[go: up one dir, main page]

JPS63181536A - Optical receiving equipment - Google Patents

Optical receiving equipment

Info

Publication number
JPS63181536A
JPS63181536A JP62013638A JP1363887A JPS63181536A JP S63181536 A JPS63181536 A JP S63181536A JP 62013638 A JP62013638 A JP 62013638A JP 1363887 A JP1363887 A JP 1363887A JP S63181536 A JPS63181536 A JP S63181536A
Authority
JP
Japan
Prior art keywords
circuit
output
current
peak value
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62013638A
Other languages
Japanese (ja)
Inventor
Tomohiko Nanbara
南原 智彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62013638A priority Critical patent/JPS63181536A/en
Publication of JPS63181536A publication Critical patent/JPS63181536A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To obtain an optical receiving equipment having good sensitivity and wide dynamic range by constituting a negative feedback loop by means of a constant-current circuit in order that the signal current of a photoelectric converting element is not increased by the input of excessive light beam. CONSTITUTION:When the input of the excessive light beam is supplied to an avalanche photodiode 1, the output amplitude from a preamplifier circuit 3 is increased to excess to saturate. Since the output from a second peak value detection circuit 11 which detects the output amplitude becomes larger, difference between a second reference voltage 12 and the output from the circuit 11 becomes larger and the output voltage value of a second error amplification circuit 13 becomes higher. Since the current capacity i1 of the constant-current circuit 14 connected to the second error amplification circuit 13 becomes larger if the output voltage value becomes higher, the current i2 flowing in the first and second load resistances 15 and 16 of the avalanche photodiode 1 is lowered and the saturation of the output from the pre-amplifier circuit 3 can be improved, thus the negative feedback loop can be obtained. When the input of light beam is small, the current capacity of the constant-current circuit 14 is equal to zero and the output from the pre-amplifier circuit 3 is controlled so that it becomes the maximum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光通信システムの構成費素である光受信装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical receiver that is a component of an optical communication system.

〔従来の技術〕[Conventional technology]

第4図は1例えば昭和56年3月発行の日本工業技術セ
ンター[光通信システムJ P221  の第2図に示
された従来の光受信装置を示すブロック図であ92図に
おいて(1)は光信号を電気信号に変換スルアバランシ
ェフォトダイオード、(2)はこのアバランシェフォト
ダイオード(1)のバイアスヲ供給する高圧発生回路、
(31は上記アバランシェ7オトダイオードfi+の電
流変化による信号ラミ圧変化による信号に変換する前置
増幅回路、(41はこの前置増幅回路(3)の出力を受
けて増幅利得が変化する可変利得増幅回路、(5)はこ
の可変利得増幅回路(4)の出力を受けて一定の利得で
増幅する主増幅回路。
Figure 4 is a block diagram showing a conventional optical receiver shown in Figure 2 of the Japan Industrial Technology Center [Optical Communication System JP 221] published in March 1980. A through avalanche photodiode that converts a signal into an electrical signal, (2) a high voltage generation circuit that supplies bias for this avalanche photodiode (1),
(31 is a preamplifier circuit that converts the signal due to the current change of the avalanche 7 otodiode fi+ into a signal due to a change in the lamination pressure, (41 is a variable gain whose amplification gain changes in response to the output of this preamplifier circuit (3) The amplifier circuit (5) is a main amplifier circuit that receives the output of the variable gain amplifier circuit (4) and amplifies it with a constant gain.

fil ldこの主増幅回路(5)の出力振幅レベルを
検知するピーク値検出回路、(7)は基糸電圧、(8−
はこの基糸電圧と前記ピーク値検出回路(6)の出力の
誤差を増幅し、上記可変利得増幅器(4)の利得制御電
圧および上記高圧発生回路(2)の出力電圧を制御する
誤差増幅回路、(9)は上記主増幅回路(5)の出力信
号の波形再生を行う識別再生回路、α1はこの識別再生
回路(91の信号出力端子である。
fil ldA peak value detection circuit that detects the output amplitude level of this main amplifier circuit (5), (7) is the basic thread voltage, (8-
is an error amplification circuit that amplifies the error between this baseline voltage and the output of the peak value detection circuit (6), and controls the gain control voltage of the variable gain amplifier (4) and the output voltage of the high voltage generation circuit (2). , (9) is an identification reproducing circuit for reproducing the waveform of the output signal of the main amplifier circuit (5), and α1 is a signal output terminal of this identification reproducing circuit (91).

