[go: up one dir, main page]

JPS63181143A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPS63181143A
JPS63181143A JP1369687A JP1369687A JPS63181143A JP S63181143 A JPS63181143 A JP S63181143A JP 1369687 A JP1369687 A JP 1369687A JP 1369687 A JP1369687 A JP 1369687A JP S63181143 A JPS63181143 A JP S63181143A
Authority
JP
Japan
Prior art keywords
recording
layers
magneto
layer
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1369687A
Other languages
Japanese (ja)
Other versions
JPH0834013B2 (en
Inventor
Tomokazu Ise
智一 伊勢
Takeshi Kawabe
武司 川辺
Masao Urayama
雅夫 浦山
Tateo Takase
高瀬 建雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP62013696A priority Critical patent/JPH0834013B2/en
Publication of JPS63181143A publication Critical patent/JPS63181143A/en
Publication of JPH0834013B2 publication Critical patent/JPH0834013B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material

Abstract

PURPOSE:To permit data recording of >=3 values in the same photoirradiation position by laminating magneto-optical recording layers having the recording sensitivity characteristics sufficiently different from each other on a substrate and changing the number of the layers recorded according to the degree of the heating quantity by the laser irradiation. CONSTITUTION:The magneto-optical recording media 1-n having the different magnetic characteristics are continuously laminated on the substrate (a) to form one recording medium. The term 'magnetic characteristics' refer to Curie temp., saturation magnetization and coercive force. This medium is formed by laminating n-layers in order of the media having the higher Curie temp. (lower recording sensitivity). The recording medium exhibits various bit forming states when a laser power 6 is changed at the time of recording. The respective layers of the magneto-optical recording layers form the recording bits successively in order of the higher recording sensitivity when the laser light (b) is projected thereto in such a manner. The magnetical interactions between the respective magnetic layers prevent disturbance of the bit formation by each of the respective recording layers. The recording capacity is thereby increased without increasing the diameter of the disk.

Description

【発明の詳細な説明】 く技術分野〉 未発明は、膜面に垂直な方向に磁気異方性を有しレーザ
ー光の照射によって情報の記録(垂直方向の磁化反転に
よる〕・再生(磁気光学効果による)を行なう光磁気記
録#N#’に積層することによって得られる光磁気記録
媒体に関する。
[Detailed description of the invention] Technical field> The uninvented technology has magnetic anisotropy in the direction perpendicular to the film surface, and information recording (by magnetization reversal in the perpendicular direction) and reproduction (by magnetization reversal in the perpendicular direction) and reproduction (by magnetization reversal in the perpendicular direction) by laser beam irradiation. The present invention relates to a magneto-optical recording medium obtained by laminating magneto-optical recording #N#'.

〈従来技術〉 近年、膜面に垂直な方向に磁気異方性を有しレーザー光
の照射によって情報の記録・再生を行なう光磁気記録媒
体は、ユーザーが消去・再記録でき、更に直径1μ溝程
度のスポット記録によって高密度記録できるものである
為、ディジタルオーディオディスク、文書ファイル、静
止画ディスク等の記録媒体として実用化されつつある。
<Prior art> In recent years, magneto-optical recording media, which have magnetic anisotropy in the direction perpendicular to the film surface and record and reproduce information by irradiation with laser light, are capable of being erased and re-recorded by the user, and have grooves with a diameter of 1 μm. Since high-density recording is possible with spot recording of a certain degree, it is being put into practical use as a recording medium for digital audio discs, document files, still image discs, etc.

又、高精細度のカラー動画記録用としての期待も高まっ
てきており一層の記録容量増加が望まれるようになって
いる。
In addition, expectations for use in high-definition color moving image recording are increasing, and further increases in recording capacity are desired.

しかし、光磁気記録媒体において最小記録ビット長は光
源の波長によって決まり、光源として近赤外半導体レー
ザを用いt場合には1μ溝が限界となり、記録密度の向
上も頭打ちになっている。
However, in magneto-optical recording media, the minimum recording bit length is determined by the wavelength of the light source, and when a near-infrared semiconductor laser is used as the light source, a 1 μm groove is the limit, and improvements in recording density have reached a plateau.

