[go: up one dir, main page]

JPS6317716A - Piezoelectric drive type conveying device - Google Patents

Piezoelectric drive type conveying device

Info

Publication number
JPS6317716A
JPS6317716A JP16275886A JP16275886A JPS6317716A JP S6317716 A JPS6317716 A JP S6317716A JP 16275886 A JP16275886 A JP 16275886A JP 16275886 A JP16275886 A JP 16275886A JP S6317716 A JPS6317716 A JP S6317716A
Authority
JP
Japan
Prior art keywords
piezoelectric elements
trough
vibration
conveyance
elastic plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16275886A
Other languages
Japanese (ja)
Other versions
JPH0321447B2 (en
Inventor
Hiroshi Doke
道家 博
Yoshihisa Sasaki
佐々木 良久
Masahiro Wakasa
若狭 正弘
Seiichi Taguchi
成一 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Sanki Co Ltd
Original Assignee
Toshiba Corp
Sanki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Sanki Co Ltd filed Critical Toshiba Corp
Priority to JP16275886A priority Critical patent/JPS6317716A/en
Publication of JPS6317716A publication Critical patent/JPS6317716A/en
Publication of JPH0321447B2 publication Critical patent/JPH0321447B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Jigging Conveyors (AREA)

Abstract

PURPOSE:To increase the speed of conveyance while variations in the speed of conveyance are decreased, by forming a vibration excitor attached to one side surface of a resilient plate, for vibrating a conveying member, with two upper and lower piezoelectric elements which are distorted for vibration in opposite directions from each other. CONSTITUTION:Leaf spring type resilient plates 23 are attached in parallel with each other to both inclined surfaces 21a, 21b of an attaching seat 21 on the upper side of a base bed 20. Plate-like piezoelectric elements 24-27 are attached on both side surfaces of each resilient plate 23, two for each of upper and lower sides, in such an arrangement that upper piezoelec tric elements have poles which are reverse to that of the lower piezoelectric elements, so that a vibration excitor 22 is formed. The upper ends of the resilient members 23 are attached by screws onto inclined surfaces 29a on both sides of the attaching seat 29. A trough 28 serving as a conveying member is secured on the mounting seat 29, and an article 32 is set on the trough 28. The resilient members 23 and the piezoelectric elements 24-27 are applied with a.c. voltage through lead wires 30a, 31a. The trough 28 is vibrated up and down in an oblique direction to convey leftward the article 32 to be conveyed. With this arrange ment, the speed of conveyance is increased thereby it is possible to reduce variations in the speed of conveyance due to the difference in weight among articles to be conveyed.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、電子部品或いは機械部品等比較的小さい物品
を振動により搬送するものに係り、特にその振動源とし
て圧電素子を用いた圧電側動形搬送装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to conveying relatively small articles such as electronic parts or mechanical parts by means of vibration, and in particular uses a piezoelectric element as the vibration source. The present invention relates to the piezoelectric side moving transfer device used.

(従来の技術) 従来の圧電側動形搬送装置の一例として実開昭52−6
1087号公報或いは実開昭57−46517号公報に
示す直進形パーツフィーダがあるが、その構成を第10
図に示す。この第10図において、1は基台、2は基台
1の上面に固定した下枠で、これの両端には傾斜して立
上がる2本の弾性板3.3を介して上枠4が水平に支持
されている。5は上枠4上に固定した搬送体たるトラフ
で、これに搬送物6を載せる。7は前記各弾性板3の側
面に取付けられた板状の圧電素子で、これには端子8.
9に与えられた交流電圧がリード線8a、9aを介して
印加されるようになっている。この場合、弾性板3と両
圧電素子7,7とで加振体たるバイモルフ10を構成し
ており、両圧電素子7.7に分極方向が反対になるよう
に交流電圧を印加すると、例えば正の半サイクルで一方
の圧電素子7が伸び且つ他方の圧電素子7が縮み、反対
に負の半サイクルで一方が縮み且つ他方が伸びるといっ
た伸縮運動を繰返すことにより、バイモルフ10が矢印
11方向にたわみ振動する。このたわみ振動により、ト
ラフ5を矢印12で示す斜め上下方向に振動させて、搬
送物6を斜め上方に跳上げる動作を繰返すことによって
これをトラフ5に沿って矢印13方向に移動せしめる。
(Prior art) As an example of a conventional piezoelectric side moving transfer device,
There is a linear parts feeder shown in Japanese Patent No. 1087 or Japanese Utility Model Application No. 57-46517, but its configuration is
As shown in the figure. In this FIG. 10, 1 is a base, 2 is a lower frame fixed to the upper surface of the base 1, and an upper frame 4 is attached to both ends of this via two elastic plates 3.3 that stand up at an angle. supported horizontally. Reference numeral 5 denotes a trough serving as a conveying body fixed on the upper frame 4, on which the conveyed object 6 is placed. 7 is a plate-shaped piezoelectric element attached to the side surface of each elastic plate 3, and a terminal 8.7 is attached to the side surface of each elastic plate 3.
The AC voltage applied to 9 is applied via lead wires 8a and 9a. In this case, the elastic plate 3 and both piezoelectric elements 7, 7 constitute a bimorph 10 as a vibrating body, and when an alternating current voltage is applied to both piezoelectric elements 7, 7 so that their polarization directions are opposite, for example, The bimorph 10 is deflected in the direction of the arrow 11 by repeating the stretching motion in which one piezoelectric element 7 extends and the other piezoelectric element 7 contracts in the negative half cycle, and conversely, one contracts and the other extends in the negative half cycle. Vibrate. This deflection vibration causes the trough 5 to vibrate diagonally up and down in the direction shown by arrow 12, and by repeating the operation of jumping up the conveyed object 6 diagonally upward, it is moved along the trough 5 in the direction of arrow 13.