次に、th作について説明する。光入力信号Pin(W
) Hアバランシェフォトダイオード(1)によって電
気信号ia (A)に変換すれる。この関係を式で表わ
十と下記のようになる。
Next, th work will be explained. Optical input signal Pin (W
) H is converted into an electrical signal ia (A) by the avalanche photodiode (1). This relationship can be expressed as an equation as shown below.

1a=a −M −Ptn            (
11アバランシエフオトダイオード(1)の出力室i1
aは、帰還抵抗Rf(Ω〕を有する前置増幅回路(3)
によって、電流−電圧変換されてvp(V)の出力をイ
r↓る。
1a=a −M −Ptn (
11 Output chamber i1 of avalanche photodiode (1)
a is a preamplifier circuit (3) having a feedback resistance Rf (Ω)
The current-to-voltage is converted by , and the output of vp (V) is generated.

Vp : Rf ・1af21 前置増幅回路(3)の出力は、可変利得増幅回路(41
゜主増幅回路(5)によって増幅され、識別再生回路(
9)でディジタル2値”1”、′0”の判定がなされる
Vp: Rf ・1af21 The output of the preamplifier circuit (3) is connected to the variable gain amplifier circuit (41
゜It is amplified by the main amplifier circuit (5), and the identification reproducing circuit (
In step 9), it is determined whether the digital binary values are "1" or "0".

識別再生回路(9)の入力に供給される信号振幅は常に
一定の値であることが望捷しいので、光入力レベルの変
化に応じて、可変利得増幅回路(4Iの利得ヲ変化させ
た#)、アバランシェフォトダイオード(1)に供給す
るバイアス重圧を変化させることによシ、この増倍率M
を可変させたシする[AGCj(オートケインコントロ
ールの略)フィードバックループを#l灰している。主
増幅回路(5)の出力振幅値は、AG6フイードバツク
ループの構成要素である誤差増幅回路(8)の参照電圧
(Vref)で調整可能である。
Since it is desirable that the signal amplitude supplied to the input of the identification and regeneration circuit (9) always be a constant value, a variable gain amplifier circuit (4I whose gain is changed according to changes in the optical input level) is used. ), this multiplication factor M can be increased by changing the bias pressure supplied to the avalanche photodiode (1).
[AGCj (abbreviation for auto cane control) feedback loop is used to vary the value. The output amplitude value of the main amplifier circuit (5) can be adjusted by the reference voltage (Vref) of the error amplifier circuit (8), which is a component of the AG6 feedback loop.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の光受信装置は1以上のように構成されているので
、最小受光電力を向上させるために前置増幅回路の帰還
抵抗値を大きくとると、光入力レベルが大きい時に、前
置増幅回路および可変利得増幅回路が飽和しやすくなる
という問題点があった。
Conventional optical receivers are configured as 1 or more, so if the feedback resistance value of the preamplifier circuit is increased in order to improve the minimum received light power, when the optical input level is high, the preamplifier circuit and There is a problem in that the variable gain amplifier circuit tends to become saturated.

この発明は、上記のような問題点を解消するためになさ
れたもので、高感度で、広いダイナミックレンジを有し
た光受信装置を得ることを目的とする。
The present invention was made to solve the above-mentioned problems, and an object of the present invention is to obtain an optical receiving device with high sensitivity and a wide dynamic range.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る光受信装置は、前置増幅回路の出力に第
2のピーク値検出回路を介して、第2の誤差増幅器を接
続し、この第2の誤差増幅回路の出力を定電流回路を介
して、アバランシェフォトダイオードのアノード側に接
続したものである。
In the optical receiving device according to the present invention, a second error amplifier is connected to the output of the preamplifier circuit via a second peak value detection circuit, and the output of the second error amplifier circuit is connected to the constant current circuit. It is connected to the anode side of the avalanche photodiode through the avalanche photodiode.