そこで、現状のディスク平板上に石ける2次元的記録か
ら3次元的記録への研究が行なわれるようになり、記録
層の多層化による大容量化が検討されている。その例と
しては、組成の等しいGdTbFe媒体を、誘電体であ
るS:02層を介して二層に重ねて記録層とし、各層に
書き込まれ乏ビットを波長の異なる二つの光で、各々、
独立にそれを読み出し、それらを組み合わせることで再
生信号とするものが創出されている。(ここで5i02
層は、二つの記録媒体間における磁気的な結合の防止及
び再生信号出力の制御の為に用^ており、その膜厚は1
〜2μmと記録媒体膜厚と比べて非常に厚い。)この方
法により記録密度は、単層のものと比べて2倍になる。
Therefore, research has begun to move from the current two-dimensional recording on flat disks to three-dimensional recording, and increasing capacity by increasing the number of recording layers is being considered. For example, a GdTbFe medium with the same composition is stacked in two layers with a dielectric S:02 layer interposed therebetween to form a recording layer, and the missing bits written in each layer are each irradiated with two lights of different wavelengths.
By reading them out independently and combining them, a reproduced signal is created. (here 5i02
The layer is used to prevent magnetic coupling between the two recording media and to control the reproduction signal output, and its thickness is 1.
~2 μm, which is extremely thick compared to the recording medium film thickness. ) This method doubles the recording density compared to a single layer.

しかし、以上の構造によれば録再用光学ヘッドが二つ必
要となりシステムが複雑化するという欠点をもっている
However, the above structure has the disadvantage that two recording/reproducing optical heads are required, which complicates the system.

〈発明の目的〉 本発明は、基板上に磁気特性の異なる光磁気記録媒体を
連続的に積層して一つの記録媒体とし、記録レーザーパ
ワーを制御することにより同一の光スポツト位置におい
て8値以上の多値記録を行なうことを目的とするもので
ある。
<Purpose of the Invention> The present invention consists of continuously stacking magneto-optical recording media with different magnetic properties on a substrate to form a single recording medium, and by controlling the recording laser power, 8 or more values can be recorded at the same optical spot position. The purpose of this is to perform multivalue recording.

尚、従来からの1.0の2値記録方式と3値以上の記録
方式の記録容量とを一般的な容量の定義を用いて比較し
てみると、mビットにおけるn値る。
Note that when comparing the recording capacities of the conventional 1.0 binary recording method and the 3-value or higher recording method using the general definition of capacity, the n value for m bits is found.

〈実施例〉 第1図に本発明に75)かる多値記録用の光磁気記録媒
体の一実施例の構成を示す。
<Embodiment> FIG. 1 shows the structure of an embodiment of a magneto-optical recording medium for multilevel recording according to the present invention.

+i[で、aはディスク基板、1−nはそれぞれ磁気特
性の異なる光磁気記録層である。図のように記録媒体は
光磁気記録層のn層の積層構造となっている。ここでい
う磁気特性とはキュリ一温度Tc、飽和磁化Ms及び保
磁力Heのことである。
+i[, a is a disk substrate, and 1-n are magneto-optical recording layers having different magnetic properties. As shown in the figure, the recording medium has a laminated structure of n layers of magneto-optical recording layers. The magnetic properties referred to here are Curie temperature Tc, saturation magnetization Ms, and coercive force He.

同図の光磁気記録媒体は基板以上にキュリ一温度の高い
(記録感度の低1.n)媒体の順にn層積層して作成し
たものであシ、記録時にレーザーパワーを変化させるこ
とにより、記録媒体は第2図のようなビット形成状態を
示す。
The magneto-optical recording medium shown in the figure is made by laminating n layers of media in the order of higher Curie temperatures (lower recording sensitivity 1.n) than the substrate, and by changing the laser power during recording, The recording medium shows a bit formation state as shown in FIG.

