JPS63179592A - Semiconductor laser element - Google Patents
Semiconductor laser elementInfo
- Publication number
- JPS63179592A JPS63179592A JP1300487A JP1300487A JPS63179592A JP S63179592 A JPS63179592 A JP S63179592A JP 1300487 A JP1300487 A JP 1300487A JP 1300487 A JP1300487 A JP 1300487A JP S63179592 A JPS63179592 A JP S63179592A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor laser
- active layer
- layer
- laser element
- laser device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体レーザ素子に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a semiconductor laser device.
(従来の技術)
半導体レーザ素子は光フアイバ通信や光情報処理技術に
おいて、その進展を決めるキーデバイスであり、レーザ
利得の大きな素子が求められている。半導体レーザは、
活性層がこの活性層より広い禁制帯幅をもつ半導体層で
挟まれた層構造を半導体基板上に有し、活性層中の電子
単位に電流を注入しキャリヤをためてレーザ発光させる
素子である。第2図はこのような従来の半導体レーザ素
子の一例を示す斜視図である。この素子は、基板10上
にクラッド層11.活性層12.クラッド層13及びキ
ャップ層14を順次に成長し、電流阻止構造19をイオ
ン注入法で形成してなる。半導体レーザのレーザ利得の
増加を図るには、3次元的なバルク電子状態に比べ2次
元的電子状態ではレーザ利得が大きい性質を用い、発光
領域である活性層中の電子が量子化される程薄い膜厚の
活性層を形成することが有効であることが知られてい・
る、このような薄膜の単層あるいは多層の活性層を持つ
半導体レーザは量子井戸レーザと呼ばれ現在盛んに研究
されている。これに対し、膜と平行な方向にも膜厚程度
のサイズの細線状構造やドツト状構造を形成した場合、
それぞれ擬1次元的及び擬零次元的電子状態が形成きれ
る。この場合には、2次元的電子状態の場合よりもレー
ザ利得が更に大きくなり、従って発振W4を流の減少や
、閃電流の温度変化の減少、発振線幅の減少などを達成
できろ可能性が理論的に示きれている。そして、実際に
半導体の細線構造形成の試みもアプライド・フィジック
ス−!、ターズ(Appl 、 Phys 、 Let
t 、 41 。(Prior Art) Semiconductor laser elements are key devices that determine the progress of optical fiber communication and optical information processing technology, and elements with large laser gain are required. The semiconductor laser is
This device has a layered structure on a semiconductor substrate in which the active layer is sandwiched between semiconductor layers with a wider forbidden band width than the active layer, and a current is injected into the electron units in the active layer to accumulate carriers and emit laser light. . FIG. 2 is a perspective view showing an example of such a conventional semiconductor laser device. This device has a cladding layer 11 . Active layer 12. A cladding layer 13 and a cap layer 14 are sequentially grown, and a current blocking structure 19 is formed by ion implantation. In order to increase the laser gain of a semiconductor laser, the property that the laser gain is larger in a two-dimensional electronic state than in a three-dimensional bulk electronic state is used. It is known that forming a thin active layer is effective.
Semiconductor lasers with such thin-film single-layer or multi-layer active layers are called quantum well lasers, and are currently being actively researched. On the other hand, if a thin line-like structure or dot-like structure with a size similar to the film thickness is formed in the direction parallel to the film,
Pseudo-one-dimensional and pseudo-zero-dimensional electronic states can be formed, respectively. In this case, the laser gain is even larger than in the case of a two-dimensional electronic state, and it is therefore possible to reduce the oscillation W4 current, reduce the temperature change of the flash current, and reduce the oscillation line width. has been shown theoretically. Applied Physics is also an attempt to actually form thin wire structures in semiconductors! , Tars (Appl, Phys, Let
t, 41.
635(1982) )に記載きれているようにペトロ
フ(Petroff ) 達により、また、半導体のド
ツト状構造形成の試みもジャーナル・才プ・バキューム
・サイエンス・アンド・テクノロジー(J 、 Voc
。635 (1982)), an attempt to form a dot-like structure in a semiconductor was also made by Petroff et al. in the Journal of Vacuum Science and Technology (J, Voc).