〔作用〕[Effect]

この発EJA(/l:おける光受信装置は、アバランシ
ェフォトダイオードのアノード911+に&gした定電
流回路によシ、過大な光入力がアバランシェフォトダイ
オードに供給された時の信号電流が低減され。
This optical receiving device in EJA (/l) uses a constant current circuit connected to the anode 911+ of the avalanche photodiode, so that the signal current is reduced when an excessive optical input is supplied to the avalanche photodiode.

前置増幅器の飽和レベルが改善される。The saturation level of the preamplifier is improved.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示す光受信装置のブロッ
ク図であ#)、第1図において、(1)はアバランシェ
フォトダイオード、(2)は高圧発生回路。
FIG. 1 is a block diagram of an optical receiver showing an embodiment of the present invention. In FIG. 1, (1) is an avalanche photodiode, and (2) is a high voltage generation circuit.

(3)け前置増幅回路、(41け可変利得増幅回路、(
5)は主増幅回路 161は第1のピーク値検出回路、
(71け第1の基準電圧、(81け第1の誤差増幅回路
、(9)は識別再生回路、 Qlは出力端子であυ、上
記(11〜軸は第4図に示す従来のものと同じである。
(3) 41-digit preamplifier circuit, (41-digit variable gain amplifier circuit, (
5) is the main amplifier circuit; 161 is the first peak value detection circuit;
(71st reference voltage, (81st error amplification circuit), (9) is an identification reproducing circuit, Ql is an output terminal υ, and the above (11th to axis are the conventional ones shown in Figure 4) It's the same.

αυは前置増幅器(3)の出力信号憑幅を検知する第2
のピーク値検出回路、O2は第2の基糸電圧、03はこ
の第2の基糸電圧azと前記ν2のピーク値検出回路a
0の出力の差を増幅する第2の誤差増幅回路、α4はこ
の第2の誤差増幅回路α3の出力電圧に応じて電流容量
が変動する定電流回路である。
αυ is the second
02 is the second base thread voltage, 03 is the peak value detection circuit a for this second base thread voltage az and the ν2.
The second error amplification circuit α4 that amplifies the difference between the outputs of 0 and 0 is a constant current circuit whose current capacity varies depending on the output voltage of the second error amplification circuit α3.

また、第2図は定電流回路α滲の動作を詳細に説明した
図であるが2図において、 a!19はアバランシェフ
ォトダイオードの第1の負荷抵抗、αGは第2の負荷抵
抗、αηはNPNの定電流源トランジスl。
In addition, Fig. 2 is a diagram explaining the operation of the constant current circuit α in detail, but in Fig. 2, a! 19 is a first load resistance of the avalanche photodiode, αG is a second load resistance, and αη is an NPN constant current source transistor l.

a8はこの定電流源トランジスタαηのエミッタ抵抗。a8 is the emitter resistance of this constant current source transistor αη.

a*urMe定戒流源トランジスタのベースバイアスを
決定する第1のベースブリーダ抵抗、(イ)は第2のペ
ースブ11−ダ抵抗である。
The first base bleeder resistor (A) determines the base bias of the a*urMe fixed current source transistor, and (A) is the second base bleeder resistor.

±記従来でし明し、たように、光入力信号Pinはアバ
ランシェフォトダイオード(11および前置増幅回路(
31によって電圧信号Vpに変換される。
± As explained previously, the optical input signal Pin is transmitted through the avalanche photodiode (11) and the preamplifier circuit (11).
31 into a voltage signal Vp.

(11,(2+式よシ、この電圧信号を式で表わすと次
のようVCなる。
(11, (2+ formula) If this voltage signal is expressed by the formula, it becomes VC as follows.