この場合、搬送物6の搬送速度はトラフ5の振動振幅に
比例する。
In this case, the conveyance speed of the conveyed object 6 is proportional to the vibration amplitude of the trough 5.

この種の圧電駆動形パーツフィーダは電磁駆動フィーダ
や電動振動フィーダに比して構造が小形且つ単純である
ため、取扱い、補修が容易であり、しかも消費電力量が
少ないため、経済面でも優れるほか、騒音問題の懸念も
全くないなどの多くの特徴を有するが、搬送速度の点で
問題があり、以下にその理由を述べる。
This type of piezoelectric drive type parts feeder has a smaller and simpler structure than electromagnetic drive feeders or electric vibration feeders, making it easier to handle and repair.In addition, it consumes less electricity, making it economical as well. Although it has many features such as having no concerns about noise problems, there is a problem in terms of conveyance speed, and the reason for this is described below.

即ち、バイモルフ10の固有振動数と同一周波数の交流
電圧を印加すれば、共振現象により同一電圧でも振動振
幅が10倍以上になることが知られている。しかし、共
振時でもバイモルフ10に対しその振動を妨げる方向に
大きな荷重が加わると振動振幅は急激に低下するので、
振動を妨げる方向の荷重を極力小さくする必要がある。
That is, it is known that if an alternating current voltage with the same frequency as the natural frequency of the bimorph 10 is applied, the vibration amplitude will increase by ten times or more even with the same voltage due to a resonance phenomenon. However, even during resonance, if a large load is applied to the bimorph 10 in a direction that prevents its vibration, the vibration amplitude will drop rapidly.
It is necessary to minimize the load in the direction that hinders vibration.

而して、第10図に示すように2個のバイモルフ10の
長さが同一で且つ互に平行であるから、バイモルフ10
の矢印11方向の振動に対してトラフ5は常に水平を保
って斜め」二下方向(矢印12方向)に振動することに
なる。しかし、上述した従来のものでは、振動時におい
ても上枠4の連結部分4aの角度が常に一定に保たれる
ため、弾性板3の上端部とトラフ5のなす角度θ(第1
1図参照)を常に一定に保つように振動することとなり
、これが原因で弾性板3の上端部に対しその振動を妨げ
る方向に過大な曲げ外力が加わってしまう。このため、
バイモルフ10の振動振幅ひいてはトラフ5の振動振幅
が小さくなり、実用的な搬送速度が得られない欠点があ
った。
As shown in FIG. 10, since the lengths of the two bimorphs 10 are the same and parallel to each other, the bimorphs 10
When the trough 5 vibrates in the direction of the arrow 11, the trough 5 always remains horizontal and vibrates diagonally downward (in the direction of the arrow 12). However, in the conventional device described above, since the angle of the connecting portion 4a of the upper frame 4 is always kept constant even during vibration, the angle θ (the first
(See Figure 1) vibrates to keep it constant, and this causes an excessive bending external force to be applied to the upper end of the elastic plate 3 in a direction that prevents the vibration. For this reason,
This has the drawback that the vibration amplitude of the bimorph 10 and, in turn, the vibration amplitude of the trough 5 becomes small, making it impossible to obtain a practical conveyance speed.