.
Sci 、 Technol 、 B4 、358 (
1986) )に記載されているようにリード(M、A
、Reed)達により行なわれている。これら従来の試
みでは活性層の膜厚方向については分子ビームエピタキ
シャル(MBE)成長法を用いて十分寸法制御きれてい
るが、活性層の面内方向については通常のりソグラフイ
法により細線またはドツト状パターン構造を残すもので
あった。Sci, Technol, B4, 358 (
Reed (M, A. 1986) as described in
, Reed) et al. In these conventional attempts, the dimensions of the active layer can be sufficiently controlled in the film thickness direction using the molecular beam epitaxial (MBE) growth method, but in the in-plane direction of the active layer, fine line or dot-like patterns are formed using normal gluing method. The structure remained.
(発明が解決しようとする問題点)
上記のように活性層中に擬零次元電子状態を実現しよう
とすると従来のりソグラフイ技術ではドツト状パターン
構造の形成方法や寸法制御が極めて困難であるという点
が問題であった。これに対し、従来のりソグラフイ技術
に頼らないで可能となりうる構造の素子は従来知られて
いなかった。(Problems to be Solved by the Invention) As mentioned above, when trying to realize a quasi-zero-dimensional electronic state in the active layer, it is extremely difficult to form a dot-like pattern structure and control its dimensions using conventional lithography technology. was the problem. On the other hand, an element with a structure that can be made without relying on conventional lamination technology has not been known so far.
更に従来のドツト状パターン構造を半導体レーザ素子の
活性層に適用した場合、光はドツトパターン内に閉じ込
めきれないから、ドツトパターンとドツトパターンの間
に存在する利得のない領域での光の損失が増加する問題
があった。Furthermore, when a conventional dot-like pattern structure is applied to the active layer of a semiconductor laser device, light cannot be confined within the dot pattern, so light loss occurs in the no-gain region between the dot patterns. There was a growing problem.
本発明の目的は、上記パターン形成の困難さの問題と、
光の損失の問題とを改善し、擬零次元電子状態の特性を
備え従来型より高利得の半導体レーザ素子を提供するこ
とである。The object of the present invention is to solve the above problem of difficulty in pattern formation,
It is an object of the present invention to provide a semiconductor laser device that improves the problem of optical loss, has characteristics of a quasi-zero-dimensional electronic state, and has a higher gain than the conventional type.
(問題点を解決するための手段)
前述の問題点を解決するために本発明が提供する手段は
、′発光領域である活性層を含む半導体積層構造を基板
の上に形成した半導体レーザ素子であって、前記活性層
が階段状構造を有し、かつ面内の相直交する2方向のい
ずれの方向にも段差を有することを特徴とする。(Means for Solving the Problems) Means provided by the present invention to solve the above-mentioned problems is 'a semiconductor laser element in which a semiconductor laminated structure including an active layer, which is a light emitting region, is formed on a substrate. The active layer is characterized in that it has a step-like structure and has steps in both of two mutually orthogonal directions in the plane.
(作用)
本発明では上記の手段により擬零次元的電子状態の特性
を備えた半導体レーザ素子を実現している。この発明の
構造において、活性層の膜厚を薄くかつ階段構造のステ
ップ間隔を2方向いずれも100人オーダ以下にするこ
とにより、擬零次元的電子状態の特性が顕著であり、従
来型より高利得の半導体レーザ素子が得られる。(Function) In the present invention, a semiconductor laser device having characteristics of a quasi-zero-dimensional electronic state is realized by the above-described means. In the structure of this invention, by reducing the thickness of the active layer and making the step interval of the staircase structure less than 100 people in both directions, the characteristics of the quasi-zero-dimensional electronic state are remarkable, and it is higher than that of the conventional structure. A semiconductor laser device with high gain can be obtained.
以下、本発明の実施例について図面を用いて更に詳細に
説明する。Embodiments of the present invention will be described in more detail below with reference to the drawings.
