.8 g of 60% chloroacetic acid were used.

実施例4 実施例1において原料仕込前に予め反応系を窒素雰囲気
とし、粉末木材パルプの代りに粉末コツトンリンターパ
ルプを使用し、2−クロロエタンスルホン酸ナトリウム
4s、sg及び60%クロロ酢M!25.7gの代りに
、2−クロロエタンスルホン酸ナトリウム43.2g及
び80%クロロ酢酸36.7gを使用した以外は実施例
1と同様の方法によってCMSECを得た。
Example 4 In Example 1, the reaction system was previously set to a nitrogen atmosphere before charging the raw materials, powdered cotton linter pulp was used instead of powdered wood pulp, sodium 2-chloroethanesulfonate was added to 4s, sg, and 60% chloroacetic acid M! CMSEC was obtained in the same manner as in Example 1 except that 43.2 g of sodium 2-chloroethanesulfonate and 36.7 g of 80% chloroacetic acid were used instead of 25.7 g.

比較例1 実施例1においテ、40%NaOH水溶液8B、4゜の
代りに40%N aOH水溶液108.Ogを使用し。
Comparative Example 1 In Example 1, 40% NaOH aqueous solution 8B, 40% NaOH aqueous solution 108. Using Og.

2−クロロエタンスルホン酸ナトリウム48.8g及び
60%クロロ酢M 25.7gの代りに2−クロロエタ
ンスルホン酸ナトリウム50.4gと60%クロロ酢酸
57.8gとを同時に仕込んでエーテル化反応を実施し
た以外は実施例1と同様の方法によってCMS E C
を得た。
Except that the etherification reaction was carried out by simultaneously charging 50.4 g of sodium 2-chloroethanesulfonate and 57.8 g of 60% chloroacetic acid instead of 48.8 g of sodium 2-chloroethanesulfonate and 25.7 g of 60% chloroacetic acid M. is CMS E C by the same method as in Example 1.
I got it.

比較例2 実施例1において、 40%NaOH水溶液8B、4゜
の代りに40%N aOH水溶液44.l]g 、 2
−クロロエタンスルホン酸ナトリウム4B、8gの代り
に2−クロロエタンスルホン酸ナトリウム 181.0
gをそれぞれ使用し、クロロ酢酸を使用しなかった以外
は実施例1と同様の方法によってSECを得た。
Comparative Example 2 In Example 1, 40% NaOH aqueous solution 44. l]g, 2
-Sodium 2-chloroethanesulfonate 181.0 in place of 8g of sodium chloroethanesulfonate 4B
SEC was obtained in the same manner as in Example 1, except that chloroacetic acid was used and chloroacetic acid was not used.

比較例3 市販カルボキシメチルヒドロキシエチルセルロース(C
MHEC) カルボキシメチル基: D S  O,32ヒドロキシ
エチル基: M S  0.81比較例4 市販カルボキシメチルセルロース(CMC)DS  O
,79 比較例5 市販カルボキシメチルセルロース(CMC)DS  1
.05 比較例6 ゛実施例1において、40%N aOH水溶液88.4
gの代りに40%NaOH水溶液108.0 gを使用
し。
Comparative Example 3 Commercially available carboxymethyl hydroxyethyl cellulose (C
MHEC) Carboxymethyl group: D SO, 32Hydroxyethyl group: M S 0.81 Comparative Example 4 Commercially available carboxymethyl cellulose (CMC) D SO
,79 Comparative Example 5 Commercially available carboxymethyl cellulose (CMC) DS 1
.. 05 Comparative Example 6 ゛In Example 1, 40% NaOH aqueous solution 88.4
108.0 g of 40% NaOH aqueous solution was used instead of 108.0 g of 40% NaOH aqueous solution.

先に6096クロロ酢酸25.7gの代りに6096ク
ロロ酢酸57.8 gを仕込みエーテル化反応を実施し
、次に2−クロロエタンスルホン酸ナトリウム46.8
gの代りに2−クロロエタンスルホン酸ナトリウム50
.4 gを仕込みエーテル化反応を実施した以外は実施
例1と同様の方法によってCMSECを得た。
First, instead of 25.7 g of 6096 chloroacetic acid, 57.8 g of 6096 chloroacetic acid was charged to carry out the etherification reaction, and then 46.8 g of sodium 2-chloroethanesulfonate was added.
Sodium 2-chloroethanesulfonate 50 instead of g
.. CMSEC was obtained in the same manner as in Example 1 except that 4 g was charged and the etherification reaction was performed.