そこで、このような欠点を解消するために、第12図に
示すように構成することが考えられている。即ち、バイ
モルフ10の弾性板3の上端部とトラフ5との間に、弾
性材製の連結部材14を介在させ且つこの連結部材14
の曲げ剛性を弾性板3のそれよりも低い値に設定したも
のである。これによって、振動時には第13図に示すよ
うに曲げ剛性の低い連結部材14を弾性変形させること
により、弾性板3の上端部とトラフ5との間の角度変化
が比較的小さな力で許容され、その分、振動を妨げる方
向の荷重が減少してバイモルフ10の振動振幅が増大す
る。
Therefore, in order to eliminate such drawbacks, a configuration as shown in FIG. 12 has been considered. That is, a connecting member 14 made of an elastic material is interposed between the upper end of the elastic plate 3 of the bimorph 10 and the trough 5, and this connecting member 14
The bending rigidity of the elastic plate 3 is set to a lower value than that of the elastic plate 3. As a result, during vibration, by elastically deforming the connecting member 14 with low bending rigidity as shown in FIG. 13, the angle change between the upper end of the elastic plate 3 and the trough 5 is allowed with a relatively small force. Correspondingly, the load in the direction that prevents vibration is reduced, and the vibration amplitude of the bimorph 10 is increased.

しかしながらこの場合、連結部材14の曲げ剛性が低く
なっているため、搬送物の重量の変化によって連結部材
14の変位二が大きく変化し、これかトラフ5の振動振
幅ひいては搬送速度を大きく変化させる原因となる。ち
なみに、第5図に搬送物の重責と搬送速度との関係を示
しておくが、−点鎖線で示すように搬送物の重量の変化
によって搬送速度が20%程度も変化してしまう。実際
に、パーツフィーダを生産ラインで使用する場合には、
搬送物を常に一定の時間間隔で所定のステーションに供
給することが重要な条件となるが、上述した連結部十4
14を用いたものでは、搬送物の重量変化に伴う搬送速
度の変化により搬送物の供給のタイミングが不安定にな
ってしまう不具合がある。
However, in this case, since the bending rigidity of the connecting member 14 is low, the displacement of the connecting member 14 changes greatly due to a change in the weight of the conveyed object, and this is the cause of a large change in the vibration amplitude of the trough 5 and thus the conveying speed. becomes. Incidentally, FIG. 5 shows the relationship between the burden of the transported object and the transport speed, and as shown by the - dotted chain line, the transport speed changes by about 20% due to a change in the weight of the transported object. When actually using a parts feeder on a production line,
It is an important condition to always supply conveyed objects to a predetermined station at constant time intervals, but the above-mentioned connection part 14
14, there is a problem in that the timing of feeding the conveyed object becomes unstable due to a change in the conveying speed due to a change in the weight of the conveyed object.

(発明が解決しようとする問題点) 上述したように、加振体の弾性板と搬送体との間に、曲
げ剛性の低い連結部材を介在させる構成とすると、搬送
体の振動振幅ひいては搬送速度をある程度大きくするこ
とができるが、反面、搬送速度が搬送物の重量変化によ
って大きく変化し易<、搬送速度が安定しないという問
題点があった。
(Problems to be Solved by the Invention) As described above, if a connecting member with low bending rigidity is interposed between the elastic plate of the vibrating body and the conveying body, the vibration amplitude of the conveying body and the conveying speed will be reduced. can be increased to some extent, but on the other hand, there is a problem that the conveyance speed tends to change greatly depending on changes in the weight of the conveyed object, and the conveyance speed is not stable.

本発明はこのような欠点を解決するためのもので、従っ
てその目的は、搬送速度を十分に大きくでき、しかもそ
の搬送速度を搬送物の重量変化に拘らず安定化できる圧
電側動形搬送装置を提供するにある。
The present invention is intended to solve these drawbacks, and therefore, its purpose is to provide a piezoelectric side moving conveyance device that can sufficiently increase the conveyance speed and stabilize the conveyance speed regardless of changes in the weight of the conveyed object. is to provide.

[発明の構成] (問題点を解決するための手段) 本発明の圧電側動形搬送装置は、搬送体を振動させるた
めの加振体を、弾性板の側面に板状の圧電素子を取付け
て構成し、その圧電素子に電圧を印加することによって
圧電素子を弾性板と共にたわみ振動させるようにしたも
のにおいて、前記圧電素子を上下に二分割し、電圧印加
時に下側の圧電素子と上側の圧電素子とを互いに反対方
向にたわませて振動させるように構成したものである。
[Structure of the Invention] (Means for Solving the Problems) The piezoelectric side moving conveyance device of the present invention includes a vibrating body for vibrating the conveyance body, and a plate-shaped piezoelectric element attached to the side surface of an elastic plate. The piezoelectric element is configured to bend and vibrate together with an elastic plate by applying a voltage to the piezoelectric element, in which the piezoelectric element is divided into upper and lower halves, and when a voltage is applied, the lower piezoelectric element and the upper piezoelectric element The piezoelectric element is configured to flex and vibrate in opposite directions.