(実施例)
第1図は本発明の一実施例を説明する素子概略図である
。第1図(a)は本発明の半導体レーザ素子の斜視図で
ある0本発明の半導体レーザ素子の特徴は、第1図(b
)に斜視図で示したように階段状活性層21を有するこ
とである8、その他のレーザ素子構造の特徴は第2図に
概略図を示した従来の半導体レーザ素子の構造と基本的
に同じである。すなわち、基板10の上に第1のクラッ
ド層11、活性層21.第2のクラッドR13,キャッ
プ層14を有する。(Example) FIG. 1 is a schematic diagram of an element explaining an example of the present invention. FIG. 1(a) is a perspective view of the semiconductor laser device of the present invention. The features of the semiconductor laser device of the present invention are as shown in FIG.
) has a step-like active layer 21 as shown in the perspective view in Figure 2.Other features of the laser device structure are basically the same as the structure of the conventional semiconductor laser device whose schematic diagram is shown in Figure 2. It is. That is, a first cladding layer 11, an active layer 21 . It has a second cladding R13 and a cap layer 14.
第1図(b)に示すような階段構造の活性層21は高度
なりソグラフィ技術に頼ることなく形成できる。以下、
その−形成例について簡単に述べる。先ず、通常の砒化
ガリウム基板面の軸15が結晶軸[001]から傾いた
基板を準備する。基板面の軸15は結晶軸[001]か
ら剪開面の1つの軸16のまわりに角度θ8だけ傾け、
更に結晶軸[001]のまわりに角度θ1だけ回転させ
るものとする。The active layer 21 having a stepped structure as shown in FIG. 1(b) can be formed without relying on sophisticated lithographic techniques. below,
An example of its formation will be briefly described. First, a normal gallium arsenide substrate in which the axis 15 of the surface is inclined from the crystal axis [001] is prepared. The axis 15 of the substrate plane is tilted by an angle θ8 from the crystal axis [001] around one axis 16 of the shear plane,
Further, it is assumed that the crystal axis is rotated by an angle θ1 around the crystal axis [001].
本実施例の場合軸16は[110]軸、角度θ1と角度
θ、はそれぞれ約2°とした。このような基板の上に例
えばMBE成長法を用い、クラッド層11.活性層21
.クラッド層13.キャップ層14をエピタキシャル成
長する。このとき、成長層は、成長表面が第1図(b)
のような階段構造を保って成長する。このような階段状
成長の現象は、ステップ成長現象としてよく知られてお
り、例えばアプライド・フィジックス・レターズ(Ap
pl 、 Phys 。In this embodiment, the axis 16 is the [110] axis, and the angles θ1 and θ are each approximately 2°. A cladding layer 11. is formed on such a substrate using, for example, an MBE growth method. active layer 21
.. Cladding layer 13. A cap layer 14 is epitaxially grown. At this time, the growth surface of the growth layer is as shown in FIG. 1(b).
It grows while maintaining a stair-like structure. Such a step-like growth phenomenon is well known as a step growth phenomenon, and is described, for example, in Applied Physics Letters (Ap.
pl, Phys.
Lett 、 45 、620 (1984) )に記
載の実験により確認されている0本実施例でも、ステッ
プ段差が約6人、ステップ間隔が面内の2方向について
いずれも約160人であるステップ成長が確認された。Lett, 45, 620 (1984)), the present example also shows step growth in which the step difference is about 6 people and the step interval is about 160 people in both directions in the plane. confirmed.
本実施例での材料組成は、通常のものを採用し、n型砒
化ガリウム基板10の上にアルミニウム組成比が約0.
35の砒化アルミニウムガリウムからなるn型クラッド
層11及びp型クラッド層13.アンドープの砒化ガリ
ウム活性層21.p型砒化ガリウムキャップ層14を成
長した。その後、電流阻止構造19をイオン注入法で形
成し、最後に電極を上面と下面に設けた。このように作
製きれた半導体レーザ素子において、活性層膜厚が同じ
で階段状構造のない通常の量子井戸レーザ素子に比べ、
発振閾電流密度が減少する良好なレーザ特性の改善効果
が得られた。また、基板面結晶軸からの傾き角度θ1.
