[go: up one dir, main page]

JPS63179224A - Optical phase difference measuring instrument - Google Patents

Optical phase difference measuring instrument

Info

Publication number
JPS63179224A
JPS63179224A JP1087287A JP1087287A JPS63179224A JP S63179224 A JPS63179224 A JP S63179224A JP 1087287 A JP1087287 A JP 1087287A JP 1087287 A JP1087287 A JP 1087287A JP S63179224 A JPS63179224 A JP S63179224A
Authority
JP
Japan
Prior art keywords
light wave
light
measured
detector
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1087287A
Other languages
Japanese (ja)
Inventor
Yoshimichi Okada
吉道 岡田
Minoru Yoshii
実 吉井
Yukichi Niwa
丹羽 雄吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1087287A priority Critical patent/JPS63179224A/en
Priority to US07/047,258 priority patent/US4842408A/en
Publication of JPS63179224A publication Critical patent/JPS63179224A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure the surface shape of a body to be measured, the uniformity of a medium, etc., with high accuracy by utilizing an optical heterodyne interference system, and moving the body to be measured and a light wave to be detected relatively and obtaining a beat signal to be detected. CONSTITUTION:Luminous flux emitted by a light source 2 is passed through a lambda/2 plate 3 and split by a polarization beam splitter (PBS) 4 into transmitted light and reflected light. Here, a 1st light wave which is diffracted by an acoustooptic (AO) element 6 and a 2nd light wave which is diffracted by an AO element 5 are superimposed by a PBS 15, passed through an image formation optical system 16 and a lambda/4 plate 17, and polarized reversely circularly to form interference fringes. The 1st and 2nd light waves are split by a PBS 18 into two, one light beam is image-formed on a detector 19, and the other is image-formed on a detector 20; and the respective detectors detect beat signals, which become a reference signal and a signal to be detected. Here, the reference signal of one measurement point obtained by the detector 19 is recorded 21 and the phase difference from the signal to be detected which is obtained by the detector 20 when a stage 24 is moved according to the reference signal is found.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光学的位相差測定装置に関し、特に光ヘテロダ
イン技術を用いた光波干渉方式を利用し、被測定物の屈
折率分布や面形状変化に伴う入射光波の光学的位相変化
を測定するのに好適な光学的位相差測定装置に関するも
のである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an optical phase difference measuring device, and in particular, uses a light wave interference method using optical heterodyne technology to measure changes in refractive index distribution and surface shape of a measured object. The present invention relates to an optical phase difference measuring device suitable for measuring an optical phase change of an incident light wave caused by a change in the optical phase of an incident light wave.

(従来の技術) 従来より被測定物の面形状や光学材料の媒質の均−性等
を測定する装置として、例えばマツハツエンダ−干渉計
やトワイマングリーン干渉計等の各種の干渉計が用いら
れている。
(Prior Art) Various interferometers, such as the Matsuhatsu-Ender interferometer and the Twyman-Green interferometer, have been used to measure the surface shape of the object to be measured and the homogeneity of the medium of the optical material. There is.

この種の干渉計では例えば被測定物の面形状を求める場
合には入射光波の面形状に保存する位相変化より干渉縞
を形成し、又光学材料の媒質の均一性を求める場合には
入射光波の媒質の不均一性に依存する位相変化より干渉
縞を形成し、これらの干渉縞の干渉状態を測定して求め
ている。
In this type of interferometer, for example, when determining the surface shape of an object to be measured, interference fringes are formed by the phase change preserved in the surface shape of the incident light wave, and when determining the uniformity of the medium of an optical material, the incident light wave Interference fringes are formed from phase changes that depend on the non-uniformity of the medium, and the interference state of these interference fringes is measured and determined.

一般にはこのとき被測定物に所定開口の平面波を入射さ
せ、反射光波若しくは透過光波の位相変化を干渉縞の強
度分布に変換して測定している。
Generally, at this time, a plane wave of a predetermined aperture is made incident on the object to be measured, and the phase change of the reflected or transmitted light wave is converted into an intensity distribution of interference fringes for measurement.

