[go: up one dir, main page]

JPS63180888A - Liquid metal cooling heat exchanger - Google Patents

Liquid metal cooling heat exchanger

Info

Publication number
JPS63180888A
JPS63180888A JP62012428A JP1242887A JPS63180888A JP S63180888 A JPS63180888 A JP S63180888A JP 62012428 A JP62012428 A JP 62012428A JP 1242887 A JP1242887 A JP 1242887A JP S63180888 A JPS63180888 A JP S63180888A
Authority
JP
Japan
Prior art keywords
heat exchanger
liquid metal
electromagnetic coil
iron core
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62012428A
Other languages
Japanese (ja)
Other versions
JP2539405B2 (en
Inventor
峯 雅夫
昇 中尾
池内 寿昭
岡部 綾夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Industry and Control Solutions Co Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP62012428A priority Critical patent/JP2539405B2/en
Publication of JPS63180888A publication Critical patent/JPS63180888A/en
Application granted granted Critical
Publication of JP2539405B2 publication Critical patent/JP2539405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 環ポンプと熱交換器を一体化した熱交換装置に好適な液
体金属冷却用熱作換器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat exchanger for cooling liquid metal suitable for a heat exchanger that integrates a ring pump and a heat exchanger.

〔従来の技術〕[Conventional technology]

ループ型液体金属冷却高速増殖炉の原子炉冷却装置は第
2図に示すように、原子炉容器1と中間一 熱交換器2の間に1次主循環ポンプ3が配置されこれら
を1次主配管4で連結している。液体金属である1次冷
却材は原子炉容器1から流出し、1次主循環ポンプ3で
昇圧された後中間熱交換器2に流入し、2次冷却材と熱
交換した後、再び原子炉容器1に流入する。1次主配管
4にとっては中間熱交換器2と1次主循環ポンプ3の両
様器ともアンカ一点(固定点)となるため、商機器間に
設置する配管は熱膨張を吸収するため蛇行させる必要が
あり、そのため配管長が長くなり、それ等を内包する建
物も大きくなるという欠点がある。又、炉心およびすべ
ての1次冷却系機器を一つの大き□な容器に収めたタン
ク型液体金属冷却高速増殖炉゛も籠るが非常に大型の原
子炉容器をつくる必要がある。そこで  分参十替1次
主循環用のポンプ、・と中間熱交換器2を一体化するこ
とにより、1次主配管4を簡素化することが思いつく。
As shown in Figure 2, the reactor cooling system for a loop-type liquid metal cooled fast breeder reactor includes a primary main circulation pump 3 disposed between a reactor vessel 1 and an intermediate heat exchanger 2. They are connected by piping 4. The primary coolant, which is a liquid metal, flows out of the reactor vessel 1, is pressurized by the primary main circulation pump 3, flows into the intermediate heat exchanger 2, exchanges heat with the secondary coolant, and then returns to the reactor. It flows into container 1. For the primary main piping 4, both the intermediate heat exchanger 2 and the primary main circulation pump 3 serve as one anchor point (fixed point), so the piping installed between commercial equipment must be meandered to absorb thermal expansion. Therefore, the disadvantage is that the length of the piping becomes long and the building containing them also becomes larger. A tank-type liquid metal cooled fast breeder reactor, in which the core and all primary cooling system equipment are housed in one large container, is also possible, but it is necessary to construct a very large reactor vessel. Therefore, I came up with the idea of simplifying the primary main piping 4 by integrating the intermediate heat exchanger 2 with the primary main circulation pump.

このような熱交換器の従来例としては特開昭53−18
850号に記載のように中心部に機械式ポンプを配し、
その周囲に伝熱管束を配して1つの容器に収納したもの
や、特開昭61−794のように熱交換器の内部に電磁
ポンプを挿入したものがある。
A conventional example of such a heat exchanger is JP-A-53-18.
As described in No. 850, a mechanical pump is placed in the center,
There are those in which a bundle of heat transfer tubes is arranged around the heat exchanger and housed in one container, and those in which an electromagnetic pump is inserted inside the heat exchanger as in Japanese Patent Application Laid-Open No. 61-794.

〔発明が解決しようとする問題点〕 上記従来技術のうち、特開昭53−18850号のよう
に機械式ポンプを組込む例では胴外径が大きくなり、熱
交換器内部構造が複雑となる問題がある。
[Problems to be Solved by the Invention] Among the above-mentioned conventional techniques, in the case of incorporating a mechanical pump as in JP-A-53-18850, the outer diameter of the body becomes large and the internal structure of the heat exchanger becomes complicated. There is.