第2図でaはディスク基板、bはレーザー光、Cは磁化
の向き、dは記録されたビット、1=nはそれぞれ上記
磁気特性の異なる光磁気記録層である。同図に示される
様にレーザー光すを照射した時光磁気記録層は記録感度
の高い順に各層が記録ビットを形成していく。尚、各記
録層間での磁気的相互作用が各記録層ごとでのビット形
成金妨げる(例えば、第n層目にビットを形成すると、
その磁気的相互作用のため、記録レーザーパワーに依ら
ず第n−1層目にビットが形成されてしまう。)ことや
ないよう各層の磁気特性は以下の2つの条件を満たすこ
とが望ましい。
In FIG. 2, a is a disk substrate, b is a laser beam, C is a direction of magnetization, d is a recorded bit, and 1=n is a magneto-optical recording layer having different magnetic properties. As shown in the figure, when the magneto-optical recording layer is irradiated with a laser beam, recording bits are formed in each layer in the order of recording sensitivity. Note that magnetic interaction between each recording layer hinders bit formation in each recording layer (for example, when a bit is formed in the nth layer,
Because of this magnetic interaction, bits are formed in the (n-1)th layer regardless of the recording laser power. ) It is desirable that the magnetic properties of each layer satisfy the following two conditions.

■ Tc (k−1) >Tc(kl> Tc (k+
1)■ Ms (k−1)t(k−s) 、Ms(kl
t[k) ・Ms(k+x)j(k+t)の大きさが特
定の関係にある(実施例においてn=2のときの実験デ
ータを示す。)。
■ Tc (k-1) > Tc (kl> Tc (k+
1) ■ Ms (k-1)t(ks), Ms(kl
The magnitude of t[k) ·Ms(k+x)j(k+t) has a specific relationship (experimental data when n=2 is shown in the example).

(2≦に≦n−1) ここで、Tc(k  1 ) −Tc(kl−Tc(k
+1)は夫々基板側力・ら数えて1(−1番目、に番目
、 l(+1番目の記録層のキュリ一温度である。また
Ms(k −1)t(k−s)、 Msikl t(k
l−MsCk+t)t(k+x)は各々、基板側力・ら
数えてに一1番目、に番目、に+1番目の記録層の飽和
磁化MBと膜厚tの積である。以上よシ記録パワーを制
御することによりn+1種類のビット形成状態をとるこ
とが分かる。そして再生は、これらのビット形成状態を
レーザー光を用いカー回転角又はファラデイー回転角の
大きさの違いとして読み出すことによシ行なわれる。こ
のようにして得られる信号出力を識別することにより最
大で(n+1 )値記録が可能である。尚、レーザーの
反射光を用いて記録信号を読み出す際第n番目の媒体の
磁化状態をも検出可能とするためには、レーザー光の強
度の、減衰を考慮して、第、1番目から第n−1番目ま
での媒体膜厚の総和を約500λ以下に押えなければな
らない。
(2≦≦n-1) Here, Tc(k 1 ) −Tc(kl−Tc(k
+1) are the Curie temperature of the recording layer of 1(-1st, 2nd, l(+1st) counting the substrate side force, respectively. Also, Ms(k -1)t(ks), Msikl t (k
l-MsCk+t)t(k+x) are the products of the saturation magnetization MB and the film thickness t of the 11th, 2nd, and +1st recording layers, respectively, counting the substrate side force. It can be seen from the above that by controlling the recording power, n+1 types of bit formation states can be obtained. Reproduction is then performed by reading out the state of these bit formations as differences in the magnitude of the Kerr rotation angle or Faraday rotation angle using a laser beam. By identifying the signal outputs obtained in this way, it is possible to record up to (n+1) values. In addition, in order to be able to detect the magnetization state of the n-th medium when reading the recording signal using reflected laser light, the magnetic state of the n-th medium must be detected by The total thickness of the media up to the (n-1)th layer must be kept to about 500λ or less.