例えば光学材料の媒質の均一性、即ち他の領域との屈折
率差を求める場合には、均一媒質の領域との屈折率差を
Δn、その領域の光波の進行方向の厚さをd、測定する
光の波長なλとすると入射光波の他の領域に対する位相
変化ΔΦはとなる。
For example, when determining the uniformity of the medium of an optical material, that is, the refractive index difference with other regions, measure the refractive index difference with the uniform medium region by Δn, and the thickness of that region in the direction of light wave propagation with d. Let λ be the wavelength of the light, then the phase change ΔΦ of the incident light wave with respect to other regions is as follows.

このときの光学材料の媒質の均一性を高精度に測定する
には位相変化ΔΦ、即ち干渉縞の干渉状態を高精度に求
めることが必要となってくる。
In order to measure the uniformity of the medium of the optical material with high precision at this time, it is necessary to obtain the phase change ΔΦ, that is, the interference state of the interference fringes with high precision.

しかしながら従来の干渉計では被測定物の大きさに対応
した光束径を被測定物に入射させているので被測定物が
大きくなると被測定物への入射光波の強度が低くなり、
干渉縞のコントラストが低下してくる。
However, in conventional interferometers, a beam diameter corresponding to the size of the measured object is incident on the measured object, so as the measured object becomes larger, the intensity of the light wave incident on the measured object decreases.
The contrast of interference fringes decreases.

高精度に干渉縞の干渉状態を測定するには高感度の受光
素子や高出力のレーザー光源等を用いることが考えられ
るが一般にはこれらの要素にも限度があり、多くの場合
干渉状態を高精度に測定するのが難しくなり又装置全体
が大型化してくる等の問題があった。
In order to measure the interference state of interference fringes with high precision, it is possible to use a highly sensitive photodetector or a high-output laser light source, but these elements generally have limitations, and in many cases it is difficult to measure the interference state highly. There were problems such as it became difficult to measure accurately and the overall size of the device increased.

(発明が解決しようとする問題点) 本発明は光ヘテロダイン干渉方式を利用し、光学部材の
面形状や材質の均−性等を入射光波の位相変化を検出す
ることにより高精度に測定することのできる光学的位相
差測定装置の提供を目的とする。
(Problems to be Solved by the Invention) The present invention uses an optical heterodyne interference method to measure the surface shape and material uniformity of an optical member with high precision by detecting the phase change of an incident light wave. The purpose of the present invention is to provide an optical phase difference measuring device that can perform the following steps.

(問題点を解決するための手段) 周波数の異なる第1光波と第2光波の2つの光波を発生
させ、該第1光波と第2光波を合波させることにより参
照ビート信号を得、前記第1光波と第2光波のうち一方
の被検光波を被測定物に入射させ透過若しくは反射させ
た後、該被検光波と他方の光波とを合波させる際、該被
測定物と前記被検光波とを相対的に移動させることによ
り被検ビート信号を得、これら2つのビート信号用いて
前記被測定物による入射光波に対する光学的位相変化状
態を測定したことである。
(Means for Solving the Problem) A reference beat signal is obtained by generating two light waves, a first light wave and a second light wave, having different frequencies, and combining the first light wave and the second light wave. After one of the first light wave and the second light wave is incident on the object to be measured and is transmitted or reflected, when the test light wave and the other light wave are combined, the object to be measured and the object to be measured are combined. A beat signal to be measured is obtained by moving the light wave relatively, and the optical phase change state of the object to be measured relative to the incident light wave is measured using these two beat signals.

