JPS6317945B2 - - Google Patents
Info
- Publication number
- JPS6317945B2 JPS6317945B2 JP55049896A JP4989680A JPS6317945B2 JP S6317945 B2 JPS6317945 B2 JP S6317945B2 JP 55049896 A JP55049896 A JP 55049896A JP 4989680 A JP4989680 A JP 4989680A JP S6317945 B2 JPS6317945 B2 JP S6317945B2
- Authority
- JP
- Japan
- Prior art keywords
- nonwoven fabric
- fibers
- web
- thermocompression bonding
- roll
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Nonwoven Fabrics (AREA)
Description
本発明は、引裂強度が大で、毛羽立ちが少ない
にも拘らず、柔軟性の良い不織布及びその製造法
に関する。
不織布はウエブ内の繊維にある種の結合を与え
てウエブを固定して作られる。その結合法として
は、接着剤を用いる方法、ニードルパンチ等の機
械的な繊維交絡による法、カレンダーロール等に
よる熱圧着法等が採用されている。これらのう
ち、熱可塑性繊維を主とするウエブからの不織布
製造法としては、部分熱圧着法、例えば、エンボ
ス模様を有するロールとフラツトロールからなる
カレンダーロールの間にウエブを通して、ウエブ
を部分的に熱圧着する方法が、ランニングコスト
が安い点、得られる不織布の柔軟性が比較的すぐ
れている点から、注目されている。
しかし、この方法によつて強度が大で、特に摩
擦による毛羽立ちの少ない不織布を得ようとする
と、部分熱圧着の面積比率を大きくし、圧着部単
位を高密度に配置する必要があり、その結果、不
織布の柔軟性は大いに低下せざるを得ず、逆に良
い柔軟性を保持しようとすれば、毛羽立ちの増加
を防止し得ず、甚だしくは強度も低下する。この
ように不織布の毛羽立ちの減少と柔軟性の増加は
互に相反する事項であつた。又、ウエブが厚くな
ると、十分な圧縮や熱伝導を与えることが困難に
なるため、部分熱圧着自体が十分に行なわれ難く
なり、表面の毛羽発生を押えることが極めて困難
になる。即ち、部分熱圧着法は厚手の不織布の製
造に対して、一つの限界を持つている。又、厚手
の場合部分熱圧着が満足に行なわれると、得られ
る不織布の柔軟性は非常に低下する。
本発明の目的は、上記部分熱圧着法の本質的な
問題点を解決し、摩擦による毛羽立ちが少なく、
しかも柔軟性の格段に良好な不織布並びにその製
造法を提供することである。
この目的は、部分熱圧着された不織布であつ
て、少なくともその一方の面において、非圧着部
の全面にわたつて表面層の単繊維同志の融着部が
分布していることを特徴とする本発明の不織布に
よつて達成される。
本発明によれば、非部分熱圧着部の全面にわた
る表面層の単繊維同志の融着によつて、不織布表
面の毛羽の発生が防止され、かつ強度も向上する
ので、部分熱圧着の程度を、強度を満足し、不織
布の柔軟性を保持し得る程度に押えることができ
るので、毛羽立ち少なく十分な強度と改良された
柔軟性を有する不織布が得られる。
以下、本発明を詳細に説明する。
第1図及び第2図は夫々本発明の不織布の1例
を示す模式的断面図で、いずれも1は非熱圧着部
のウエブ、2は部分熱圧着部、3は非熱圧着部ウ
エブ表面繊維の融着を示す。第1図の不織布は片
面がフラツトで一面のみ部分熱圧着により凹凸を
有し、第2図の不織布は両面に凹凸を有してい
る。
第3,4図は本発明不織布の表面の顕微鏡写真
を示すもので、第3図はポリエステル繊維の不織
布の例(倍率80)で、第4図はナイロン繊維の不
織布の例である。第4図の場合、拡大率をかえて
(イ)(倍率80)、(ロ)(倍率240)、(ハ)(倍率240)の
3
種の写真を示してある。熱圧着部と非熱圧着部分
の表面繊維の融着の様子が明瞭に看取できる。
本発明の不織布は、熱可塑性繊維又はこれを主
とする混合繊維からなるウエブから作られる。
熱可塑性繊維としては、ポリアミド系、ポリエ
ステル系、ポリオレフイン系、ポリアクリル系、
ポリ塩化ビニル又はビニリデン等の合成繊維、及
びこれらの複合繊維、混合繊維が用いられる。繊
維の太さは、0.5〜10dが普通で、細いもの程柔軟
な風合の不織布を与える。好ましい範囲は0.5〜
5dである。
ウエブは、カード法等による短繊維ウエブ、ス
パンボンド法等による長繊維ウエブに分けられ、
いずれも本発明のものであるが、長繊維ウエブの
不織布において、特に本発明の効果が有効に発揮
される。その理由は、短繊維ウエブの場合は、毛
羽は抜け落ち易いが、長繊維ウエブの場合は単繊
維の切断により長い毛羽が残り易く、又比較的低
い程度の部分熱圧着で不織布の高い引張強度が得
られるからである。
ウエブの部分熱圧着部のパターンは任意に選べ
るが、短線を平行又は直交に千鳥型に並べたパタ
ーン、水玉状パターンのような非連続型パター
ン、又は亀甲型、織目型、格子型等のように連続
型パターンのいずれも用い得る。これらの両型パ
ターンには他に種々のものが考えられる。不織布
の部分熱圧着部のウエブ全面に対する面積率は5
〜50%が普通である。面積率の小さい程、熱圧着
部の間隔が広い程、非熱圧着部(凸部)の高さが
大きい程、得られる不織布の柔軟性は良くなり、
毛羽立ちし易くなる。
熱圧着部の繊維の結合・固定はしつかりと行な
われていなければならない。
部分熱圧着は、凹凸表面を有するエンボスロー
ルと表面平滑な金属ロールの間に、或いは両面凹
凸の金属ロールの間に、又は凹凸のある熱板の間
にウエブをはさんで行なうことができる。又、超
音波、高周波ウエルダー等によつて行なうことも
できる。ロールの加熱温度はしつかりした熱圧着
を行なうため、ウエブ繊維の融点以下10〜50℃に
設定するのが良い。異種繊維の混合ウエブでは低
融点のほうを基準にして加熱温度を設定するほう
が良い。
本発明における単繊維同志の融着とは、温度上
昇により単繊維表面が軟化し、単繊維と単繊維と
の接触交点において結合したもの、又は軟化した
表層単繊維が軟化していない次層の単繊維層に点
接又は全接して結合している状態をいう。軟化に
より融着している層は外表面の1層で十分な毛羽
立ち防止効果を奏する。2層目、3層目の融着も
あり得るが、融着層が多くなる程柔軟性の低下が
起こる。表面層の単繊維同志の融着部はマクロ的
には非熱圧着部の全面にわたつているが、ミクロ
的には全表面層でなくてよく、ランダム(又はシ
ステマテツク)に融着部が毛羽発生防止効果を奏
し得る程度に表面層に分布していれば良い。尤も
全表面層における融着を排除するものではない
が、この表面層融着の状況は、第3図及び第4図
により非常によく現われている。特に第4図の拡
大写真ロ,ハによく現われている。毛羽立ち防止
には、最外表面1層の単繊維の軟化融着で大きな
効果があるが、本発明の融着は最外層の単繊維の
融着のみに限定されるものではない。
表面層の単繊維同志の融着は、高温流体の吹き
付けによつても行われるが、火炎を直接ウエブ表
面に当てる方法によつて簡便に、かつ熱効率良く
実施される。
第5図は、火炎処理装置の1例を示す簡略図で
ある。部分熱圧着された不織布5は、火炎処理時