上記、実施例および比較例で得られた物質の性状を第1
表に示す。
The properties of the substances obtained in the above Examples and Comparative Examples were
Shown in the table.

第1表 富MS:  ヒドロキシエチル基のモル置換度1本^七
 〇I基及び、SE基を得るに使用されたエーテル化剤
の有効利用率α)本発明のCMSECは実施例1〜4の
如くkの値が0.15以下即ち超耐塩性を有することが
明らかであり、公知の方法を用いて得られた比較例1及
び6のCMSECを大幅に上回る性能を有している。
Table 1 Rich MS: Molar substitution degree of hydroxyethyl group 1^7 〇 Effective utilization rate of the etherification agent used to obtain the I group and the SE group α) The CMSEC of the present invention is It is clear that the value of k is 0.15 or less, that is, it has ultra-salt resistance, and the performance is significantly superior to the CMSEC of Comparative Examples 1 and 6 obtained using a known method.

Claims (2)

【特許請求の範囲】[Claims] (1)カルボキシメチル基の置換度が0.2〜1.0及
びスルホエチル基の置換度が0.4〜1.0であり、下
記の式で表わされる超耐塩性係数:kがk≦0.15で
あることを特徴とする新規なセルロースエーテルナトリ
ウム塩。 超耐塩性係数:k=|η_1−η_0|/η_0 〔η_0:2重量%の上記試料の清水系粘度[mPa・
s] η_1:2重量%の上記試料の4重量%CaCl_2水
溶液系粘度[mPa・s]〕
(1) The degree of substitution of the carboxymethyl group is 0.2 to 1.0 and the degree of substitution of the sulfoethyl group is 0.4 to 1.0, and the super salt tolerance coefficient expressed by the following formula: k is k≦0 .15. Super salt resistance coefficient: k = |η_1−η_0|/η_0 [η_0: Clear water system viscosity of the above sample at 2% by weight [mPa・
s] η_1: Viscosity of 4 wt% CaCl_2 aqueous solution system of 2 wt% of the above sample [mPa・s]]
(2)エーテル化反応として、まず第一に完全にスルホ
エチル化を行ない、次いでカルボキシメチル化を行なう
ことを必須条件として製造することによって得られ、そ
のカルボキシメチル基の置換度が0.2〜1.0及びス
ルホエチル基の置換度が0.4〜1.0であり、下記の
式で表わされる超耐塩性係数:kがk≦0.15である
ことを特徴とする新規なセルロースエーテルナトリウム
塩の製造方法。 超耐塩性係数:k=|η_1−η_0|/η_0 〔η_0:2重量%の上記試料の清水系粘度[mPa・
s] η_1:2重量%の上記試料の4重量%CaCl_2水
溶液系粘度[mPa・s]〕
(2) It is obtained by manufacturing with the essential conditions that the etherification reaction first involves complete sulfoethylation and then carboxymethylation, and the degree of substitution of the carboxymethyl group is 0.2 to 1. A novel cellulose ether sodium salt, characterized in that the degree of substitution of the sulfoethyl group is 0.4 to 1.0, and the super salt resistance coefficient k expressed by the following formula is k≦0.15. manufacturing method. Super salt resistance coefficient: k = |η_1−η_0|/η_0 [η_0: Clear water system viscosity of the above sample at 2% by weight [mPa・
s] η_1: Viscosity of 4 wt% CaCl_2 aqueous solution system of 2 wt% of the above sample [mPa・s]]
JP1304187A 1987-01-22 1987-01-22 Novel cellulose ether sodium salt and its manufacture Pending JPS63182301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1304187A JPS63182301A (en) 1987-01-22 1987-01-22 Novel cellulose ether sodium salt and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1304187A JPS63182301A (en) 1987-01-22 1987-01-22 Novel cellulose ether sodium salt and its manufacture

Publications (1)

Publication Number Publication Date
JPS63182301A true JPS63182301A (en) 1988-07-27