(実施例) 第1図は本発明の一実施例の光学系の概略図である。図
中、1は被測定物で、内部に屈折率分布を有する透明な
試料、2はレーザ等の可干渉光源、3はλ/2板で、可
干渉光源2から出射する光束の偏光面を紙面法線に対し
て45’傾けている。4は偏光ビームスプリッタ−(以
下、PBSと記す。)で、λ/2板3を通過した光束を
偏光面のP方位とS方位に分け、大略等強度の互いに偏
光面が直交する2つの光波を生成している。5及び6は
夫々PBS4で生成した2つの光波を回折する音響光学
変調素子(以下、A10素子と記載する。)、で例えば
80MH2と81MH2に光波を周波数変調している。
(Embodiment) FIG. 1 is a schematic diagram of an optical system according to an embodiment of the present invention. In the figure, 1 is an object to be measured, which is a transparent sample with a refractive index distribution inside, 2 is a coherent light source such as a laser, and 3 is a λ/2 plate, which determines the polarization plane of the light beam emitted from the coherent light source 2. It is tilted 45' with respect to the normal to the paper surface. Reference numeral 4 denotes a polarizing beam splitter (hereinafter referred to as PBS), which divides the light beam that has passed through the λ/2 plate 3 into P direction and S direction of the polarization plane, and generates two light waves with approximately equal intensity and whose polarization planes are orthogonal to each other. is being generated. 5 and 6 are acousto-optic modulation elements (hereinafter referred to as A10 elements) that diffract the two light waves generated by the PBS 4, respectively, and frequency-modulate the light waves to, for example, 80 MH2 and 81 MH2.

7及び8はA10素子で回折された光波を反射し光路を
変える平面反射鏡、9は2つの光波を同一歩行へ指向す
る為のPBS、10はA10素子5.6で生じた回折光
から所定次数の光波のみを選択的に取り出すアパーチャ
ー、12は入射光波を分離するPBS、13及び14は
PBS12で分離された2つの光波を反射し光路を変え
る平面反射鏡、15は平面反射鏡14で反射された光波
と平面反射鏡13で反射され被測定物1を透過した光波
とを重ね合わせ合波するPBS、16はPBS15を介
して得られる光波を後述する検出器19.20に導く結
像光学系で、被測定物1を検出器19.20のセンサ面
上に結像する様に構成されている。17は合波されたP
方位とS方位の光波を夫々円偏光に変換するλ/4板、
18はλ/4板15を通過し円偏光となった光波を分割
して検出器19.21に導< PBS、19.20は微
少開口により位置を固定した検出器、21は検出器19
からの出力信号を記録する記録回路、22は演算回路で
あり記録回路21からの信号と検出器20からの信号と
から位相差を演算により求めている。23は表示手段で
あり演算回路22で求めた演算結果を表示若しくは出力
している。
7 and 8 are plane reflecting mirrors that reflect the light waves diffracted by the A10 element and change the optical path; 9 is a PBS for directing the two light waves in the same direction; and 10 is a predetermined mirror from the diffracted light generated by the A10 element 5.6. 12 is a PBS that separates the incident light wave; 13 and 14 are plane reflectors that reflect the two light waves separated by PBS 12 and change the optical path; 15 is a plane reflector 14 that reflects the light waves. 16 is an imaging optical system that guides the light waves obtained through the PBS 15 to detectors 19 and 20, which will be described later. The system is configured to image the object 1 to be measured on the sensor surface of the detector 19.20. 17 is the combined P
A λ/4 plate that converts the light waves in the azimuth and S azimuth into circularly polarized light,
18 is a circularly polarized light wave that has passed through the λ/4 plate 15 and is split and guided to a detector 19.21 <PBS, 19.20 is a detector whose position is fixed by a minute aperture, and 21 is a detector 19
A recording circuit 22 is an arithmetic circuit which calculates the phase difference between the signal from the recording circuit 21 and the signal from the detector 20. 23 is a display means for displaying or outputting the calculation results obtained by the calculation circuit 22.

24はステージでありx、y方向に移動可能で被測定物
1を載置している。
Reference numeral 24 denotes a stage which is movable in the x and y directions and on which the object to be measured 1 is placed.

次に本実施例における動作について説明する。Next, the operation in this embodiment will be explained.

可干渉光源2から出射した光束、例えばレーザ光等の光
束はλ/2板3を介してPBS4によって透過光、反射
光に分割される。ここで、反射光はS方位の偏光面(以
下、S偏光と記す。)を有する光波であり、紙面に垂直
な方向に直線偏向している。この光波はA10素子6に
より回折を受ける。ここで、A / o素子6に発生さ
せる超音波の周波数を81 MH2とし、+1次回折光
を測定に用いるとすれば、+1次回折光である光波(以
下、第1の光波と記す。)は+81 M)12の周波数
シフトを受けて、平面反射鏡8、PBS9、アパーチャ
10、PBS12、平面反射鏡14の順に光路を経てP
BS15に指向される。
A light beam emitted from the coherent light source 2, such as a laser beam, passes through a λ/2 plate 3 and is split into transmitted light and reflected light by the PBS 4. Here, the reflected light is a light wave having a polarization plane in the S direction (hereinafter referred to as S-polarized light), and is linearly polarized in a direction perpendicular to the plane of the paper. This light wave is diffracted by the A10 element 6. Here, if the frequency of the ultrasonic wave generated by the A/O element 6 is 81 MH2 and the +1st-order diffracted light is used for measurement, the light wave that is the +1st-order diffracted light (hereinafter referred to as the first light wave) is +81 MH2. M) After receiving a frequency shift of 12, P
Directed to BS15.