また、特開昭61−794のように電磁ポンプを熱交換
器内部に組込む例では前記機械式ポンプを組込む例に比
べて構造は単純になるが、電磁ポンプ全体が高温の液体
ナトリウム中に浸漬される構造となるため、電磁ポンプ
の電磁コイルの点検時には、外部から点検できないため
、シール部をはずして電磁ポンプ全体を引抜く必要があ
る。また、外部へのケーブル引出のためのシール及びコ
イルの耐熱性、耐ナトリウム性に対する条件が厳しいも
のとなるため、電磁ポンプ部の設計が難しい。
In addition, in cases where an electromagnetic pump is incorporated inside a heat exchanger as in JP-A-61-794, the structure is simpler than that in which a mechanical pump is incorporated, but the entire electromagnetic pump is immersed in high-temperature liquid sodium. When inspecting the electromagnetic coil of the electromagnetic pump, it is not possible to inspect it from the outside, so it is necessary to remove the seal and pull out the entire electromagnetic pump. In addition, the design of the electromagnetic pump part is difficult because the heat resistance and sodium resistance of the seal and coil for leading out the cable to the outside are strict.

本発明の目的は電磁ポンプを一体化した熱交換器におい
て、電磁ポンプコイルのメインテナンス性、耐熱性、耐
ナトリウム性及び外部へのケーブル引出のためのシール
等の問題を解決することにある。
An object of the present invention is to solve problems such as maintainability, heat resistance, and sodium resistance of an electromagnetic pump coil, and a seal for pulling out a cable to the outside in a heat exchanger integrated with an electromagnetic pump.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、熱交換器胴部外側に環状の電磁コイル付鉄
心を設置し、胴部内側には環状の鉄心のみを設置し、電
磁コイルと鉄心の間に液体金属の流路を設は電磁ポンプ
作用を起こす構造とすることにより達成される。
The above purpose is to install an annular core with an electromagnetic coil on the outside of the heat exchanger body, install only the annular core inside the body, and create a flow path for liquid metal between the electromagnetic coil and the core. This is achieved by creating a structure that produces a pump action.

[作用〕 本発明による熱交換器は、胴部外側に設置した電磁コイ
ル付鉄心が磁場を発生させ、胴部内側に設置した鉄心を
励磁させる。その磁場と、鉄心と胴との間の流路中の液
体金属に発生させた電流によるローレンツ力によるポン
プの役割をさせるものである。従って胴部外側にコイル
を設置することになるため、電磁コイルのメインテナン
スが容易となり、また、電磁コイルの耐熱設計9条件が
緩和され、耐ナトリウム性に対する考慮が不要となる。
[Function] In the heat exchanger according to the present invention, an iron core with an electromagnetic coil installed outside the body generates a magnetic field, which excites the iron core installed inside the body. The magnetic field and the Lorentz force generated by the current generated in the liquid metal in the flow path between the core and the shell act as a pump. Therefore, since the coil is installed outside the body, maintenance of the electromagnetic coil becomes easy, nine conditions for heat resistance design of the electromagnetic coil are relaxed, and there is no need to consider sodium resistance.

〔実施例〕〔Example〕

以下、本発明の一実施例を図により説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第8図は、ループ型高速増殖炉の中間熱交換器及び蒸気
発生器に本発明を作用した場合のシステムであり、又、
第9図はタンク型高速増殖炉の蒸気発生器に本発明を採
用したシステムである。ともに、プラントの配管物量、
配置スペースの削減が可能となる。
FIG. 8 shows a system in which the present invention is applied to an intermediate heat exchanger and a steam generator of a loop type fast breeder reactor, and
FIG. 9 shows a system in which the present invention is applied to a steam generator for a tank-type fast breeder reactor. Both include the amount of piping in the plant,
It is possible to reduce the installation space.

第1図に、第8図中における中間熱交換器の構造を示す
FIG. 1 shows the structure of the intermediate heat exchanger in FIG. 8.