の揺れを防ぐためロール6に沿わせながら、適当
な距離に設置したバーナー7からの火炎8をあて
る。バーナーの形状、従つて火炎の形状は融着表
面の形状を考慮して適当に決定すれば良い。一般
に、スリツト状又は1列又は多列に並んだ小孔の
集りで良い。ロール9及びバーナー10はウエブ
の両面を融着処理する場合のものである。片面の
みの処理の場合は不要である。11は冷却ロール
であり、必要に応じて設ける。不織布の送りロー
ル及び巻取りロールの図示は略してある。不織布
の移動が停止した場合は自動的に消炎するように
作るのが良い。
次に実施例を示す。
実施例 1
2.5dのポリエステル系長繊維からなるウエブ
(目付50g/m2)をエンボス模様を有する凹凸ロ
ールと平滑ロールの間で、230℃にて部分熱圧着
した後、その凹凸面を、第5図に示す装置によつ
て火炎処理した。
処理条件としてプロパンガスをガス源とし、小
孔(5mmφ)を6mmピツチで7列配置したバーナ
ー(有効幅2m)を用いて布との距離を20mmと
し、30m/minの速度で火炎処理した。
得られた不織布は、第3図の写真のように部分
熱圧着部と表面の繊維の一部が融着した非熱圧着
部からなり、又第1表に示すようなウエブ特性を
示し、風合を損なうことなく耐摩擦性の向上した
不織布であつた。
The present invention relates to a nonwoven fabric that has high tear strength, low fuzz, and good flexibility, and a method for producing the same. Nonwoven fabrics are made by providing some type of bond to the fibers within the web to secure the web. As the bonding method, a method using an adhesive, a method using mechanical fiber entanglement such as needle punching, a thermocompression bonding method using a calender roll, etc. are employed. Among these, methods for producing nonwoven fabrics from webs mainly made of thermoplastic fibers include the partial thermocompression bonding method, for example, passing the web between calendar rolls consisting of a roll with an embossed pattern and a flat roll to partially separate the web. The thermocompression bonding method is attracting attention because of its low running cost and the relatively high flexibility of the resulting nonwoven fabric. However, in order to obtain a nonwoven fabric with high strength and especially low fuzz due to friction using this method, it is necessary to increase the area ratio of partial thermocompression bonding and arrange the crimped unit units with high density. However, the flexibility of the nonwoven fabric must be greatly reduced, and on the other hand, if good flexibility is to be maintained, the increase in fluffing cannot be prevented, and the strength is even worse. As described above, reduction in fuzz and increase in flexibility of nonwoven fabrics are contradictory to each other. Furthermore, as the web becomes thicker, it becomes difficult to provide sufficient compression and heat conduction, making it difficult to perform partial thermocompression bonding itself sufficiently, and it becomes extremely difficult to suppress the occurrence of fuzz on the surface. That is, the partial thermocompression bonding method has one limitation in producing thick nonwoven fabrics. Furthermore, in the case of thick nonwoven fabrics, if partial thermocompression bonding is performed satisfactorily, the flexibility of the obtained nonwoven fabric will be extremely reduced. The purpose of the present invention is to solve the essential problems of the above-mentioned partial thermocompression bonding method, reduce fuzzing due to friction,