θ、をともに1° 、 2.” 、 3°と順に増加
させ階段構造のステップ間隔を短くするにつれ、上記の
改善効果が増加した。The material composition in this embodiment is a normal one, and the aluminum composition ratio is about 0.00000 on the n-type gallium arsenide substrate 10.
n-type cladding layer 11 and p-type cladding layer 13.35 made of aluminum gallium arsenide. Undoped gallium arsenide active layer 21. A p-type gallium arsenide cap layer 14 was grown. Thereafter, a current blocking structure 19 was formed by ion implantation, and finally electrodes were provided on the top and bottom surfaces. In the semiconductor laser device fabricated in this way, compared to a normal quantum well laser device with the same active layer thickness and no stepped structure,
A favorable effect of improving laser characteristics was obtained by reducing the oscillation threshold current density. Also, the tilt angle θ1 from the substrate plane crystal axis.
θ, both 1°, 2. The above improvement effect increased as the step interval of the stairway structure was shortened by increasing the step distance to 3° and 3°.
本実施例では、活性層が単一の量子井戸層からなる場合
について述べたが、多層の多重量子井戸や層間に電子相
互作用のある超格子構造からなる場合も擬零次元効果の
寄与が期待でき本実施例の構造の素子は有効である。ま
た活性層膜厚が量子井戸の場合程薄くない場合でもステ
ップサイズに応じ効果は、ある程度期待できる0本実施
例では砒化ガリウム系のMBE成長の例を述べたが、方
法は他の有機金属気相成長法(MOCVD )や通常の
気相成長エピタキシャル法(VPE)についても、また
材料系はインジウムリン砒化ガリウム系や砒化インジウ
ムガリウム系等信の系についても、有効であることは容
易に類推される。In this example, we have described the case where the active layer consists of a single quantum well layer, but the contribution of the quasi-zero-dimensional effect is also expected when the active layer consists of a multi-layered multi-quantum well layer or a superlattice structure with electronic interaction between layers. The device having the structure of this example is effective. Furthermore, even if the thickness of the active layer is not as thin as in the case of a quantum well, the effect can be expected to some extent depending on the step size.In this example, an example of gallium arsenide-based MBE growth was described, but the method is similar to that of other organic metals. It can be easily inferred that it is effective for phase epitaxy (MOCVD) and normal vapor phase epitaxy (VPE), as well as for material systems such as indium phosphide gallium arsenide and indium gallium arsenide. Ru.
(発明の効果)
以上説明したように本発明の半導体レーザ素子は、活性
層を面内のどの方向にも段差を有する階段構造にしたこ
とにより、同じ膜厚の2次元的電子状態の特性を備えた
従来の半導体量子井戸レーザに比べ更にレーザ利得が高
く、かつ、特別な微細加工プロセスを施きずに形成でき
る方法がある等、光素子の集積化や生産性向上にも適し
ており、高性能の半導体レーザ素子として用いることが
できる。(Effects of the Invention) As explained above, the semiconductor laser device of the present invention has a step structure in which the active layer has steps in any direction in the plane, so that the two-dimensional electronic state characteristics of the same film thickness can be improved. It has a higher laser gain than conventional semiconductor quantum well lasers, and can be formed without special microfabrication processes, making it suitable for integrating optical devices and improving productivity. It can be used as a high-performance semiconductor laser device.
第1図(a)は本発明の一実施例を示す斜視図、同図(
b)はこの実施例における活性層を示す斜視図、第2図
は従来の半導体レーザ素子の一例を示す斜視図である。
10・・・基板、11川クラツド届、12・・・活性層
、13・・・クラッド層、14・・・キャップ暦、15
・・・基板面の軸、16・・・臂開面の1つの軸、19
・・・電流阻止構造、21・・・階段状活性層、θ1・
・・基板面傾は角度、θ、・・・基板面ずれ角度。FIG. 1(a) is a perspective view showing one embodiment of the present invention;
b) is a perspective view showing the active layer in this embodiment, and FIG. 2 is a perspective view showing an example of a conventional semiconductor laser device. 10... Substrate, 11 River clad notification, 12... Active layer, 13... Clad layer, 14... Cap calendar, 15
... Axis of the substrate surface, 16 ... One axis of the arm opening surface, 19
... Current blocking structure, 21 ... Stepped active layer, θ1.