高温の1次系液体金属は入口配管5より上部プレナム1
2に流入し伝熱管9の中を流下し管外の2次系液体金属
と熱交換して低温となり下部プレナム13に集まった後
、環状鉄心14と外胴15との間に流入し、そこで電磁
コイル付鉄心10の磁場と1次ナトリウムに発生する誘
導電流とから生じるローレンツ力により加圧され出口配
管6から第8図の原子炉容器1へと戻る。
The high temperature primary liquid metal is transferred from the inlet pipe 5 to the upper plenum 1.
2, flows through the heat transfer tube 9, exchanges heat with the secondary liquid metal outside the tube, becomes low temperature, and collects in the lower plenum 13, then flows between the annular core 14 and the outer shell 15, where it It is pressurized by the Lorentz force generated from the magnetic field of the electromagnetic coiled iron core 10 and the induced current generated in the primary sodium, and returns from the outlet pipe 6 to the reactor vessel 1 shown in FIG. 8.

低温の2次液体金属は、入口配管7より流入し中央管1
1を下降して反転した後、伝熱管9の外側を上昇し、1
次系液体金属と熱交換し高温となった後、出口配管8か
ら第8図の蒸気発生器31へと導かれる。
The low temperature secondary liquid metal flows into the inlet pipe 7 and enters the central pipe 1.
After lowering 1 and reversing it, go up the outside of the heat exchanger tube 9, and 1
After exchanging heat with the next liquid metal and reaching a high temperature, it is guided from the outlet pipe 8 to the steam generator 31 shown in FIG.

電磁ポンプは、熱交換器外胴15に環状の電磁コイル付
鉄心(以下電磁コイルと略す)10を設け、同電磁コイ
ル1oに対向して容器内部に環状の鉄心14を設けて、
電磁コイル10と鉄心14間に冷却材の流路を形成する
構造になっている。
The electromagnetic pump includes an annular iron core with an electromagnetic coil (hereinafter abbreviated as an electromagnetic coil) 10 provided in the heat exchanger outer shell 15, and an annular iron core 14 provided inside the container opposite to the electromagnetic coil 1o.
The structure is such that a coolant flow path is formed between the electromagnetic coil 10 and the iron core 14.

本発明において用いる電磁ポンプは直線誘導型である。The electromagnetic pump used in the present invention is a linear induction type.

これには、FLIP(Flat Linear Ind
uctionpump)型とALIP(Annular
 Linear Induction Pun+p)型
とがある。電磁ポンプは電磁コイルにより発生する磁場
と誘導電流によるローレンツ力により、液体金属を駆動
させるが、磁場の液体金属に対する浸透深さが決まって
いるので流路の幅が制限される。
This includes FLIP (Flat Linear Ind
(cution pump) type and ALIP (Annular
There is a Linear Induction (Pun+p) type. Electromagnetic pumps drive liquid metal using a magnetic field generated by an electromagnetic coil and a Lorentz force caused by an induced current, but because the depth of penetration of the magnetic field into the liquid metal is determined, the width of the flow path is limited.

したがって、FLIP型ではその形状のため大きな流路
断面積とするには不向きであり大容量型にはALIP型
が用いられる。
Therefore, the FLIP type is not suitable for creating a large flow passage cross-sectional area due to its shape, and the ALIP type is used for a large capacity type.

ALIP型にも、流路内側に鉄心のみを設置するものと
電磁コイル付鉄心を設置するものとの2種類がある。流
路内側に電磁コイル付鉄心を設置するタイプは磁場の浸
透深さが大きくなるため小型化できるが電磁コイルが高
温の液体金属中に浸される形となり、そのメンテナンス
性及び耐熱性等が問題となる。
There are two types of ALIP types: one in which only an iron core is installed inside the flow path, and one in which an iron core with an electromagnetic coil is installed. Types in which an iron core with an electromagnetic coil is installed inside the flow path can be made smaller because the penetration depth of the magnetic field is greater, but the electromagnetic coil is immersed in high-temperature liquid metal, which poses problems in terms of maintainability and heat resistance. becomes.

一方内側に鉄心のみを設けるタイプを1000(M W
 e )クラスの高速増殖炉の主冷却系(4ループ)に
適用した場合、流路の径を4(m)程度と極めて大きく
取らねばならないため配管上に設置することは困難であ
る。しかし、本発明のように熱交換器外胴に電磁コイル
1oを設け、容器内筒に鉄心14を設置した構造にする
とうまく適合し、電磁コイル10のメンテナンス性、耐
熱性耐ナトリウム性の問題もなくすことができる。
On the other hand, the type with only the iron core inside is 1000 (M W
When applied to the main cooling system (4 loops) of a class e) fast breeder reactor, it is difficult to install it on piping because the diameter of the flow path must be extremely large, about 4 (m). However, if the structure of the present invention is such that the electromagnetic coil 1o is provided in the outer shell of the heat exchanger and the iron core 14 is provided in the inner cylinder of the container, it will fit well, and there will be problems with the maintainability and heat resistance and sodium resistance of the electromagnetic coil 10. It can be eliminated.