Moreover, it is an object of the present invention to provide a nonwoven fabric with extremely good flexibility and a method for producing the same. The object of this invention is to provide a nonwoven fabric that is partially heat-pressed and is characterized in that, on at least one side of the non-woven fabric, fused areas of single fibers in the surface layer are distributed over the entire non-pressed area. This is achieved by the nonwoven fabric of the invention. According to the present invention, the generation of fuzz on the surface of the nonwoven fabric is prevented and the strength is improved by the fusion of the single fibers in the surface layer over the entire surface of the non-partial thermocompression bonding area, so that the degree of partial thermocompression bonding can be reduced. Since the strength can be satisfied and the flexibility of the nonwoven fabric can be maintained, a nonwoven fabric with less fuzz, sufficient strength, and improved flexibility can be obtained. The present invention will be explained in detail below. 1 and 2 are schematic cross-sectional views showing one example of the nonwoven fabric of the present invention, in which 1 is the web of the non-thermo-compression bonded part, 2 is the partial thermo-compression bonded part, and 3 is the surface of the web of the non-thermo-compression bonded part. Indicates fiber fusion. The nonwoven fabric shown in FIG. 1 is flat on one side and has unevenness on only one side due to partial thermocompression bonding, and the nonwoven fabric shown in FIG. 2 has unevenness on both sides. Figures 3 and 4 show microscopic photographs of the surfaces of the nonwoven fabrics of the present invention. Figure 3 is an example of a nonwoven fabric made of polyester fibers (magnification: 80), and Figure 4 is an example of a nonwoven fabric made of nylon fibers. In the case of Figure 4, change the magnification
(B) (Magnification 80), (B) (Magnification 240), (C) (Magnification 240) 3
A photo of the seeds is shown. The state of fusion of the surface fibers in the thermocompression bonded area and the non-thermocompression bonded area can be clearly seen. The nonwoven fabric of the present invention is made from a web consisting of thermoplastic fibers or mixed fibers mainly composed of thermoplastic fibers. Thermoplastic fibers include polyamide, polyester, polyolefin, polyacrylic,
Synthetic fibers such as polyvinyl chloride or vinylidene, and composite fibers and mixed fibers thereof are used. The thickness of the fibers is usually 0.5 to 10 d, and the thinner the fibers, the softer the texture of the nonwoven fabric. The preferred range is 0.5~
It is 5d. Webs are divided into short fiber webs produced by carding methods, etc., and long fiber webs produced by spunbond methods, etc.
All of them are according to the present invention, but the effects of the present invention are particularly effectively exhibited in nonwoven fabrics made of long fiber webs. The reason for this is that in the case of short fiber webs, the fluff easily falls off, but in the case of long fiber webs, long fluffs tend to remain due to the cutting of the single fibers, and the high tensile strength of the nonwoven fabric is reduced by relatively low partial thermocompression bonding. Because you can get it. The pattern of the partial thermocompression bonded part of the web can be arbitrarily selected, but it may be a pattern in which short lines are arranged in parallel or orthogonally in a zigzag pattern, a discontinuous pattern such as a polka dot pattern, a hexagonal pattern, a textured pattern, a lattice pattern, etc. Any continuous pattern may be used. Various other types of patterns may be considered for these two types. The area ratio of the partial thermocompression bonded part of the nonwoven fabric to the entire web surface is 5.