...The board surface inclination is the angle, θ, ...The board surface deviation angle.
Claims (1)
に形成した半導体レーザ素子において、前記活性層が階
段状構造を有し、かつ面内の相直交する2方向のいずれ
の方向にも段差を有することを特徴とする半導体レーザ
素子。In a semiconductor laser device in which a semiconductor laminated structure including an active layer, which is a light emitting region, is formed on a substrate, the active layer has a step-like structure, and there are no steps in either of two orthogonal directions in the plane. A semiconductor laser device characterized by having:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1300487A JPH0638541B2 (en) | 1987-01-21 | 1987-01-21 | Semiconductor laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1300487A JPH0638541B2 (en) | 1987-01-21 | 1987-01-21 | Semiconductor laser device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63179592A true JPS63179592A (en) | 1988-07-23 |
JPH0638541B2 JPH0638541B2 (en) | 1994-05-18 |
Family
ID=11821030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1300487A Expired - Lifetime JPH0638541B2 (en) | 1987-01-21 | 1987-01-21 | Semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0638541B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5054030A (en) * | 1989-11-13 | 1991-10-01 | Research Development Corporation Of Japan | Grid-inserted quantum structure |
-
1987
- 1987-01-21 JP JP1300487A patent/JPH0638541B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5054030A (en) * | 1989-11-13 | 1991-10-01 | Research Development Corporation Of Japan | Grid-inserted quantum structure |
Also Published As
Publication number | Publication date |
---|---|
JPH0638541B2 (en) | 1994-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0418476B2 (en) | ||
JPS6254988A (en) | Semiconductor laser | |
JP2854607B2 (en) | Semiconductor device and semiconductor laser device | |
KR100377498B1 (en) | Method for fabricating semiconductor device of quantum dots structure and an semiconductor device fabricated thereby | |
US5258326A (en) | Quantum device fabrication method | |
JP2000196193A (en) | Semiconductor device and manufacturing method thereof | |
JP3829153B2 (en) | Optical semiconductor device | |
JPS63179592A (en) | Semiconductor laser element | |
JP2013093425A (en) | Quantum semiconductor device and method for manufacturing the same | |
JP3278035B2 (en) | Quantum box structure with current confinement structure and its fabrication method | |
JPS60113488A (en) | Manufacture of element having effect of one-dimensional quantum size | |
JPH02220025A (en) | Optical modulator | |
JPH02101784A (en) | Manufacture of quantum well fine wire and quantum well box and quantum well fine wire laser | |
JP3382309B2 (en) | Semiconductor device | |
JP2833604B2 (en) | Semiconductor laminated structure | |
JPS60250684A (en) | Manufacture of 3-dimensional quantum well semiconductor laser | |
JPH08181301A (en) | Quantum dot structure and manufacturing method thereof | |
JP3169064B2 (en) | Fabrication method of semiconductor three-dimensional quantum structure | |
JPS62273791A (en) | Manufacture of semiconductor quantum well laser | |
Ono et al. | Study of Selective MBE Growth on Patterned (001) InP Substrates Toward Realization of< 100>-Oriented InGaAs Ridge Quantum Wires | |
JP2630273B2 (en) | Distributed feedback semiconductor laser | |
JPS61144015A (en) | Semiconductor device without substrate and manufacture thereof | |
JP3128987B2 (en) | Method for manufacturing semiconductor crystal plane, reflector comprising semiconductor crystal plane, and semiconductor quantum structure | |
JPH05308173A (en) | Semiconductor laser | |
JPS62186584A (en) | Manufacture of semiconductor element |