第3図に3値記録用光磁気記録媒体の構成を示す。同図
でaはガラスディスク基板、e、fは透明絶縁体膜であ
るSiO膜、1は希土類−遷移金属合金からなる光磁気
記録層である非晶質GdTbFeCo膜、2は同じ< 
TbFe膜である。同図のように記録層は、GdTbF
eCo層とTbFe層の積層構造になっている。ここで
第1第目のSin/meはカー回転角エンハンス層とし
て、又第4番目のSiO層fは保護膜として用いてbる
。GdTbFeC。
FIG. 3 shows the structure of a magneto-optical recording medium for ternary recording. In the figure, a is a glass disk substrate, e and f are SiO films that are transparent insulating films, 1 is an amorphous GdTbFeCo film that is a magneto-optical recording layer made of a rare earth-transition metal alloy, and 2 is the same <
It is a TbFe film. As shown in the figure, the recording layer is GdTbF
It has a laminated structure of an eCo layer and a TbFe layer. Here, the first Sin/me is used as a Kerr rotation angle enhancement layer, and the fourth SiO layer f is used as a protective film b. GdTbFeC.

層、TbFe層のキュリ一温度は各々300℃以上11
0〜140℃であり、記録感度はTbFe媒体の方が高
くレーザー光を照射しt際、低AパワーでGdTbFe
CoJ−1よりも先にTbF e層2にビットが形成さ
れる。ゆえに、この記録媒体はレーザーパワーの大きさ
により第4図(al 、 (bl 、 (dに示す3種
類の状態をとる。同図で、aはディスク基板、bはレー
ザー光、Cは磁化の向き、dはビット、lはGdTbF
eCo層、2はThF4層である。C3iO層は省略し
た。)同図[al 、 [bl 、 fclの各状態は
、それぞれ記録前、TbFe層にのみビット形成、Gd
TbFeCo層lとTbF e層2共にビット形成の状
態を表わす。以下これらの状態をta)状態、(b)状
態、(C)状態とする。
The Curie temperatures of the TbFe layer and TbFe layer are each 300°C or higher11
0 to 140°C, and the recording sensitivity is higher for TbFe media than for GdTbFe media at low A power when irradiated with laser light.
Bits are formed in the TbFe layer 2 before CoJ-1. Therefore, this recording medium takes on three types of states shown in Figure 4 (al, (bl, and d) depending on the magnitude of the laser power. In the figure, a is the disk substrate, b is the laser beam, and C is the magnetization state. direction, d is bit, l is GdTbF
The eCo layer 2 is a ThF4 layer. The C3iO layer was omitted. ) In the same figure, the states [al, [bl, and fcl] are before recording, bit formation only in the TbFe layer, and Gd
Both the TbFeCo layer 1 and the TbFe layer 2 represent the state of bit formation. Hereinafter, these states will be referred to as ta) state, (b) state, and (C) state.

ここで注意しなければならないことは、GdTbFeC
o層l及びTdFe層2が上記しtキュリ一点の大小関
係を満足していても、記録媒体の組成からくる飽和磁化
Msの大きさ及びその膜厚むによっては(bl状態を形
成できない(室温におりで安定に存在しない。)ことが
あることである。
What must be noted here is that GdTbFeC
Even if the o layer l and the TdFe layer 2 satisfy the above-mentioned size relationship of one tCurie point, the bl state cannot be formed (at room temperature ).

第5図に記録層第1層目1を (Qdx7b Zoo−x )14.9〜21.5 (
Fe 70 Co ao )85.1〜78.5(at
om%)、記録層第2層目2をT b xs、o−′、
22.o F e 84.0〜7s、9(atom %
 )とした2層構造ディスクを用いて録再実験を行っ之
ときの書き込み状態についての結果を示す。
FIG. 5 shows the first layer 1 of the recording layer (Qdx7b Zoo-x) 14.9 to 21.5 (
Fe70Coao)85.1~78.5(at
om%), the second recording layer 2 is T b xs, o-',
22. o Fe 84.0-7s, 9 (atom %
The results of a recording/reproduction experiment using a double-layered disc (2) are shown below.