~50% is normal. The smaller the area ratio, the wider the interval between the thermocompression bonded parts, and the greater the height of the non-thermocompression bonded parts (projections), the better the flexibility of the resulting nonwoven fabric.
It becomes easy to fluff. The fibers at the thermocompression bonding part must be firmly bonded and fixed. Partial thermocompression bonding can be carried out by sandwiching the web between an embossing roll with an uneven surface and a metal roll with a smooth surface, between metal rolls with uneven surfaces on both sides, or between hot plates with uneven surfaces. Further, it can also be carried out using ultrasonic waves, high frequency welders, etc. The heating temperature of the rolls is preferably set to 10 to 50°C below the melting point of the web fibers in order to perform firm thermocompression bonding. For a mixed web of different types of fibers, it is better to set the heating temperature based on the lower melting point. In the present invention, fusion of single fibers means that the surface of the single fibers is softened due to temperature rise, and the single fibers are bonded at the contact intersection between the single fibers, or that the softened surface single fibers are attached to the next layer that has not been softened. This refers to the state in which the fiber is bonded in point or full contact with the single fiber layer. A single layer on the outer surface, which is fused by softening, has a sufficient fuzz-preventing effect. Although it is possible that the second and third layers are fused, the more fused layers there are, the more the flexibility decreases. Macroscopically, the fused portions of the single fibers in the surface layer cover the entire surface of the non-thermocompression bonded area, but microscopically, they do not need to cover the entire surface layer, and the fused portions are randomly (or systematically) bonded. It is sufficient if it is distributed in the surface layer to the extent that it can exhibit the effect of preventing the generation of fuzz. Although this does not necessarily exclude fusion in the entire surface layer, the situation of this surface layer fusion is very clearly shown in FIGS. 3 and 4. This is particularly visible in the enlarged photographs B and C of Figure 4. Although fluffing can be prevented by softening and fusing the single fibers in the outermost layer, the fusing of the present invention is not limited to fusing the single fibers in the outermost layer. Although the single fibers of the surface layer can be fused together by spraying high-temperature fluid, it can be simply and thermally efficiently carried out by applying flame directly to the web surface. FIG. 5 is a simplified diagram showing one example of a flame treatment device. The partially thermocompressed nonwoven fabric 5 is exposed to flame 8 from a burner 7 installed at an appropriate distance while being placed along a roll 6 to prevent shaking during flame treatment. The shape of the burner, and therefore the shape of the flame, may be appropriately determined in