Vp ==Rf 、la ” Rf−a −M−Pin
     f31±式よυ、過大な光信号(Pin)が
供給された時には、比例圓係によシ装置増幅回路(3)
の出力振幅vpが増大することが明らかであるが1回路
構成による制限によジ飽和状態が発生する(第3図実?
IM)。前置増幅器(31の出力振幅(vp )が飽和
すると、主増幅回路(5)の出力波形は歪み、識別再生
回路(9)で忠実な再生が出来ない。そこで、飽和レベ
ルを改善するために、光入力が大きくなった時に、アバ
ランシェフォトダイオード(11の信号電流を低減子れ
ばよいことが、(31式よ)予想される。
Vp ==Rf, la ” Rf-a-M-Pin
According to the f31± formula, when an excessive optical signal (Pin) is supplied, the device amplifier circuit (3)
Although it is clear that the output amplitude vp increases, a saturation state occurs due to the limitation due to one circuit configuration (see Fig. 3).
IM). When the output amplitude (vp) of the preamplifier (31) is saturated, the output waveform of the main amplifier circuit (5) is distorted, and faithful reproduction cannot be performed by the discrimination/reproduction circuit (9).Therefore, in order to improve the saturation level, , it is expected (from formula 31) that when the optical input becomes large, it is sufficient to reduce the signal current of the avalanche photodiode (11).

この発明はアバランシェフォトダイオード(11の信号
電流を低減するために、一定の電流を流す機能を有する
定電流回路θ滲を設け、余剰な1′流をこれに分岐させ
た。定電流回路Iの一例は第2図に示すよう[NPHの
定電流源トランジス40’jを用いる。これのベースバ
イアスを制御することによって、エミッタ抵抗α8の端
子電圧が変化し、電流容に11を可変することができる
。この電流容量11を変化させれば、第1および第2の
負荷抵抗a9.αeに流れるアバランシェフォトダイオ
ード(11の信号電流12もそれに応じて変化させるこ
とができる。これは、高圧発生回路(2)からアバラン
シェフォトダイオードfilに流れ込む電流ioと、定
電流回路041の電流容量11と、アバランシェ7オト
ダイオード(1)の第1および第2の負荷抵抗σS。
In this invention, in order to reduce the signal current of the avalanche photodiode (11), a constant current circuit θ having a function of flowing a constant current is provided, and the excess 1' current is branched to this. As an example, as shown in Fig. 2, an NPH constant current source transistor 40'j is used. By controlling the base bias of this transistor, the terminal voltage of the emitter resistor α8 changes, and the current capacity can be varied by 11. By changing this current capacity 11, the signal current 12 of the avalanche photodiode (11) flowing through the first and second load resistors a9 and αe can also be changed accordingly. The current io flowing from (2) into the avalanche photodiode fil, the current capacity 11 of the constant current circuit 041, and the first and second load resistances σS of the avalanche 7 photodiode (1).

69に流れる電流12との間に、以下の関係式か成シ立
っているからである。
This is because the following relational expression holds true between the current 12 flowing through the current 69 and the current 12 flowing through the current 69.

10==11+12           +4!次に
、定電流回路の制御動作原理について説明中る。
10==11+12 +4! Next, the principle of control operation of the constant current circuit will be explained.

過大な光入力がアバランシェフォトダイオード(Ilr
供給されると、(3)式の関係よシ装置増幅回路(31
の出力振幅は過剰に増大し飽和する。この出力振幅を検
知している第2のピーク値検出回路(Illの出力も増
大する斤め、これと第2の基準電圧α邊との差が増大し
、第2の誤差増幅回路a3の出力電圧値は高くなる。こ
の出力電圧値が高く々ると、筆2の誤差増幅回路α3に
接続された定電流回路Iの電流容Mc11は大診くなる
ため、上記の理由からアバランシェフォトダイオードの
第1. 第20負荷抵抗a先 tJI3に流れる電流1
2は低下し、前置増幅回路(31の出力の飽和は改善さ
れるという負帰還ループを形成している。したがって、
光入力が小さい時には、定電流回路0の電流容量は0に
等しくなシ、前置増幅回路(3)の出力は最も大きくな
るように制御される。
Excessive optical input causes avalanche photodiode (Ilr
When supplied, according to the relationship of equation (3), the device amplifier circuit (31
The output amplitude of increases excessively and saturates. Since the output of the second peak value detection circuit (Ill) which detects this output amplitude also increases, the difference between this and the second reference voltage α increases, and the output of the second error amplification circuit a3 increases. The voltage value increases.If this output voltage value becomes high, the current capacity Mc11 of the constant current circuit I connected to the error amplifying circuit α3 of the brush 2 becomes large.For the above reason, the avalanche photodiode is 1st. Current 1 flowing through 20th load resistance a destination tJI3
2 decreases, forming a negative feedback loop in which the saturation of the output of the preamplifier circuit (31) is improved.
When the optical input is small, the current capacity of the constant current circuit 0 is equal to 0, and the output of the preamplifier circuit (3) is controlled to be the largest.