縦軸、横軸に各々記録層を構成している二つの層のそれ
ぞれの飽和磁化Msと膜厚tの積をとり、その組み合わ
せによってはfbl状態が得られないことをN認した。
The product of the saturation magnetization Ms and the film thickness t of each of the two layers constituting the recording layer is plotted on the vertical and horizontal axes, and it is confirmed that the fbl state cannot be obtained depending on the combination.

図中、O印は記録パワー制御により(a) 、 fbl
 、 [clの各状態をとりえるものであり、X印は(
alとfclの状態しかとらないものである。これよυ
斜線領域では[b)状態を形成できないと考えられる。
In the figure, O mark indicates (a), fbl due to recording power control.
, [cl can take on each state, and the X mark is (
It can only take the states al and fcl. This is it υ
It is considered that state [b] cannot be formed in the shaded area.

第3図の記録媒体の飽和磁化Ms及び膜厚tは第1表の
ようになっており、これは第5図中のA点に位置するも
のである。
The saturation magnetization Ms and film thickness t of the recording medium shown in FIG. 3 are as shown in Table 1, which is located at point A in FIG.

第1表 第5図におAては、記録層第1層目lが(GdxTbl
oo−)Ot4.c+〜21.5 (Fe7oCOao
)so、x〜78.5・・・(X=70〜100)であ
り、記録層第2層目2がT b 16.0〜22.OF
e 84.O〜78.0とした2層構造ディスクにおい
て、記録層第1層目lのMS−tが2.5 X 10−
’ 二二二・cmより大で且つ記録層第2C 層目2のMs−tが6 X 10−’ −!−E!!−
!!−・c mより大C である両方の条件を満足すれば3値記録が可能であるこ
とを示してbる。
At A in Table 1 and Figure 5, the first layer l of the recording layer is (GdxTbl
oo-)Ot4. c+~21.5 (Fe7oCOao
) so, x~78.5... (X=70~100), and the second recording layer 2 has T b 16.0~22. OF
e84. In a two-layer disc with a temperature of O~78.0, the MS-t of the first recording layer is 2.5 x 10-
' is larger than 222 cm and the Ms-t of the second recording layer C is 6 x 10-' -! -E! ! −
! ! It is shown that ternary recording is possible if both conditions of -.cm and C greater than m are satisfied.

第6図に記録周波数IMHz、ディスク記録半径55鵡
、ディスク回転数180 Or、p、m、の条件下にお
いて得られたースペクトラムを示す。同図(alは(b
l状態下での0項スペクトラム、同図(blは(cl状
態下での♀スペクトラムである。(bt状aテ47.0
 dB 、fcl状態で57.2dB得られており、各
々ディジタル記録に対して十分な大きさとなっている。
FIG. 6 shows the spectrum obtained under the conditions of a recording frequency of IMHz, a disk recording radius of 55 mm, and a disk rotation speed of 180 Or, p, and m. The same figure (al is (b
0-term spectrum under l state, same figure (bl is ♀ spectrum under cl state. (bt state ate 47.0
57.2 dB was obtained in the dB and fcl states, each of which is large enough for digital recording.

−iた第7図に上記した両値に対応する再生波形出力(
振幅)を示す。fa)状態は0レベルであり、(al 
、 ibl 、 fcl各状態は電気的に十分識別でき
るものとなっている。そ頃てこれらを−1,0,1の3
値信号として処理することにより3値記録が可能となる
-i Figure 7 shows the reproduced waveform output (
amplitude). fa) state is at level 0, and (al
, ibl, and fcl can be sufficiently distinguished electrically. About that time, I changed these to -1, 0, 1.
By processing it as a value signal, three-value recording becomes possible.

さらに、第8図にfal状態、(b)状態、(C)状態
を得るために必要なパワーを補助磁場(ビットの形成を
補助する磁場)HB=0.800.500 0eの8つ
の場合に対して示す。同図で縦軸は繋値、横軸は記録レ
ーザーパワーである。補助磁場の大きさに依らず、各状
態を得る念めの記録パワー値が広rのに対し、各状態間
のしきい値パワー幅が狭いことから記録パワー制御は容
易であることが分力・る。しかし、補助磁場が小さい場
合、ibl 、 (cl各伏態における家が低く(特に
HB−00eで著しく低い)なることから、補助磁場は
、記録ビットが大きくなり過ぎない程度に大きい方が良
い。
Furthermore, Fig. 8 shows the power required to obtain the fal state, (b) state, and (C) state in eight cases of auxiliary magnetic field (magnetic field that assists bit formation) HB = 0.800.500 0e. Shown against. In the figure, the vertical axis is the connection value, and the horizontal axis is the recording laser power. Regardless of the magnitude of the auxiliary magnetic field, the recording power value to obtain each state is wide, but the threshold power width between each state is narrow, making it easy to control the recording power.・Ru. However, if the auxiliary magnetic field is small, ibl, (cl) will be low in each prone state (particularly significantly low in HB-00e), so it is better that the auxiliary magnetic field is large enough to prevent the recording bit from becoming too large.

次に、同ディスク構造において記録層第1層目(GdT
bFeCo媒体)の膜厚tを変えていったときにTbl
状態、(C)状態より得られる%を第2表に示す。測定
条件は上記条件と同じである。
Next, in the same disk structure, the first recording layer (GdT
When the film thickness t of bFeCo medium) is changed, Tbl
Table 2 shows the percentage obtained from the state and (C) state. The measurement conditions are the same as above.

%2表 膜厚を薄くすることによJ (t)l状態から得られる
家を上げることができる。これは、記録層第2層目(T
bFe媒体)25為らの信号の減衰量が少なくなる之め
と考える。以上(b) 、 (cl状態に詔ける再生信
号の宅値、再生波形出力の大きさ及び記録パワーの制御
性から、ディスクは8値記録用として十分な特性を付し
、これにより記録容量は従来の2値記録と比べて約58
−増加することになる。尚、未発明に係る構成によれば
従来の単層記録媒体の場合と同様、単一の光学ヘッドの
みで録再の両方を行なうことができる。
%2 By reducing the surface film thickness, the value obtained from the J(t)l state can be increased. This is the second recording layer (T
It is considered that the attenuation amount of the signal due to the bFe medium) 25 is reduced. Above (b), (from the value of the reproduced signal that can be applied to the CL state, the magnitude of the reproduced waveform output, and the controllability of the recording power, the disk has sufficient characteristics for 8-level recording, and the recording capacity is thereby increased. Approximately 58 compared to conventional binary recording
- will increase. Incidentally, according to the configuration according to the invention, both recording and reproduction can be performed using only a single optical head, as in the case of a conventional single-layer recording medium.

〈発明の効果〉 以上、本発明によれば ・ディスク径を大きくすることなく記録容量を増加させ
ることができる。
<Effects of the Invention> As described above, according to the present invention, the recording capacity can be increased without increasing the disk diameter.

一情報転送レートを増加させることができる。- The information transfer rate can be increased.

―一つの光学ヘッドで記録再生ができる。- Recording and playback can be done with a single optical head.

等々、光磁気ディスクの性能を大幅に向上させることが
できる。
Etc., the performance of magneto-optical disks can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にか力ふる光磁気記録媒体の一実施例の
構成説明図、第2図はそのビット形成状態を示す説明図
、第8図はa値記録用光磁気記録媒体の構成説明図、第
4図はそのビット形成状態を示す説明図、%5図は記録
条件の実験結果を示す説明図、第6図は繋比スペクトル
の波形図、第7図は出力信号の波形図、第8図は家比の
補助磁場の変化による測定グラフ図。 図中 1.2.・4・:・n:記録層 代理人 弁理士 杉 山 毅 至(他1名)b−一1 
 /I”)シ1、         會/l’7−欠θ
l#z  rO〜σ    八a どシト拡       誇にど、トπお〜纂4 口 rbF# REF/QOd8m   ArrlodB      
  MKRΔ1351HzREF  10.OdBm 
  Arrlo dB       MKRΔ1901
tHz1町 6 図 tbノ $7(21 手続補正書 20発明の名称 光磁気記録媒体 3、補正をする者 事件との関係  特許出願人 住 所 8545大阪市阿倍野区長池町22番22号名
 称 (504)シャープ株式会社 代表者 辻   晴 雄 4、代理人 自     発 6、補正の対象 6、62−′ニ ア、補正の内容 (1)  明細書の第5頁第4行目乃至第19行目の1
−ことの・・・積である。」を「ことのないよう各層の
飽和磁化MSと膜厚tの積(MS−t)が特定の条件を
満たすよう設定することが必要である。 n = 2の時の条件については後述する。 またキュリ一温度TCについては次の関係にあることが
望ましい。 TC(+)>TC(2)>・>TC(n−2) >To
(n−1)>T((n)又は、To(1)< T((2
)<−< T。(n−2) < ”r(、(n−’I 
)< Tc(n)ここで、T c (k)は基板側から
数えてに番目の記録層のキュリ一温度を示す。(但し、
1≦に≦n)Jと補正する。 (2)明細書の第6頁第■2行目の「構成」を「実施例
の構成」と補正する。
FIG. 1 is an explanatory diagram of the structure of an embodiment of the magneto-optical recording medium according to the present invention, FIG. 2 is an explanatory diagram showing the state of bit formation, and FIG. 8 is the structure of the magneto-optical recording medium for a-value recording. Explanatory diagram, Figure 4 is an explanatory diagram showing the state of bit formation, Figure %5 is an explanatory diagram showing the experimental results of recording conditions, Figure 6 is a waveform diagram of the connection ratio spectrum, and Figure 7 is a waveform diagram of the output signal. , Fig. 8 is a measurement graph diagram based on changes in the auxiliary magnetic field. In the figure 1.2.・4・:・n: Record layer agent Patent attorney Takeshi Sugiyama (1 other person) b-11
/I'') shi1, meeting/l'7-miss θ
l#z rO~σ 8a Doshito expansion proudly, Toπo~纂 4 mouth rbF# REF/QOd8m ArrlodB
MKRΔ1351HzREF 10. OdBm
Arrlo dB MKRΔ1901
tHz1 Town 6 Figure tb no $7 (21 Procedural amendment 20 Name of the invention Magneto-optical recording medium 3, Relationship to the person making the amendment case Patent applicant address 8545 22-22 Nagaike-cho, Abeno-ku, Osaka City Name (504) ) Sharp Corporation Representative Haruo Tsuji 4, Agent voluntarily 6, Subject of amendment 6, 62-' Near, Contents of amendment (1) Page 5, line 4 to line 19, 1 of the specification
-It is the product of... It is necessary to set the product (MS-t) of the saturation magnetization MS and the film thickness t of each layer to meet a specific condition to avoid the problem of ``.'' The conditions when n = 2 will be described later. It is also desirable that the Curie temperature TC has the following relationship: TC(+)>TC(2)>・>TC(n-2)>To
(n-1)>T((n) or To(1)<T((2
)<-<T. (n-2) <"r(,(n-'I
)<Tc(n) Here, Tc(k) represents the Curie temperature of the recording layer counting from the substrate side. (however,
Correct as 1≦≦n)J. (2) "Configuration" in the second line of page 6 of the specification is amended to read "configuration of the embodiment."

Claims (1)

【特許請求の範囲】[Claims] 1、基板上に互いに記録感度特性が充分異なる光磁気記
録層を積層し、レーザ照射による加熱量の程度に応じて
記録される層の数を変化せしめることで同一の光照射位
置で3値以上のデータ記録を可能としたことを特徴とす
る光磁気記録媒体。
1. By stacking magneto-optical recording layers with sufficiently different recording sensitivity characteristics on a substrate and changing the number of recorded layers depending on the degree of heating by laser irradiation, three or more values can be recorded at the same light irradiation position. A magneto-optical recording medium characterized by being capable of recording data.
JP62013696A 1987-01-22 1987-01-22 Magneto-optical recording medium Expired - Lifetime JPH0834013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62013696A JPH0834013B2 (en) 1987-01-22 1987-01-22 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62013696A JPH0834013B2 (en) 1987-01-22 1987-01-22 Magneto-optical recording medium