consideration of the shape of the welding surface. In general, it may be a slit or a collection of small holes arranged in one or multiple rows. The roll 9 and burner 10 are used for fusing both sides of the web. It is not necessary if only one side is processed. Reference numeral 11 denotes a cooling roll, which is provided as necessary. The illustration of the feed roll and take-up roll of the nonwoven fabric is omitted. It is best to make the flame extinguisher automatically when the movement of the nonwoven fabric stops. Next, examples will be shown. Example 1 A web made of 2.5 d long polyester fibers (basis weight 50 g/m 2 ) was partially thermocompressed at 230°C between an uneven roll having an embossed pattern and a smooth roll, and then the uneven surface was Flame treatment was performed using the apparatus shown in Figure 5. The treatment conditions were propane gas as the gas source, a burner (effective width 2 m) with 7 rows of small holes (5 mm φ) arranged at 6 mm pitch, a distance from the cloth of 20 mm, and flame treatment at a speed of 30 m/min. The obtained nonwoven fabric consists of a partial thermocompression bonded part and a non-thermocompression bonded part where some of the fibers on the surface are fused, as shown in the photograph in Figure 3, and exhibits web characteristics as shown in Table 1, and is resistant to wind. The nonwoven fabric had improved abrasion resistance without impairing the bonding properties.
【表】
なお、引張強・伸度はJIS−L−1068ストリツ
プ法で、引裂強力はJIS−L−1085ペンジユラム
法、剛軟度は45゜カンチレバー法により、それぞ
れ測定した。耐摩擦強さは学振型摩擦試験機を用
い、荷重500g、摩擦子に#320のサンドペーパー
を用い100回摩擦した後、限度見本(5級:毛羽
立ちなし(良)、3級:中程度(ほぼ良)、1級:
毛羽立ち多く悪い)と比較し、5段階表示した。
このように、本発明不織布は部分熱圧着により
使用上必要な強力を持ち、かつ風合(柔軟性)も
変らず一段と耐摩擦性の向上したものであること
は明らかである。
実施例 2
1.5dナイロン6長繊維ウエブ(目付150g/m2)
を第4図イに見られるような織目模様を有する凹
凸ロールと平滑ロール間で190℃にて部分熱圧着
した後、その凹凸面を第5図に示す装置で、その
両面を火炎処理した。
処理条件として天然ガスをガス源とし、2.5mm
のスリツト状噴出口を5mmピツチで10列配置した
バーナー(有効幅3m)を用い、布との距離を40
mmとし、20m/minで処理した。
得られた不織布は、第4図の如き形態で驚くべ
きことに第2表に示す如く、タテの引張強力が大
幅に向上し、しかも耐摩擦性のすぐれた不織布で
あつた。[Table] Note that tensile strength and elongation were measured using the JIS-L-1068 strip method, tear strength was measured using the JIS-L-1085 pendulum method, and bending strength was measured using the 45° cantilever method. Friction resistance was measured using a Gakushin type friction tester with a load of 500g and #320 sandpaper as a friction element, and after rubbing 100 times, a limit sample (grade 5: no fluff (good), grade 3: moderate (Almost good), Grade 1:
(poor (too much fuzz)) and ranked in 5 levels. As described above, it is clear that the nonwoven fabric of the present invention has the strength necessary for use by partial thermocompression bonding, and has further improved abrasion resistance without changing the feel (flexibility). Example 2 1.5D nylon 6 long fiber web (fabric weight 150g/m 2 )
was partially heat-pressed at 190°C between an uneven roll having a texture pattern as shown in Figure 4A and a smooth roll, and then the uneven surface was flame-treated on both sides using the apparatus shown in Figure 5. . The processing conditions are natural gas as the gas source, 2.5mm
Using a burner (effective width 3m) with 10 rows of slit-shaped spout nozzles arranged at 5mm pitch, the distance from the fabric was 40mm.