一方、PBS4を通過した透過光はP方位の偏光面(以
下、P偏光と記す。)を有する光波であり、紙面に平行
な方向に直線偏光しており、この光波はA10素子5に
より回折を受ける。ここで、A / o素子5に発生さ
せる超音波の周波数を80 M Hzとし、+1次回折
光を測定に用いるとすれば、+1次回折光である光波(
以下、第2の光波と記す。)は+80MH2の周波数シ
フトを受けて、平面反射鏡7、PBS9、アパーチャ1
0、PBS12、平面反射@13、被測定物1の順に光
路を経てPBS15に指向される。従フて、第2の光波
の位相は被測定物1の屈折率分布に応じた位相変化を受
けており、この第2の光波と第1の光波とはPBS15
により合波され、結像光学系16を介し、λ/4板1板
金7過して互いに逆回りの円偏光とすることによフて干
渉縞な形成する。
On the other hand, the transmitted light that has passed through the PBS 4 is a light wave having a polarization plane in the P direction (hereinafter referred to as P polarization), and is linearly polarized in a direction parallel to the paper surface, and this light wave is diffracted by the A10 element 5. receive. Here, if the frequency of the ultrasonic wave generated by the A/O element 5 is 80 MHz and +1st order diffracted light is used for measurement, the light wave (+1st order diffracted light)
Hereinafter, this will be referred to as a second light wave. ) is subjected to a frequency shift of +80MH2, and the plane reflector 7, PBS 9, aperture 1
0, PBS 12, plane reflection @ 13, and object to be measured 1 are directed to PBS 15 through the optical path in this order. Therefore, the phase of the second light wave undergoes a phase change according to the refractive index distribution of the object to be measured 1, and the second light wave and the first light wave are connected to the PBS 15.
The light is multiplexed by the imaging optical system 16, passes through the λ/4 plate 1 and the metal plate 7, and becomes circularly polarized light in opposite directions, thereby forming interference fringes.

今、被測定物1を通過した第2の光波とIMH2だけ周
波数が異なる平面波の第1の光波とを合波した際の光強
度分布i (x、y、t)は、被測定物1の位置x、y
に於る第2の光波の位相変化なΔΦ(x、y)とすれば
、 i(x、y、t) −a(x、y)+b(x、y) c
os (2πx  10’t+にΔΦ(x、y) ) 
   −・・・・・・・−(1)で表わすことが出来る
。尚、ここでKは波数でありに=2π/λ(λは波長)
で示される。
Now, the light intensity distribution i (x, y, t) when the second light wave that has passed through the object to be measured 1 and the first light wave, which is a plane wave whose frequency differs by IMH2, is combined is position x, y
If ΔΦ(x, y) is the phase change of the second light wave at
os (ΔΦ(x,y) to 2πx 10't+)
−・・・・・・・−(1) can be expressed. In addition, here K is the wave number and = 2π/λ (λ is the wavelength)
It is indicated by.

従って、上記(1)に示す様に、第2の光波の位相変化
ΔΦ(x、y)はビート信号IMHz”2π×106の
位相変化として求まる。
Therefore, as shown in (1) above, the phase change ΔΦ(x,y) of the second light wave is determined as the phase change of the beat signal IMHz"2π×106.

前述の如くλ/4板1板金7り互いに逆回りの円偏光と
なった第1の光波と第2の光波とは、PB318によっ
て分割され、一方は位相固定の微少開口の検出器19の
センサ面へ、他方は検出器20へ結像され、夫々の検出
器でI M Hzのビート信号が検出される。ここで、
検出器19.20に結像される光波は、被測定物1の任
意の位置・(x(1,yo)を通過した第2の光波と第
1の光波とから成り、この2つの光波の干渉によるIM
H2のビート信号が検出器19.20で検出され測定に
於る参照信号と被検信号となる。
As mentioned above, the first light wave and the second light wave, which are circularly polarized in opposite directions from each other due to the λ/4 plate 1 and the metal plate 7, are split by the PB 318, and one of them is sent to the sensor of the phase-locked micro-aperture detector 19. The other side is imaged onto a detector 20, and an I MHz beat signal is detected by each detector. here,
The light waves that are imaged on the detectors 19 and 20 are composed of the second light wave that has passed through an arbitrary position (x(1, yo)) of the object 1 to be measured, and the first light wave. IM due to interference
The H2 beat signal is detected by detectors 19 and 20, and serves as a reference signal and a test signal for measurement.

本実施例では検出器19で得られる一測定点に右ける参
照信号を記録回路21で記録しておき、この参照信号を
基準として、ステージ24を移動させたときに検出器2
0から得られる被検信号との位相差を求めている。
In this embodiment, a reference signal obtained by the detector 19 at one measurement point is recorded by the recording circuit 21, and when the stage 24 is moved using this reference signal as a reference, the detector 2
The phase difference with the test signal obtained from 0 is calculated.

即ち検出器20ではステージ24を移動させて被測定物
1を走査したときに各々の位置において得られるビート
信号を被検信号として求めている。
That is, in the detector 20, when the stage 24 is moved and the object to be measured 1 is scanned, beat signals obtained at each position are obtained as the test signals.

そして基準信号と被検信号との位相差を演算回路22で
求め、その結果を表示手段23で表示している。
Then, the phase difference between the reference signal and the test signal is determined by the arithmetic circuit 22, and the result is displayed by the display means 23.

第2図は検出器19から出力される参照信号であるビー
ト信号Rと、検出器20から出力される位相情報(ΔΦ
)を有する被検信号であるビート信号Sとを時間を軸上
で示したものである。ステージ24を1次元或いは2次
元走査することにより、第2図に示す如き信号を得て各
位置(x、y)に於る参照信号Rからの信号Sの位相差
ΔΦ(x、y)を演算回路22により電気的に検出する
ことにより、第2の光波の相対的な位相差ΔΦ(x、y
)、即ち被測定物!の屈折率分布を測定している。
FIG. 2 shows the beat signal R, which is the reference signal output from the detector 19, and the phase information (ΔΦ
) is shown on the time axis. By scanning the stage 24 one-dimensionally or two-dimensionally, a signal as shown in FIG. 2 is obtained, and the phase difference ΔΦ(x, y) of the signal S from the reference signal R at each position (x, y) is calculated. By electrically detecting the arithmetic circuit 22, the relative phase difference ΔΦ(x, y
), that is, the object to be measured! The refractive index distribution of

第3図はビート信号R,Sから屈折率分布を得るまでの
演算回路22における演算における概略ブロック図を示
しており、30は位相検出器、31はマイクロプロセッ
サ、32はCRT、プリンタ等の出力装置を示す。検出
器19及び20から得られたピートR及びSは位相検出
器30で処理され、位相差ΔΦ(x、y)が算出される
が、この際、マイクロプロセッサ31によってステージ
24による走査位置(x、y)を指定し、順次その走査
位置(x、y)に於るビート信号Sを位相検出器30に
取り込み処理する。尚、ビート信号Rは実質的に一定で
ある。
FIG. 3 shows a schematic block diagram of calculations in the calculation circuit 22 from the beat signals R and S to obtaining the refractive index distribution, where 30 is a phase detector, 31 is a microprocessor, and 32 is an output of a CRT, printer, etc. Show the device. Peat R and S obtained from the detectors 19 and 20 are processed by the phase detector 30 to calculate the phase difference ΔΦ(x,y). At this time, the microprocessor 31 calculates the scanning position (x, y) by the stage 24. , y), and the beat signal S at that scanning position (x, y) is sequentially fetched into the phase detector 30 and processed. Note that the beat signal R is substantially constant.

位相検出器30で摘出された位相差ΔΦ(x。The phase difference ΔΦ(x.

y)の信号はA/D変換されてマイクロプロセッサ31
に入力される。マイクロプロセッサ31では所定の換算
手順に従って位相差ΔΦ(x、y)から屈折率分布n 
(x、y)を求め、出力装置32へn (x、y)に関
する信号を出力する。
The signal of y) is A/D converted and sent to the microprocessor 31.
is input. The microprocessor 31 calculates the refractive index distribution n from the phase difference ΔΦ(x, y) according to a predetermined conversion procedure.
(x, y) and outputs a signal regarding n (x, y) to the output device 32.

そして、出力装置32は被測定物の屈折率分布に関する
情報を表示手段23に数値或いは画像の形式で表示する
Then, the output device 32 displays information regarding the refractive index distribution of the object to be measured on the display means 23 in the form of numerical values or images.

以上のようにして本実施例では被測定物1の屈折率分布
を求めている。
As described above, in this embodiment, the refractive index distribution of the object to be measured 1 is determined.

尚本実施例では被測定物の屈折率分布の測定の他、レン
ズや反射鏡等の面形状を入射光波の位相差を検出するこ
とにより同様に求めることができる。
In this embodiment, in addition to measuring the refractive index distribution of the object to be measured, the surface shape of a lens, a reflecting mirror, etc. can be similarly determined by detecting the phase difference of the incident light wave.

尚本実施例において被測定物を移動させる代わりに被測
定物へ入射させ゛る被検光波を光学走査手段等で走査し
て、被測定物と被検光波とを相対的に移動させるように
しても良い。
In this embodiment, instead of moving the object to be measured, the light wave to be measured that is incident on the object to be measured is scanned by an optical scanning means or the like, and the object to be measured and the light wave to be measured are moved relative to each other. It's okay.

(−発明の効果) 本発明によれば光ヘテロダイン干渉方式を利用すると共
に被測定物と被検光波とを相対的に移動させて被検ビー
ト信号を得ることにより被検物体が大型であっても装置
全体を大型化することなく、被測定物の面形状や媒質の
均−性等を高精度に測定することの出来る光学的位相差
測定装置を達成することができる。
(-Effects of the Invention) According to the present invention, by using an optical heterodyne interference method and obtaining a beat signal by relatively moving the object to be measured and the light wave to be measured, the object to be measured is large. It is also possible to achieve an optical phase difference measuring device that can measure the surface shape of an object to be measured, the homogeneity of a medium, etc. with high precision without increasing the size of the entire device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の光学系の概略図、第2図は
本発明に係る参照ビート信号と被検ビート信号との関係
を示す説明図、第3図は本発明に係る屈折率分布を測定
するときの信号処理のブロック図である1、 図中1は被測定物、2は光源、3はλ/2板、4.9,
12,15.18は偏光ビームスプリッタ−15,6は
音響光学素子、10はアパーチャー、7,8,13.1
4は平面鏡、17はλ/4板、19.20は光センサ−
,24はステージ、21は記録回路、22は演算回路、
23は表示手段である。
FIG. 1 is a schematic diagram of an optical system according to an embodiment of the present invention, FIG. 2 is an explanatory diagram showing the relationship between a reference beat signal and a test beat signal according to the present invention, and FIG. 3 is a refraction diagram according to the present invention. 1 is a block diagram of signal processing when measuring rate distribution. In the figure, 1 is the object to be measured, 2 is the light source, 3 is the λ/2 plate, 4.9,
12, 15.18 are polarizing beam splitters, 15, 6 are acousto-optic elements, 10 are apertures, 7, 8, 13.1
4 is a plane mirror, 17 is a λ/4 plate, 19.20 is an optical sensor.
, 24 is a stage, 21 is a recording circuit, 22 is an arithmetic circuit,
23 is a display means.

Claims (1)

【特許請求の範囲】[Claims] 周波数の異なる第1光波と第2光波の2つの光波を発生
させ、該第1光波と第2光波を合波させることにより参
照ビート信号を得、前記第1光波と第2光波のうち一方
の被検光波を被測定物に入射させ透過若しくは反射させ
た後、該被検光波と他方の光波とを合波させる際、該被
測定物と前記被検光波とを相対的に移動させることによ
り被検ビート信号を得、これら2つのビート信号用いて
前記被測定物による入射光波に対する光学的位相変化状
態を測定したことを特徴とする光学的位相差測定装置。
A reference beat signal is obtained by generating two light waves, a first light wave and a second light wave, having different frequencies, and combining the first light wave and the second light wave, and generating one of the first light wave and the second light wave. After the light wave to be measured is made incident on the object to be measured and transmitted or reflected, when the light wave to be measured and the other light wave are combined, by moving the object to be measured and the light wave to be measured relatively. An optical phase difference measuring device characterized in that a beat signal to be measured is obtained, and an optical phase change state of the object to be measured with respect to an incident light wave is measured using these two beat signals.
JP1087287A 1986-05-09 1987-01-20 Optical phase difference measuring instrument Pending JPS63179224A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1087287A JPS63179224A (en) 1987-01-20 1987-01-20 Optical phase difference measuring instrument
US07/047,258 US4842408A (en) 1986-05-09 1987-05-08 Phase shift measuring apparatus utilizing optical meterodyne techniques

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1087287A JPS63179224A (en) 1987-01-20 1987-01-20 Optical phase difference measuring instrument

Publications (1)

Publication Number Publication Date
JPS63179224A true JPS63179224A (en) 1988-07-23

Family

ID=11762429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1087287A Pending JPS63179224A (en) 1986-05-09 1987-01-20 Optical phase difference measuring instrument

Country Status (1)

Country Link
JP (1) JPS63179224A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007025037B3 (en) * 2007-05-29 2008-12-18 Bundesrepublik Deutschland, vertr. d. d. Bundesministerium für Wirtschaft und Technologie, dieses vertr. d. d. Präsidenten der Physikalisch-Technischen Bundesanstalt Method for determining frequency or phase difference between polarized ray of light and polarizing local oscillator ray of light, involves receiving of ray of light from transmission device, and decoupling local oscillator ray of light

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007025037B3 (en) * 2007-05-29 2008-12-18 Bundesrepublik Deutschland, vertr. d. d. Bundesministerium für Wirtschaft und Technologie, dieses vertr. d. d. Präsidenten der Physikalisch-Technischen Bundesanstalt Method for determining frequency or phase difference between polarized ray of light and polarizing local oscillator ray of light, involves receiving of ray of light from transmission device, and decoupling local oscillator ray of light

Similar Documents

Publication Publication Date Title
US4869593A (en) Interferometric surface profiler
US7259862B2 (en) Low-coherence interferometry optical sensor using a single wedge polarization readout interferometer
US7675628B2 (en) Synchronous frequency-shift mechanism in Fizeau interferometer
US8345258B2 (en) Synchronous frequency-shift mechanism in fizeau interferometer
US4842408A (en) Phase shift measuring apparatus utilizing optical meterodyne techniques
US5268742A (en) Full aperture interferometry for grazing incidence optics
US6563593B2 (en) Dynamic angle measuring interferometer
US12216051B2 (en) Dynamic phase-shift interferometer utilizing a synchronous optical frequency-shift
US12228399B2 (en) Heterodyne light source for use in metrology system
US4105335A (en) Interferometric optical phase discrimination apparatus
JPS63179224A (en) Optical phase difference measuring instrument
JP3441292B2 (en) Phase object measuring device
JPS6024401B2 (en) How to measure the physical constants of a measured object
JPH1090117A (en) Method and instrument for measuring refractive index distribution
JP2517551B2 (en) Phase distribution measuring device
JP7624738B2 (en) Optical range finder and evaluation method thereof
US12313791B2 (en) Digital holography metrology system
EP0467343A2 (en) Optical heterodyne interferometer
JPS62263428A (en) Apparatus for measuring phase change
JPH055610A (en) Measuring device
JP2000088513A (en) Aspheric wave generation lens system assembly adjustment device
JPS63218827A (en) Light spectrum detector
JP3496786B2 (en) Method and apparatus for measuring phase object
JPH06147984A (en) Polarized light measuring method
JP2942002B2 (en) Surface shape measuring device