また、電磁コイル10は約50トン程度になるため、熱
交換器本体支持構造17と別に電磁コイル支持構造18
により支持させる。電磁コイル10と外胴15との間に
はギャップを設け、熱交換器本体と電磁コイル間の熱膨
張差をしゅう動させることにより吸収する。
In addition, since the electromagnetic coil 10 weighs approximately 50 tons, an electromagnetic coil support structure 18 is provided separately from the heat exchanger main body support structure 17.
Supported by A gap is provided between the electromagnetic coil 10 and the outer shell 15, and the difference in thermal expansion between the heat exchanger body and the electromagnetic coil is absorbed by sliding.

第3図に、第5図、第6図中の本発明の蒸気発生器の構
造を示す。
FIG. 3 shows the structure of the steam generator of the present invention shown in FIGS. 5 and 6.

入口配管7より流入した2次系液体金属はヘリカルコイ
ル伝熱管27の周りを流下し、管内の水と熱交換して低
温となる。環状鉄心14と外胴15との間を流れる時に
、電磁コイル10により発生する磁場と誘導電流とから
発生するローレンツ力により加圧され中央管11を上昇
し出口配管8より中間熱交換器2へ戻る。
The secondary liquid metal flowing in from the inlet pipe 7 flows down around the helical coil heat transfer tube 27, exchanges heat with the water in the tube, and becomes low temperature. When flowing between the annular iron core 14 and the outer shell 15, it is pressurized by the Lorentz force generated from the magnetic field and induced current generated by the electromagnetic coil 10, rises up the central tube 11, and flows through the outlet piping 8 to the intermediate heat exchanger 2. return.

次に、水は給水入口26より流入しヘリカルコイル伝熱
管27内を上昇し、2次系液体金属と熱交換し高温の蒸
気となり蒸気出口25より流出する。
Next, water flows in from the water supply inlet 26 and rises inside the helical coil heat transfer tube 27, exchanges heat with the secondary liquid metal, becomes high-temperature steam, and flows out from the steam outlet 25.

第7図には、ループ型高速増殖炉において中間熱交換器
・蒸気発生器一体型熱交換器に本発明を採用した場合の
主冷却系システムを示す。
FIG. 7 shows a main cooling system when the present invention is applied to an intermediate heat exchanger/steam generator integrated heat exchanger in a loop type fast breeder reactor.

第4図には、上記の中間熱交換器・蒸気発生器一体型熱
交換器の構造を示す。
FIG. 4 shows the structure of the above intermediate heat exchanger/steam generator integrated heat exchanger.

高温の1次系液体金属は入口配管5より上部プレナム1
2に流入し伝熱管9の内側を流下し管周囲の2次系液体
金属と熱交換して低温となり下部プレナム13に集まっ
た後、中央管11を上昇して出口配管6より原子炉容器
1へ戻される。
The high temperature primary liquid metal is transferred from the inlet pipe 5 to the upper plenum 1.
2, flows down inside the heat transfer tube 9, exchanges heat with the secondary liquid metal around the tube, becomes low temperature, and collects in the lower plenum 13, then ascends the central tube 11 and flows through the outlet pipe 6 into the reactor vessel 1. be returned to.

次に、2次系液体金属は熱交換器の容器内に封じ込めら
れた状態で存在し、環状鉄心14と外胴15との間で環
状電磁コイル1oによる磁場と誘導電流とから発生する
ローレンツ力で加圧され伝熱管9の周りを管内の高温の
1次系液体金属より熱を受は取りながら上昇する。その
後、ヘリカルコイル伝熱管27を通じて水に熱を与えな
がら流下する。
Next, the secondary liquid metal exists in a sealed state in the container of the heat exchanger, and the Lorentz force is generated between the annular core 14 and the outer shell 15 from the magnetic field and induced current caused by the annular electromagnetic coil 1o. The heat transfer tube 9 is pressurized and rises around the heat transfer tube 9 while receiving heat from the high temperature primary liquid metal inside the tube. Thereafter, the water flows down through the helical coil heat transfer tube 27 while imparting heat to the water.