mm and processed at 20 m/min. The obtained nonwoven fabric had a form as shown in FIG. 4, and surprisingly, as shown in Table 2, the longitudinal tensile strength was significantly improved, and it was also a nonwoven fabric with excellent abrasion resistance.
【表】
実施例 3
単糸3dのポリエステル系複合繊維(鞘:ポリ
エチレンテレフタレート−イソフタレート共重合
体(m.p.210℃)、芯:ポリエチレンテレフタレー
ト)からなる長繊維ウエブ(目付100g/m2)を
実施例2と同様に部分熱圧着し、火炎処理を行な
つた。ソフトで耐摩擦性のすぐれた不織布が得ら
れた。
以上の実施例が示すように、本発明の不織布は
非熱圧着部の全面にわたつて分布する表面層の単
繊維同志の融着により、柔軟度の実質的低下なし
に表面摩擦による毛羽立ちの格段の減少が見られ
る。又、場合により同時に引張強度のかなりの向
上が見られる。従つて、不織布の必要強度に見合
つた適度に軽減された程度の部分熱圧着に、表面
層の単繊維同志の融着を併用することにより、強
度大で毛羽立ちの少ない柔軟性の大きな、従来に
ない改善された性質の不織布が得られる。[Table] Example 3 An example of a long fiber web (fabric weight 100 g/m 2 ) consisting of a 3D single yarn polyester composite fiber (sheath: polyethylene terephthalate-isophthalate copolymer (mp210°C), core: polyethylene terephthalate) Similar to 2, partial thermocompression bonding was performed and flame treatment was performed. A soft nonwoven fabric with excellent abrasion resistance was obtained. As shown in the above examples, the non-woven fabric of the present invention is able to significantly reduce fuzzing due to surface friction without substantially reducing flexibility due to the fusion of single fibers in the surface layer distributed over the entire surface of the non-thermo-bonded area. A decrease is seen. In some cases, a significant improvement in tensile strength is also observed at the same time. Therefore, by combining the partial heat-compression bonding with a moderate degree of reduction commensurate with the required strength of the nonwoven fabric with the fusion of the single fibers in the surface layer, it is possible to create a fabric with high strength, less fuzz, and greater flexibility than before. A nonwoven fabric with improved properties is obtained.
第1図、第2図は本発明不織布の模式的断面図
であり、第3図、第4図は本発明不織布の表面の
繊維形状を示す顕微鏡写真である。第5図は本発
明不織布を製造するに際しての火炎処理機の機構
を示す図である。
FIGS. 1 and 2 are schematic cross-sectional views of the nonwoven fabric of the present invention, and FIGS. 3 and 4 are microscopic photographs showing the fiber shape on the surface of the nonwoven fabric of the present invention. FIG. 5 is a diagram showing the mechanism of a flame treatment machine for producing the nonwoven fabric of the present invention.