Family

ID=11822026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1304187A Pending JPS63182301A (en) 1987-01-22 1987-01-22 Novel cellulose ether sodium salt and its manufacture

Country Status (1)

Country Link
JP (1) JPS63182301A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0319865A2 (en) * 1987-12-11 1989-06-14 Wolff Walsrode Aktiengesellschaft Carboxymethyl sulfoethyl cellulose and process for its preparation
US4972007A (en) * 1987-12-11 1990-11-20 Wolff Walsrode Ag Use of cellulose derivatives in drilling fluids
EP0601404A1 (en) * 1992-12-08 1994-06-15 Wolff Walsrode Aktiengesellschaft Highly substituted carboxymethyl sulfoethyl cellulose ether (CMSEC), process for producing the same and application for textile printing
EP0601403A1 (en) * 1992-12-08 1994-06-15 Wolff Walsrode Aktiengesellschaft Highly substituted carboxymethyl sulfoethyl cellulose ether, process for its preparation and printing paste for textile

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0319865A2 (en) * 1987-12-11 1989-06-14 Wolff Walsrode Aktiengesellschaft Carboxymethyl sulfoethyl cellulose and process for its preparation
EP0319865A3 (en) * 1987-12-11 1990-07-25 Wolff Walsrode Aktiengesellschaft Carboxymethyl sulfoethyl cellulose and process for its preparation
US4972007A (en) * 1987-12-11 1990-11-20 Wolff Walsrode Ag Use of cellulose derivatives in drilling fluids
US5001232A (en) * 1987-12-11 1991-03-19 Wolff Walsrode Ag Carboxymethylsulphoethyl celluloses and a process for their preparation
EP0601404A1 (en) * 1992-12-08 1994-06-15 Wolff Walsrode Aktiengesellschaft Highly substituted carboxymethyl sulfoethyl cellulose ether (CMSEC), process for producing the same and application for textile printing
EP0601403A1 (en) * 1992-12-08 1994-06-15 Wolff Walsrode Aktiengesellschaft Highly substituted carboxymethyl sulfoethyl cellulose ether, process for its preparation and printing paste for textile

Similar Documents

Publication Publication Date Title
JP3219889B2 (en) Water-soluble sulfoalkylhydroxyalkyl derivatives of cellulose and their use in gypsum-containing and cement-containing mixtures
JP2647166B2 (en) Hydroxyethyl cellulose hydrophobized by carboxymethyl and protective coating composition using the same
CA1206473A (en) Carboxymethyl hydroxyethyl cellulose composition
JPS5879002A (en) Manufacture of hydroxypropyl starch
JP3237796B2 (en) Use of water-soluble cellulose sulfoalkyl derivatives in gypsum and cement-containing formulations
US4458068A (en) Water-soluble, ternary cellulose ethers
US5395930A (en) Alkyl hydroxyalkyl cellulose ethers containing sulfoalkyl substituents
JPS6354721B2 (en)
JPH03146501A (en) Production of cellulose ether having high polymerization degree
JPH05178901A (en) Water-soluble sulfoethylcellulose ether having very high solution characteristics and its preparation
JP3002916B2 (en) Production method of cellulose mixed ether
JPS6037121B2 (en) Carboxymethylcellulose sodium salt
JPS63182301A (en) Novel cellulose ether sodium salt and its manufacture
US3936313A (en) Method of preparing additives for calcium sulphate plaster
JP3572213B2 (en) Low substituted hydroxypropylcellulose
JP2000119303A (en) Production of carboxymethyl cellulose alkali salt
JP7615049B2 (en) Process for producing crosslinked cellulose ethers
JPH09227601A (en) Production of sulfonated cellulose derivative
JPS62132901A (en) Production of cationic hydroxyalkyl cellulose
JP2872952B2 (en) Carboxymethylcellulose alkali salt
JPH0469641B2 (en)
JPS62149701A (en) Production of alkali metal salt of carboxymethylcellulose ether of low degree substitution
JP3870603B2 (en) Thiol-modified carboxymethylcellulose alkali salt and process for producing the same
JP2000186101A (en) Production of hydroxypropyl cellulose
JP3999962B2 (en) Method for producing carboxymethylcellulose alkali metal salt