給水配管26より流入した水はへりカルコイル伝熱管2
7中を上昇し、その間に管周辺の高温の2次系液体金属
と熱交換し蒸気となる。その後、蒸気出口25からター
ビン33へと向かう。
The water flowing in from the water supply pipe 26 is transferred to the coiled coil heat exchanger tube 2
7, during which it exchanges heat with the high temperature secondary liquid metal around the tube and becomes vapor. Thereafter, the steam flows from the steam outlet 25 to the turbine 33.

又、上部にカバーガス領域30を設け、2次系液体金属
の温度による体積変化を吸収する構造となっている。
Further, a cover gas region 30 is provided in the upper part to absorb volume changes due to temperature of the secondary liquid metal.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、熱交換器と一体化された電磁ポンプに
おける電磁コイルのメンテナンス性及び耐熱性が向上し
、耐ナトリウム性の考慮が不要となるため、より合理的
かつ容易な設計が行えるとともに、外部へのケーブル引
出しのためのシールが削除されるので全体としての信頼
性も増加するという効果がある。
According to the present invention, the maintainability and heat resistance of the electromagnetic coil in an electromagnetic pump integrated with a heat exchanger are improved, and there is no need to consider sodium resistance, so a more rational and easy design can be achieved. Since the seal for leading the cable to the outside is removed, the overall reliability is also increased.

さらにプラントとしては、ポンプと熱交換器間の配管が
不要となり、配置スペースが小さくなるためそれらを収
納する建物がコンパクトになるという効果がある。
Furthermore, as a plant, there is no need for piping between the pump and the heat exchanger, and the installation space is reduced, which has the effect of making the building that houses them more compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の縦断面図、第2図は従来
のループ型高速増殖炉主冷却系システム図であり、第3
図、第4図は本発明の各々との他の実施例を示す縦断面
図、第5図は1本発明を適用したループ図であり、第6
図、第7図は、本発明を蒸気発生器にも適用したループ
である。 5・・・1次系入口配管、6・・・1次系出口配管、7
・・・2次系入口配管、8・・・2次系出口配管、9・
・・伝熱管、10・・・電磁ポンプコイル、11・・・
中央管、12・・・上部プレナム、13・・・下部プレ
ナム、14・・・環状鉄心、15・・・外胴、16・・
・内筒。
FIG. 1 is a longitudinal cross-sectional view of an embodiment of the present invention, FIG. 2 is a diagram of a conventional loop-type fast breeder reactor main cooling system, and FIG.
4 is a vertical sectional view showing other embodiments of the present invention, FIG. 5 is a loop diagram to which the present invention is applied, and FIG.
FIG. 7 shows a loop in which the present invention is also applied to a steam generator. 5... Primary system inlet piping, 6... Primary system outlet piping, 7
...Secondary system inlet piping, 8...Secondary system outlet piping, 9.
...Heat transfer tube, 10...Electromagnetic pump coil, 11...
Central pipe, 12... Upper plenum, 13... Lower plenum, 14... Annular core, 15... Outer shell, 16...
・Inner cylinder.

Claims (1)