Claims (1)
もその一方の面において、非熱圧着部の全面にわ
たつて表面層の単繊維同志の融着部が分布してい
ることを特徴とする不織布。 2 部分熱圧着された不織布の少なくとも一方の
面に火炎又は高温流体をあてることにより、その
非熱圧着部の全面にわたつて表面層の単繊維同志
を融着させることを特徴とする不織布の製造法。[Scope of Claims] 1. A nonwoven fabric that has been partially thermocompression bonded, in which, on at least one side, fused portions of single fibers in the surface layer are distributed over the entire non-thermocompression bonded portion. Characteristic non-woven fabric. 2. Production of a nonwoven fabric characterized by applying flame or high-temperature fluid to at least one surface of a partially thermocompressed nonwoven fabric to fuse the single fibers of the surface layer over the entire non-thermocompression bonded part. Law.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4989680A JPS56148954A (en) | 1980-04-15 | 1980-04-15 | Nonwoven fabric and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4989680A JPS56148954A (en) | 1980-04-15 | 1980-04-15 | Nonwoven fabric and method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56148954A JPS56148954A (en) | 1981-11-18 |
JPS6317945B2 true JPS6317945B2 (en) | 1988-04-15 |
Family
ID=12843774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4989680A Granted JPS56148954A (en) | 1980-04-15 | 1980-04-15 | Nonwoven fabric and method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS56148954A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01277117A (en) * | 1988-04-27 | 1989-11-07 | Matsushita Electric Ind Co Ltd | Burning control device |
JPH0414965U (en) * | 1990-05-28 | 1992-02-06 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3459627A (en) * | 1964-06-12 | 1969-08-05 | Du Pont | Nonwoven fabric with columnar bonds |
JPS5012377A (en) * | 1973-06-08 | 1975-02-07 | ||
JPS604298B2 (en) * | 1974-11-06 | 1985-02-02 | 東レ株式会社 | Manufacturing method of nonwoven fabric |
JPS5225175A (en) * | 1975-08-21 | 1977-02-24 | Mitsubishi Rayon Co | Manufacture of unwoven fabrics |
JPS5291970A (en) * | 1976-01-30 | 1977-08-02 | Mitsubishi Rayon Co | Manufacture of unwoven fabric |
JPS604834B2 (en) * | 1976-09-28 | 1985-02-06 | 三菱化学株式会社 | New urazole derivatives and herbicides |
-
1980
- 1980-04-15 JP JP4989680A patent/JPS56148954A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01277117A (en) * | 1988-04-27 | 1989-11-07 | Matsushita Electric Ind Co Ltd | Burning control device |
JPH0414965U (en) * | 1990-05-28 | 1992-02-06 |
Also Published As
Publication number | Publication date |
---|---|
JPS56148954A (en) | 1981-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0896645B1 (en) | Durable spunlaced fabric structures | |
US7005395B2 (en) | Stretchable composite sheets and processes for making | |
US4035219A (en) | Bonding of structures | |
KR100278033B1 (en) | Stitch bonded article and manufacturing method thereof | |
JPH10251954A (en) | Wiping sheet and its production | |
KR840004889A (en) | Manufacturing method of water-impermeable curtain woven fabric incorporating film and fibrous web | |
US4128679A (en) | Soft, non-woven fabrics and process for their manufacture | |
TWI575132B (en) | Stretchable nonwoven fabric and fabricating method thereof | |
JP5366132B2 (en) | Tufted carpet back processing method and tufted carpet manufactured by the back processing method. | |
EP1456017B1 (en) | Stretchable composite sheets and processes for making | |
JPH11107155A (en) | Laminated nonwoven fabric and absorptive material by using the same | |
JPH0564856A (en) | Combined lining cloth and its preparation | |
EP1961059B1 (en) | Multitubular sheathing for industrial battery electrodes | |
JPS6317945B2 (en) | ||
JPH07216711A (en) | Laminated non-woven fabric and electric carpet | |
EP1379718B1 (en) | Bonded layered nonwoven and method of producing same | |
JP3727792B2 (en) | Bulky nonwoven fabric or nonwoven fabric laminate and thermal bonding method thereof | |
JP2004522868A5 (en) | ||
JPH11285403A (en) | Face fastener female material and manufacture thereof | |
JP3102450B2 (en) | Three-layer nonwoven fabric and method for producing the same | |
JP2004261449A (en) | Sheet for wet wiper | |
JPH07189107A (en) | Laminated nonwoven | |
JPS646304B2 (en) | ||
JPH07150459A (en) | Laminated nonwoven | |
JPH05209355A (en) | Composite nonwoven fabric and method for producing the same |