Publications (2)

Publication Number Publication Date
JPS63181143A true JPS63181143A (en) 1988-07-26
JPH0834013B2 JPH0834013B2 (en) 1996-03-29

Family

ID=11840358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62013696A Expired - Lifetime JPH0834013B2 (en) 1987-01-22 1987-01-22 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH0834013B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417239A (en) * 1987-07-10 1989-01-20 Hitachi Ltd Multi-layered magneto-optical disk and recording method thereof
JPH03278346A (en) * 1990-03-13 1991-12-10 Nec Corp Magneto-optical recording medium and magneto-optical recording method
US5481508A (en) * 1989-09-05 1996-01-02 Mitsubishi Denki Kabushiki Kaisha Magneto-optic recording medium method of manufacturing the same and magneto-optic recording system
EP0673025B1 (en) * 1994-03-15 2002-05-15 Fujitsu Limited Magneto-optical recording medium and method of using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125903A (en) * 1983-12-09 1985-07-05 Sony Corp Thermomagneto-optical recording system
JPS61107502A (en) * 1984-10-30 1986-05-26 Brother Ind Ltd magneto-optical recording device
JPS61107552A (en) * 1984-10-30 1986-05-26 Brother Ind Ltd magneto-optical recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125903A (en) * 1983-12-09 1985-07-05 Sony Corp Thermomagneto-optical recording system
JPS61107502A (en) * 1984-10-30 1986-05-26 Brother Ind Ltd magneto-optical recording device
JPS61107552A (en) * 1984-10-30 1986-05-26 Brother Ind Ltd magneto-optical recording medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417239A (en) * 1987-07-10 1989-01-20 Hitachi Ltd Multi-layered magneto-optical disk and recording method thereof
US5481508A (en) * 1989-09-05 1996-01-02 Mitsubishi Denki Kabushiki Kaisha Magneto-optic recording medium method of manufacturing the same and magneto-optic recording system
JPH03278346A (en) * 1990-03-13 1991-12-10 Nec Corp Magneto-optical recording medium and magneto-optical recording method
EP0673025B1 (en) * 1994-03-15 2002-05-15 Fujitsu Limited Magneto-optical recording medium and method of using same

Also Published As

Publication number Publication date
JPH0834013B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
JPH05144106A (en) Magneto-optical disk and reproducing method
JPS63181143A (en) Magneto-optical recording medium
TWI234154B (en) Optical recording medium, magnetic-optical recording medium and optical memory apparatus
TWI236005B (en) Optical recording/reproduction method and optical recording medium
JP3128095B2 (en) Recording / playback method
JP3467574B2 (en) Magneto-optical recording medium and data recording method
JPH0350342B2 (en)
JPS61269248A (en) Photomagnetic disk
JPH05342670A (en) Magneto-optical recording medium and recording and reproducing method using the medium
JP2749537B2 (en) Magneto-optical recording medium for short wavelength
JP2778526B2 (en) Magneto-optical recording medium and its recording / reproducing method
JP3664841B2 (en) Multilayer magneto-optical memory
JPH08153345A (en) Magneto-optical recording medium
JP2000285544A (en) Magnetooptic recording and reproducing device
JPH05217227A (en) Exchange coupled two-layered magneto-optical recording medium
JPS6120244A (en) Magnetic recording medium
JPH0458662B2 (en)
JPH03105744A (en) Structure of information recording medium
JPH07141709A (en) Magneto-optical recording medium
JPH08273224A (en) Information storage medium and its recording and reproducing method
JPH03252942A (en) Optical recording media and optical recording/playback methods
JPH04216339A (en) Magneto-optical recording medium and its manufacturing method
JPH0380448A (en) Magneto-optical recording medium
JP2003157594A (en) Magneto-optical recording medium and method of reproducing the same
JPH02304750A (en) Magneto-optical disk medium

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term