従来の前置増幅回路(3)の飽和レベルにおいて。At the saturation level of the conventional preamplifier circuit (3).

この発明の回路装置を用いて11と12が等しくなるよ
うに制御したとすれば、第3図の破巌のように従来の約
2倍に改善されることになるはずである。
If the circuit device of the present invention were to be used to control so that 11 and 12 were equal, the improvement would be approximately twice that of the conventional one, as shown in the diagram in FIG.

なお、上記実施例では、光−電気変換素子にアバランシ
ェフォトダイオード(1)を用いたものを示したが、増
倍作用を有しないフォトダイオードを用いてもよい。
Note that in the above embodiment, an avalanche photodiode (1) is used as the photo-electrical conversion element, but a photodiode that does not have a multiplication function may also be used.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば光・電気変換素子の信
号′(流が、過大光入力によってj曽太しないように定
電流回路による負帰還ループf構成したので、前置増幅
器の帰還抵抗値を大きく設定でき、高感度でダイナミッ
クレンジの広い光受信装置が得られる効果がある。
As described above, according to the present invention, the negative feedback loop f is configured using a constant current circuit so that the signal '(flow) of the optical-to-electrical conversion element does not become thicker due to excessive optical input. This has the effect of allowing a large value to be set and providing an optical receiver with high sensitivity and a wide dynamic range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による光受信装置を示ナブ
ロック図、第2図は定電流回路の一構成例による接続保
、菓3図は光入力レベルと前置増幅器の出力電圧振幅の
関係を示す図、第4図は従来の光受信装置を示すブロッ
ク図である。 (11はアバランシェフォトダイオード、(2)は高圧
発生回路、C3)は前置増幅回路、(42け可変利得増
幅回路、(5)は主増幅回路、(6)は第1のピーク値
検出回路、(7)け第1の基皐電圧、(81は第1の誤
差増幅回路、(91は識別再生回路、 allは第2の
ピーク値検出回路、α2は第2の基邸電圧、63jd第
2の誤差増幅回路、(I4は定電流回路である。 なお1図中、同一符号は同一、又は相当部分を示す。
Fig. 1 is a block diagram of an optical receiving device according to an embodiment of the present invention, Fig. 2 is a connection diagram of an example of the configuration of a constant current circuit, and Fig. 3 is a diagram showing the optical input level and the output voltage amplitude of the preamplifier. FIG. 4 is a block diagram showing a conventional optical receiver. (11 is an avalanche photodiode, (2) is a high voltage generation circuit, C3) is a preamplifier circuit, (42-digit variable gain amplifier circuit, (5) is a main amplifier circuit, (6) is a first peak value detection circuit , (7) is the first reference voltage, (81 is the first error amplification circuit, (91 is the identification reproducing circuit, all is the second peak value detection circuit, α2 is the second reference voltage, 63jd is the first reference voltage, 2, the error amplification circuit (I4 is a constant current circuit). Note that in Figure 1, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 入力光信号を電気信号に変換する光−電気変換素子と、
この光−電気変換素子の電流変化による信号を電圧変化
による信号に変換する前置増幅回路と、この前置増幅回
路の出力を受けて増幅利得が変化する可変利得増幅回路
と、この可変利得増幅回路の出力を受けて一定の利得で
増幅する主増幅回路と、この主増幅回路の出力振幅レベ
ルを検知する第1のピーク値検出回路と、第1の基準電
圧と前記第1のピーク値検出回路の出力の差を増幅し、
前記可変利得増幅器の利得制御電圧および前記光−電気
変換素子のバイアスを制御する電圧を供給する第1の誤
差増幅回路と、との第1の誤差増幅回路の出力を受けて
前記光−電気変換素子のバイアスを制御する高圧発生回
路と、前記主増幅回路の出力信号の波形再生を行う識別
再生回路と、前記前置増幅回路の出力振幅レベルを検知
する第2のピーク値検出回路と、第2の基準電圧と前記
第2のピーク値検出回路の出力の差を増幅する第2の誤
差増幅回路と、この第2の誤差増幅回路の出力を受けて
電流値を制御し、前記光−電気変換素子のアノードに供
給する定電流回路とを備えたことを特徴とする光受信装
置。
an optical-electrical conversion element that converts an input optical signal into an electrical signal;
A preamplifier circuit that converts a signal caused by a current change of this opto-electric conversion element into a signal caused by a voltage change, a variable gain amplifier circuit whose amplification gain changes in response to the output of this preamplifier circuit, and this variable gain amplification circuit. a main amplifier circuit that receives the output of the circuit and amplifies it with a constant gain; a first peak value detection circuit that detects the output amplitude level of the main amplifier circuit; a first reference voltage; and the first peak value detection circuit. Amplify the difference in the output of the circuit,
a first error amplification circuit that supplies a gain control voltage of the variable gain amplifier and a voltage that controls the bias of the opto-electric conversion element; a high voltage generation circuit for controlling the bias of the element; an identification and regeneration circuit for reproducing the waveform of the output signal of the main amplifier circuit; a second peak value detection circuit for detecting the output amplitude level of the preamplifier circuit; a second error amplification circuit for amplifying the difference between the second reference voltage and the output of the second peak value detection circuit; An optical receiver comprising: a constant current circuit that supplies an anode of a conversion element.
JP62013638A 1987-01-23 1987-01-23 Optical receiving equipment Pending JPS63181536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62013638A JPS63181536A (en) 1987-01-23 1987-01-23 Optical receiving equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62013638A JPS63181536A (en) 1987-01-23 1987-01-23 Optical receiving equipment