【特許請求の範囲】 1、容器とその内部の伝熱管束より成り、液体金属と液
体金属又は液体金属と非液体金属間の熱交換機能を有す
る熱交換器において、容器外周に電磁ポンプの環状の電
磁コイル付鉄心を設け、同電磁コイルに対向して容器内
部に環状の電磁コイル無鉄心を設けて、電磁コイル付鉄
心と電磁コイル無鉄心間に液体金属状冷却材の流路を形
成したことを特徴とする液体金属冷却用熱交換器。 2、前記熱交換器における外側電磁コイル付鉄心を、熱
交換器本体と別に支持し、熱交換器と外側電磁コイル付
鉄心間にギャップを設けて熱交換器本体の熱膨張を逃が
す構造としたことを特徴とする特許請求の範囲の第1項
に記載の液体金属冷却用熱作換器。 3、液体間の熱交換を胴内で行ない、少なくとも一方の
液体金属である熱交換器において、前記胴内の熱交換領
域に通じる前記液体金属の第1の流路を囲う配置で前記
胴内に前記胴内壁面との間で前記液体金属の第2図の流
路を形成する位置に備えた電磁コイル無し鉄心と、前記
胴の外側にて前記胴を囲う配置にて前記鉄心と対向する
位置に備えた電磁コイル付き鉄心と、前記電磁コイル無
し鉄心の下方において前記胴内で前記第1と第2との両
流路を流通する前記液体金属の反転流路とを備えたこと
を特徴とした液体金属冷却用熱交換器。
[Claims] 1. A heat exchanger consisting of a container and a bundle of heat transfer tubes inside the container and having a heat exchange function between liquid metal and liquid metal or liquid metal and non-liquid metal, in which an annular electromagnetic pump is provided around the outer periphery of the container. An iron core with an electromagnetic coil is provided, and an annular electromagnetic coil-free core is provided inside the container opposite to the electromagnetic coil to form a flow path for liquid metal coolant between the electromagnetic coil-equipped iron core and the electromagnetic coil-free core. A heat exchanger for liquid metal cooling characterized by: 2. The heat exchanger has a structure in which the core with the outer electromagnetic coil is supported separately from the heat exchanger body, and a gap is provided between the heat exchanger and the core with the outer electromagnetic coil to release thermal expansion of the heat exchanger body. A heat exchanger for liquid metal cooling according to claim 1. 3. In a heat exchanger in which heat exchange between liquids is performed in the shell, and at least one of the liquid metals is a liquid metal, the heat exchanger is arranged so as to surround the first flow path of the liquid metal leading to the heat exchange area in the shell. an iron core without an electromagnetic coil provided at a position to form a flow path of the liquid metal as shown in FIG. It is characterized by comprising: an iron core with an electromagnetic coil provided at a position above the iron core without an electromagnetic coil; and an inversion flow path for the liquid metal that flows through both the first and second flow paths in the shell below the iron core without an electromagnetic coil. A heat exchanger for liquid metal cooling.
JP62012428A 1987-01-23 1987-01-23 Liquid metal cooling heat exchanger Expired - Fee Related JP2539405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62012428A JP2539405B2 (en) 1987-01-23 1987-01-23 Liquid metal cooling heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62012428A JP2539405B2 (en) 1987-01-23 1987-01-23 Liquid metal cooling heat exchanger

Publications (2)

Publication Number Publication Date
JPS63180888A true JPS63180888A (en) 1988-07-25
JP2539405B2 JP2539405B2 (en) 1996-10-02

Family

ID=11805013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62012428A Expired - Fee Related JP2539405B2 (en) 1987-01-23 1987-01-23 Liquid metal cooling heat exchanger

Country Status (1)

Country Link
JP (1) JP2539405B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7514779B2 (en) 2021-02-15 2024-07-11 三菱重工業株式会社 Heat exchanger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60207087A (en) * 1984-03-09 1985-10-18 コミツサレ・ア・レナジー・アトミツク Integrated type fast breeder reactor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60207087A (en) * 1984-03-09 1985-10-18 コミツサレ・ア・レナジー・アトミツク Integrated type fast breeder reactor

Also Published As

Publication number Publication date
JP2539405B2 (en) 1996-10-02

Similar Documents

Publication Publication Date Title
JP7050886B2 (en) Liquid metal cold reactor with fully passive residual force removal (DHR) system
JP2004279395A (en) Steam generator for liquid metal furnace and its heat transfer method
JPH0585040B2 (en)
JPH02307096A (en) Cooler for liquid metal cooling type reactor
US3830695A (en) Nuclear reactor
JPS63180888A (en) Liquid metal cooling heat exchanger
JP2003139881A (en) Reactor cooled with supercritical pressure water, channel box, water rod and fuel assembly
JPH07117591B2 (en) Nuclear reactor plant
JP4660125B2 (en) Intermediate heat exchanger with built-in electromagnetic pump
JPS61794A (en) Cooling device for liquid-metal cooling type reactor
JPS6154495A (en) Fast breeder reactor
JPH0325396A (en) Fast breeder reactor
JPS63309894A (en) Pressure tube reactor
JPH0729361Y2 (en) Steam generator
JPS62226089A (en) Liquid-metal cooling type fast breeder reactor
JPH07260994A (en) Intermediate heat exchanger with built-in electromagnetic pump
JPS63193092A (en) Cooling device for liquid-metal cooling type reactor
JPH02190796A (en) Cooling device for liquid metal cooling type nuclear reactor
JPS62186101A (en) Steam generator
JPS62170891A (en) Steam generator
JPS62278485A (en) Nuclear reactor structure
JPS62119301A (en) Steam generator
JPH0240197B2 (en)
JPS62108901A (en) Cooling device for liquid-metal cooling type reactor
JPH0666991A (en) Intermediate heat exchanger for fast breeder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees