[go: up one dir, main page]

JPS63178208A - Laser light scanner - Google Patents

Laser light scanner

Info

Publication number
JPS63178208A
JPS63178208A JP62010279A JP1027987A JPS63178208A JP S63178208 A JPS63178208 A JP S63178208A JP 62010279 A JP62010279 A JP 62010279A JP 1027987 A JP1027987 A JP 1027987A JP S63178208 A JPS63178208 A JP S63178208A
Authority
JP
Japan
Prior art keywords
polygon mirror
laser beam
rotating polygon
angle
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62010279A
Other languages
Japanese (ja)
Other versions
JPH0664254B2 (en
Inventor
Masao Kinoshita
雅夫 木下
Joji Iwata
岩田 穣治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62010279A priority Critical patent/JPH0664254B2/en
Publication of JPS63178208A publication Critical patent/JPS63178208A/en
Publication of JPH0664254B2 publication Critical patent/JPH0664254B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PURPOSE:To improve the printing quality by radiating a second laser light to a columnar mirror of a rotary polygon mirror device and deriving an angle deflection of a mirror axis from a deflection of a reflected light, and correcting continuously an angle of a first laser light which is made incident on the device together with an inclination quantity of each reflecting surface of the mirror. CONSTITUTION:From a difference of an optical output corresponding to a rotational angle of an axis of a rotary polygon mirror device 6 and an average values A in its angle, an arithmetic operation is executed by a signal processor 12, and an angle deflection of the axis of the rotary polygon mirror at that time point is derived. Also, in accordance with an angle deflection signal of the axis of the rotary polygon mirror device 6 from the signal processor 12, a deflector 15 is driven, and when an angle of a laser light 16 radiated to the rotary polygon mirror device 6 is changed, a shift of the scanning direction of a scanning line 19 of a photosensitive body 18 and the vertical direction, generated by an angle deflection of the axis of the rotary polygon mirror device 6 can be negated. In such a way, a laser beam printer, etc. can be operated at a high speed, and a high printing quality can be realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザ光走査装置、特に、レーザビームプリン
タ等に用いられるレーザ光走査装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laser beam scanning device, and particularly to a laser beam scanning device used in a laser beam printer or the like.

〔技術環境〕[Technological environment]

近年のレーザ光走査装置は、レーザビームプリ/り等の
高速化、高印字品質化のため、高速走査時における走査
線の走査方向に対して垂直方向のずれを小さく抑えるこ
とが要求されている。
In recent years, laser beam scanning devices are required to suppress deviations in the direction perpendicular to the scanning direction of the scanning line during high-speed scanning in order to increase the speed of laser beam pre-printing and achieve high printing quality. .

〔従来の技術〕[Conventional technology]

従来のレーザ光走査装置は、回転多面鏡に照射するレー
ザ光を回転軸に直角方向に偏向走査する回転多面鏡装置
と、この偏向走査されたレーザ光を照射体上に結像する
結像レンズユニットとを含んで構成される。
Conventional laser beam scanning devices include a rotating polygon mirror device that deflects and scans the laser beam irradiated onto the rotating polygon mirror in a direction perpendicular to the rotation axis, and an imaging lens that images the deflected and scanned laser beam onto the irradiation object. It is composed of units.

次に従来のレーザ光走査装置について図面を参照して詳
細に説明する。
Next, a conventional laser beam scanning device will be described in detail with reference to the drawings.

第3図は従来のレーザ光走査装置の一実施例を示す概念
図でレーザビームプリンタの走査部分に用いられた一例
を示している。第3図に示すレーザ光走査装置はレーザ
光源14から発せられたレーザ光(レーザビーム)16
を回転多面鏡1により回転軸に直角方向に偏向走査する
回転多面鏡装置7と、この偏光走査されたレーザ光16
を照射体である予め一様に帯電された感光体18上に結
像スル結像レンズユニット(f−θレンズ)17とを含
んでいる。以上の構成において、回転する回転多面鏡1
により偏向走査されるレーザ光16は、結像レンズユニ
ット17を通して予め一様に帯電された感光体18上を
走査し、この感光体18上に静電潜像を形成するように
なっている。
FIG. 3 is a conceptual diagram showing an embodiment of a conventional laser beam scanning device, and shows an example used in a scanning section of a laser beam printer. The laser beam scanning device shown in FIG. 3 is a laser beam (laser beam) 16 emitted from a laser light source 14.
A rotating polygon mirror device 7 that polarizes and scans the polarization in a direction perpendicular to the rotation axis using a rotating polygon mirror 1, and a laser beam 16 that has been polarized and scanned.
The image forming apparatus includes an imaging lens unit (f-theta lens) 17 which forms an image on a photoreceptor 18 which is an irradiator and which is uniformly charged in advance. In the above configuration, the rotating polygon mirror 1
The laser beam 16 deflected and scanned passes through an imaging lens unit 17 and scans on a photoreceptor 18 that has been uniformly charged in advance to form an electrostatic latent image on the photoreceptor 18.

第4図は、レーザビームプリンタにおけるレーザ光走査
装置の走査線のずれを説明する説明図でちる。
FIG. 4 is an explanatory diagram illustrating the deviation of scanning lines of a laser beam scanning device in a laser beam printer.

回転多面鏡装置7の軸の角度振れが生じ回転多面鏡1が
傾くと、または回転多面鏡1の反射面21が回転軸に対
し傾斜していると、レーザ光16は走査方向とは直角方
向にも振られるため、結像レンズユニット17を通して
感光体18上に結像される走査線19は、走査方向とは
直角方向に19a。
When the rotary polygon mirror 1 is tilted due to angular deviation of the axis of the rotary polygon mirror device 7, or when the reflective surface 21 of the rotary polygon mirror 1 is tilted with respect to the rotation axis, the laser beam 16 is emitted in a direction perpendicular to the scanning direction. Therefore, the scanning line 19 that is imaged on the photoreceptor 18 through the imaging lens unit 17 is oriented 19a in a direction perpendicular to the scanning direction.

19bというように位置ずれを生ずることになる。This results in a positional shift such as 19b.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のレーザ光走査装置は、回転多面体装置の
回転軸に角度振れが生じたシ、回転多面鏡の各反射面が
傾斜していると、照射体上の走査線が走査方向とは直角
方向に位置ずれを生じてしまうので、位置ずれを小さく
抑えるために、回転多面鏡装置の軸受部に高剛性、高精
度のものを使用しなければならず、バランス調整も高精
度に行う必要があシ、さらに回転多面鏡に面傾れの少な
いものを使用しなければならないというように、必需に
高価なものになるという欠点があった。
In the above-mentioned conventional laser beam scanning device, angular wobbling occurs in the rotation axis of the rotating polygon device, and if each reflective surface of the rotating polygon mirror is tilted, the scanning line on the irradiator may be perpendicular to the scanning direction. In order to keep the positional deviation to a minimum, the rotating polygon mirror device must have a bearing with high rigidity and high precision, and the balance must be adjusted with high precision. In addition, the rotating polygon mirror had to be used with a small surface inclination, making it unavoidably expensive.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のレーザ光走査装置は、回転多面鏡に照射する第
1のレーザ光を回転多面鏡の回転軸方向に微小角度偏向
可能な偏向器と、前記第1のレーザ光を前記回転多面鏡
により回転軸に直角方向に偏向走査する回転多面鏡装置
と、この偏向走査された第1のレーザ光を照射体上に結
像する結像レンズユニットと、前記回転多面鏡装置に回
転軸と同軸に設けられた円柱鏡と、前記第1のレーザ光
が前記回転多面鏡に照射する位置に対し、180@回転
した位置の前記円柱鏡に照射する第2のレーザ光の反射
光を受光し、その受光量に応じた電気信号を出力する受
光器と、前記回転軸の角度振れにより変化する第2のレ
ーザ光の反射光の向きと垂直にその反射光の一部を遮断
するように前記受光器の前面に配設されたナイフェツジ
と、前記受光器の出力変化から前記回転多面鏡装置の軸
の角度振れを測定する信号処理装置と、該信号処理装置
からの信号に応じて前記偏向器を駆動する駆動装置とを
含んで構成される。
The laser beam scanning device of the present invention includes a deflector capable of deflecting a first laser beam to be irradiated onto a rotating polygon mirror by a small angle in the direction of the rotation axis of the rotating polygon mirror; a rotating polygon mirror device that deflects and scans in a direction perpendicular to the rotation axis; an imaging lens unit that images the deflected and scanned first laser beam onto an irradiation body; A cylindrical mirror provided thereon receives reflected light of a second laser beam irradiated on the cylindrical mirror at a position rotated by 180@ with respect to a position where the first laser beam irradiates the rotating polygon mirror, and a light receiver that outputs an electrical signal according to the amount of received light; and a light receiver configured to block a part of the reflected light of the second laser beam in a direction perpendicular to the direction of the reflected light of the second laser beam, which changes depending on the angular deflection of the rotation axis. a knife disposed in front of the optical receiver, a signal processing device for measuring the angular deflection of the axis of the rotating polygon mirror device from changes in the output of the light receiver, and driving the deflector in accordance with the signal from the signal processing device. The structure includes a drive device that

〔実施例〕〔Example〕

次に、本発明の実施例について、図面を参照して詳細に
説明する。
Next, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は、本発明の一実施例を示す概念図であシ、レー
ザビームプリンタの走査部分に用いられた一例を示して
いる。
FIG. 1 is a conceptual diagram showing an embodiment of the present invention, and shows an example used in a scanning section of a laser beam printer.

第1図に示す、レーザ光走査−置は、第1のレーザ光源
14から発せられた第1のレーザ光16を回転多面鏡1
の回転軸方向に微小角度偏向可能な偏向器15と、第1
のレーザ光16を回転多面鏡1により回転軸に直角方向
に偏向走査する回転多面鏡装置6と、この偏向走査され
た第1のレーザ光16を照射体である予め一様に帯電さ
れた感光体18上に結像する結像レンズユニット(f−
θレンズ)17と、回転多面鏡装置6に回転軸と同軸に
設けられた円柱鏡2と、第1のレーザ光16が回転多面
鏡1に照射する位置に対し1800回転した位置の円柱
鏡2に第2のレーザ光9を照射する第2のレーザ光源8
と、第2のレーザ光9の円柱鏡2による反射光を受光し
、その受光量に応じた電気信号を出力する受光器10と
、回転多面鏡装置6の回転軸の角度振れにより変化する
第2のレーザ光9の反射光の向きと垂直にその反射光の
一部を遮断するように受光器10の前面に配設されたナ
イフェツジ11(図示せず)と、受光器10の出力変化
から回転多面鏡装置6の回転軸の角度撮れを測定する信
号処理袋[12と、信号処理装置12からの信号に応じ
て偏向器15を駆動する駆動i置13とを含んで構成さ
れる。
The laser beam scanning arrangement shown in FIG.
a deflector 15 capable of deflecting at a minute angle in the direction of the rotation axis;
A rotating polygon mirror device 6 deflects and scans the first laser beam 16 in a direction perpendicular to the rotation axis using a rotating polygon mirror 1, and the first laser beam 16 that has been deflected and scanned is applied to a uniformly charged photosensitive material which is an irradiator. An imaging lens unit (f-
θ lens) 17, a cylindrical mirror 2 provided coaxially with the rotation axis of the rotating polygon mirror device 6, and a cylindrical mirror 2 at a position rotated by 1800 degrees relative to the position where the first laser beam 16 irradiates the rotating polygon mirror 1. a second laser light source 8 that irradiates a second laser light 9 to
, a light receiver 10 that receives the reflected light of the second laser light 9 by the cylindrical mirror 2 and outputs an electric signal according to the amount of received light; A knife 11 (not shown) is arranged in front of the light receiver 10 so as to block a part of the reflected light of the laser beam 9 in the direction perpendicular to the direction of the reflected light of the laser beam 9 in FIG. It is configured to include a signal processing bag [12] that measures the angle of the rotation axis of the rotating polygon mirror device 6, and a drive device 13 that drives the deflector 15 in accordance with the signal from the signal processing device 12.

以上の構成において、第1のレーザ光16は回転する回
転多面鏡1により偏向走査され結像レンズユニット17
を通して予め一様に帯電された感光体18上を走査し、
この感光体18上に静電潜像を形成するようになってい
る。一方第2のレーザ光9は、回転する円柱鏡2によっ
て反射され受光器10に入射する。そし°C円柱鏡2の
反射面が垂直で回転多面鏡装置6の軸振れがないときに
、円柱鏡2で反射されるレーザ光9は、その中心点を通
る位置に配置されたナイフェツジ11により略1/2.
遮断されて受光器10に入射するようになっているため
、円柱鏡2の反射面が傾斜しているか、または回転多面
鏡装wt6の軸振れによ)、反射されたレーザ光9の中
心位置が移動してナイフェツジ11により遮ぎられる光
量が変化する。
In the above configuration, the first laser beam 16 is deflected and scanned by the rotating polygon mirror 1, and the imaging lens unit 17
scans the photoreceptor 18 uniformly charged in advance through the
An electrostatic latent image is formed on this photoreceptor 18. On the other hand, the second laser beam 9 is reflected by the rotating cylindrical mirror 2 and enters the light receiver 10 . When the reflecting surface of the cylindrical mirror 2 is vertical and there is no axial wobbling of the rotating polygon mirror device 6, the laser beam 9 reflected by the cylindrical mirror 2 is reflected by the knife 11 placed at a position passing through its center point. Approximately 1/2.
Since the reflected laser beam 9 is blocked and enters the light receiver 10, the center position of the reflected laser beam 9 may be affected by the tilted reflection surface of the cylindrical mirror 2 or the axial vibration of the rotating polygon mirror assembly wt6. moves, and the amount of light blocked by the knife 11 changes.

第2図はこの状態を表わしており、横軸が回転多面鏡装
置6の回転角度、縦軸が、受光器10で検出される光量
である。回転角度による光出力は、平均値Aを中心にあ
る幅Bのばらつきを示す。ここで平均値Aは、円柱鏡2
の反射面の傾斜に対応し、測に値のばらつきBは、回転
多面鏡装置6の軸の角度振れに起因している。すなわち
回転角度に応じた光出力とその角度における平均値Aと
の差から、信号処理袋ft12で演算することにより、
その時点での回転多面鏡装置6の軸の角度振れを求める
ことができる。さらに信号処理装置12からの回転多面
鏡装置16の軸の角度振れ信号に応じて偏向器15を駆
動して、回転多面鏡装置6に照射するレーザ光16の角
度を変えることにより、回転多面鏡装置6の軸の角度振
れによって生じる感光体18上の走査線19の走査方向
と直角方向のずれを打ち消すことができる。
FIG. 2 shows this state, where the horizontal axis is the rotation angle of the rotating polygon mirror device 6, and the vertical axis is the amount of light detected by the light receiver 10. The light output according to the rotation angle shows a variation in the width B around the average value A. Here, the average value A is the cylindrical mirror 2
The variation B in the measurement value corresponds to the inclination of the reflecting surface of , and is caused by the angular deflection of the axis of the rotating polygon mirror device 6. That is, by calculating with the signal processing bag ft12 from the difference between the optical output according to the rotation angle and the average value A at that angle,
The angular deflection of the shaft of the rotating polygon mirror device 6 at that point can be determined. Furthermore, by driving the deflector 15 in accordance with the angular deflection signal of the axis of the rotating polygon mirror device 16 from the signal processing device 12 and changing the angle of the laser beam 16 irradiated to the rotating polygon mirror device 6, The deviation of the scanning line 19 on the photoreceptor 18 in the direction perpendicular to the scanning direction caused by the angular deviation of the axis of the device 6 can be canceled out.

また、駆動装置13に、回転多面鏡1の各反射面の傾斜
量に応じた固定の補正データを組み込んでおけば、回転
多面鏡の各反射面の傾斜に起因する、感光体18上の走
査線19の走査方向と直角方向のずれも打ち消すことが
できることは明らかである。
Furthermore, if fixed correction data corresponding to the amount of inclination of each reflecting surface of the rotating polygon mirror 1 is incorporated into the driving device 13, scanning on the photoreceptor 18 due to the inclination of each reflecting surface of the rotating polygon mirror 1 can be prevented. It is clear that deviations of line 19 perpendicular to the scanning direction can also be canceled out.

以上の説明において、第1のレーザ光16と第2のレー
ザ光9は異なるレーザ光源14,8から出射されるもの
としたが、同一のレーザ光源から出射されるレーザ光を
ビームスプリッタにより分離し、第1のレーザ光16、
第2のレーザ光9として用いることもできる。
In the above explanation, it is assumed that the first laser beam 16 and the second laser beam 9 are emitted from different laser light sources 14 and 8, but the laser beams emitted from the same laser light source are separated by a beam splitter. , first laser beam 16,
It can also be used as the second laser beam 9.

〔発明の効果〕〔Effect of the invention〕

本発明のレーザ光走査装置は、回転多面鏡装置の回転軸
に同軸の円柱鏡にWIJ2のレーザ光を照射し、その反
射光の振れを検出して回転多面鏡装置の軸の角度撮れを
求め、回転多面鏡の各反射面の傾斜量とを合わせ回転多
面鏡装置に入射する第1のレーザ光の角度を連続的に補
正することにより照射体上での走査線のずれを打ち消す
ことができるので、回転多面鏡装置の軸受部がそれほど
高剛性、高精度のものでなく、バランス調整もそれほど
高精度に行なうことなく、さらに回転多面鏡の面傾れが
多少大きくても、走査線のずれが生じないという効果が
ちシ、レーザビームプリンタ等に使用した場合には、大
幅な印字品質の向上が計れるという効果がある。
The laser beam scanning device of the present invention irradiates a WIJ2 laser beam onto a cylindrical mirror coaxial with the rotation axis of a rotating polygon mirror device, detects the deflection of the reflected light, and obtains the angle of the axis of the rotating polygon mirror device. By adjusting the tilt amount of each reflective surface of the rotating polygon mirror and continuously correcting the angle of the first laser beam incident on the rotating polygon mirror device, it is possible to cancel the deviation of the scanning line on the irradiation object. Therefore, the bearing part of the rotating polygon mirror device is not very rigid or precise, and the balance adjustment is not very accurate. When used in a laser beam printer or the like, the printing quality can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す概念図、第2図は第1
図に示す検出器の測定結果の一例を示すグラフ、第3図
は、従来のレーザ光走査装置の一実施例を示す概念図、
第4図は、レーザ光走査装置の走゛査線のずれを説明す
る説明図である。 1・・・・・・回転多面鏡、2・・・・・・円柱鏡、6
,7・・・・・・回転多面鏡装置、8.14・・・・・
・レーザ光源、10・・・・・・受光器、12・・・・
・・信号処理装置、13・・・・・・駆動装置、15・
・・・・・偏向器、17・・・・・・結像レンズユニッ
ト、18・・・・・・感光体。 箭2図 @転角度 yfif3図
Fig. 1 is a conceptual diagram showing one embodiment of the present invention, and Fig. 2 is a conceptual diagram showing an embodiment of the present invention.
FIG. 3 is a conceptual diagram showing an example of a conventional laser beam scanning device;
FIG. 4 is an explanatory diagram illustrating the deviation of the scanning line of the laser beam scanning device. 1...Rotating polygon mirror, 2...Cylindrical mirror, 6
, 7...Rotating polygon mirror device, 8.14...
・Laser light source, 10...Receiver, 12...
...Signal processing device, 13...Drive device, 15.
... Deflector, 17 ... Imaging lens unit, 18 ... Photoreceptor. Bamboo 2 diagram @ rotation angle yfif 3 diagram

Claims (1)

【特許請求の範囲】[Claims] 回転多面鏡に照射する第1のレーザ光を回転多面鏡の回
転軸方向に微小角度偏向可能な偏向器と、前記第1のレ
ーザ光を前記回転多面鏡により回転軸に直角方向に偏向
走査する回転多面鏡装置と、前記偏向走査された第1の
レーザ光を照射体上に結像する結像レンズユニットと、
前記回転多面鏡装置に回転軸と同軸に設けられた円柱鏡
と、前記第1のレーザ光が前記回転多面鏡に照射する位
置に対し180°回転した位置の前記円柱鏡に照射する
第2のレーザ光の反射光を受光しその受光量に応じた電
気信号を出力する受光器と、前記回転軸の角度振れによ
り変化する第2のレーザ光の反射光の向きと垂直にその
反射光の一部を遮断するように前記受光器の前面に配設
されたナイフエッジと、前記受光器の出力変化から前記
回転多面鏡装置の軸の角度振れを測定する信号処理装置
と、該信号処理装置からの信号に応じて前記偏向器を駆
動する駆動装置とを含むことを特徴とするレーザ光走査
装置。
a deflector capable of deflecting a first laser beam to be irradiated onto a rotating polygon mirror by a small angle in the direction of a rotation axis of the rotating polygon mirror; and a deflector scanning the first laser beam in a direction perpendicular to the rotation axis by the rotating polygon mirror. a rotating polygon mirror device; an imaging lens unit that images the deflected and scanned first laser beam onto an irradiation body;
a cylindrical mirror provided coaxially with the rotation axis of the rotating polygon mirror device; and a second laser beam irradiating the cylindrical mirror at a position rotated by 180 degrees with respect to the position at which the first laser beam irradiates the rotating polygon mirror. a light receiver that receives the reflected light of the laser beam and outputs an electrical signal according to the amount of the received light; and a light receiver that receives the reflected light of the second laser beam and outputs an electric signal according to the amount of the received light; a knife edge disposed on the front surface of the light receiver so as to block the light beam; a signal processing device that measures the angular deflection of the axis of the rotating polygon mirror device from changes in the output of the light receiver; a driving device for driving the deflector according to a signal from the laser beam scanning device.
JP62010279A 1987-01-19 1987-01-19 Laser optical scanning device Expired - Lifetime JPH0664254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62010279A JPH0664254B2 (en) 1987-01-19 1987-01-19 Laser optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62010279A JPH0664254B2 (en) 1987-01-19 1987-01-19 Laser optical scanning device

Publications (2)

Publication Number Publication Date
JPS63178208A true JPS63178208A (en) 1988-07-22
JPH0664254B2 JPH0664254B2 (en) 1994-08-22

Family

ID=11745869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62010279A Expired - Lifetime JPH0664254B2 (en) 1987-01-19 1987-01-19 Laser optical scanning device

Country Status (1)

Country Link
JP (1) JPH0664254B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031117A (en) * 1988-10-11 1991-01-07 E I Du Pont De Nemours & Co Scanning type laser microscope device and usage thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61209417A (en) * 1985-03-14 1986-09-17 Fuji Photo Film Co Ltd Method for detecting spindle fluctuation of optical scanner
JPS62133416A (en) * 1985-12-05 1987-06-16 Fuji Photo Film Co Ltd Method and apparatus for detecting axial deviation of optical scanner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61209417A (en) * 1985-03-14 1986-09-17 Fuji Photo Film Co Ltd Method for detecting spindle fluctuation of optical scanner
JPS62133416A (en) * 1985-12-05 1987-06-16 Fuji Photo Film Co Ltd Method and apparatus for detecting axial deviation of optical scanner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031117A (en) * 1988-10-11 1991-01-07 E I Du Pont De Nemours & Co Scanning type laser microscope device and usage thereof

Also Published As

Publication number Publication date
JPH0664254B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
JPS63136017A (en) Light beam scanning device
JP2001305462A (en) Light scanning optical device and image forming device using the same
EP0566155B1 (en) Optical scanning device for scanning laser beam focused on image-forming surfaces
JP3334447B2 (en) Optical axis adjusting method of optical scanning device, optical axis adjusting device, and optical scanning device
JPH08278459A (en) Optical scanner
JPS63178208A (en) Laser light scanner
JP5470347B2 (en) Optical scanning device and image forming apparatus using the same
JPH04242215A (en) Optical scanner
JP2971005B2 (en) Optical scanning device
JPH09211366A (en) Optical scanner
JP5470346B2 (en) Optical scanning device and image forming apparatus using the same
JPH09288245A (en) Optical scanner
JPH0915521A (en) Laser light source device
JPH07318838A (en) Optical scanner
JP2007283690A (en) Image-forming apparatus
JPS62187816A (en) Rotary polygonal mirror device
KR20080023597A (en) Optical scanning device and image forming device having same
JPH0943529A (en) Optical scanner
JPH11249041A (en) Optical scanning device
JPH073513B2 (en) Optical scanning device
JPS63287816A (en) Optical scanner
JPH05289008A (en) Synchronous detector
JPH05257077A (en) Rotary polygon mirror
JPH0715535B2 (en) Laser beam printer
JP2749850B2 (en) Optical deflection device