Publications (1)

Publication Number Publication Date
JPS63181536A true JPS63181536A (en) 1988-07-26

Family

ID=11838775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62013638A Pending JPS63181536A (en) 1987-01-23 1987-01-23 Optical receiving equipment

Country Status (1)

Country Link
JP (1) JPS63181536A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03118723A (en) * 1989-09-29 1991-05-21 Toshiba Corp Snubber circuit
JPH08307362A (en) * 1995-05-01 1996-11-22 Nec Corp Photodetector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151205A (en) * 1986-12-16 1988-06-23 Fujitsu Ltd optical receiver circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151205A (en) * 1986-12-16 1988-06-23 Fujitsu Ltd optical receiver circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03118723A (en) * 1989-09-29 1991-05-21 Toshiba Corp Snubber circuit
JPH08307362A (en) * 1995-05-01 1996-11-22 Nec Corp Photodetector

Similar Documents

Publication Publication Date Title
JPH09130157A (en) Preamplifier
JP4223304B2 (en) Optical receiver
JPS6234169B2 (en)
JPS6377171A (en) Optical receiver
JPS63181536A (en) Optical receiving equipment
JPS623625B2 (en)
JP2674110B2 (en) Temperature compensation circuit for avalanche photodiode bias circuit
WO1985004773A1 (en) Apparatus for increasing the dynamic range in an integrating optoelectric receiver
JP2543612B2 (en) Light receiving device
JPS58165020A (en) Photoelectric converter
JP2600462B2 (en) Optical receiving circuit
JP2510520Y2 (en) Preamplifier for optical receiver
JPS63151205A (en) optical receiver circuit
JPH04265004A (en) Apd bias voltage control circuit
JPH02108349A (en) Optical receiver
KR100221655B1 (en) Optical signal detection method and detector
JP3039875B2 (en) Optical receiver
JPS6313534A (en) Bias voltage control circuit
JP3518559B2 (en) Light reception signal detection circuit and light reception signal processing device
JPS63215126A (en) Light receiving amplifier
JPH079450Y2 (en) Optical receiver circuit
JPS62208724A (en) Optical receiver
JPH0250534A (en) Apd bias voltage control circuit
JPH0252534A (en) Optical reception amplifier circuit
JPS63131733A (en) Optical reception circuit