(作用) 下側の圧電素子と上側の圧電素子とを互いに反対方向に
たわませて振動させるから、上側の圧電素子の振動によ
って弾性板の上端側部分は加振体全体としての振動方向
(下側の圧電素子のたわみ方向)とは反対方向にそり曲
げられることになる。このため、振動時に搬送体側から
弾性板に加わる曲げ力を小さくできて、加振体の振動振
幅ひいては搬送体の振動振幅を大きくできる。しかも、
弾性板と搬送体との間に曲げ剛性の低い連結部材を介在
させずに済むから、その連結部材を介在させることによ
る不具合、即ち搬送物の重;変化により搬送速度が大き
く変化してしまうという不具合を解消できる。
(Function) Since the lower piezoelectric element and the upper piezoelectric element are flexed and vibrated in opposite directions, the vibration of the upper piezoelectric element causes the upper end portion of the elastic plate to move in the vibration direction of the entire vibrating body ( The piezoelectric element is warped in the opposite direction to the bending direction of the lower piezoelectric element. Therefore, the bending force applied to the elastic plate from the carrier side during vibration can be reduced, and the vibration amplitude of the vibrating body and, in turn, the vibration amplitude of the carrier can be increased. Moreover,
Since there is no need to interpose a connecting member with low bending rigidity between the elastic plate and the conveying body, there are problems caused by interposing the connecting member, namely, the conveyance speed changes greatly due to changes in the weight of the conveyed object. Problems can be resolved.

(実施例) 以下、本発明を直進形パーツフィーダに適用した第1実
施例を第1図乃至第5図に基いて説明する。まず全体(
1′4成を示す第2図において、20は上面に取付座2
1を固定した基台、22は加振体で、例えば板ばね製の
弾性板23の両側面に板状の圧電索子24乃至27を夫
々2枚ずつ上下に位置させて取付けた113成である。
(Embodiment) Hereinafter, a first embodiment in which the present invention is applied to a linear parts feeder will be described with reference to FIGS. 1 to 5. First, the whole (
In Figure 2 showing the 1'4 configuration, 20 is the mounting seat 2 on the top surface.
1 is fixed, and 22 is a vibrating body, for example, a 113 structure in which two plate-shaped piezoelectric cords 24 to 27 are attached to both sides of an elastic plate 23 made of a leaf spring, with two plate-shaped piezoelectric cords 24 to 27 positioned above and below. be.

従って、この加振体22は従来のバイモルフに対し圧電
素子を上下に二分割した形態となっている。そして、例
えば2個の加振体22が斜め上下方向に指間して互いに
平行となるように各弾性板23の下端部が取付座21の
両側部の傾斜面部21a、21aにねじ止め等により固
定されている。28は搬送体たるトラフで、これの下面
に固定された取付座29の両側部の傾斜面部29a、2
9aに、各弾性板23の上端部をねじ1[−め等により
固定し、これによってトラフ28を水平に支持している
。この場合、加振体22の各圧電素子24乃至27の分
極極性が第3図に示すように、上側の圧電素子24゜2
5と下側の圧電素子26.27とで逆極性となっている
(第3図に分極極性を+、−の符号で示している)。そ
して、端子30に与えられた交流電圧がリード線30a
及び弾性板23を介して各圧電素子24乃至27の裏面
に印加され、端子31に与えられた交流電圧がリード線
31aを介して各圧電素子24乃至27の表面に印加さ
れるようになっている。
Therefore, this vibrating body 22 has a form in which a piezoelectric element is divided into upper and lower halves, unlike the conventional bimorph. For example, the lower end portions of each elastic plate 23 are screwed to the inclined surface portions 21a, 21a on both sides of the mounting seat 21 so that the two vibrating bodies 22 are parallel to each other with their fingers interposed diagonally in the vertical direction. Fixed. Reference numeral 28 denotes a trough serving as a conveyor, and sloped surface portions 29a, 2 on both sides of a mounting seat 29 fixed to the lower surface of the trough 28
The upper end of each elastic plate 23 is fixed to 9a by screws 1[-], thereby horizontally supporting the trough 28. In this case, as shown in FIG.
5 and the lower piezoelectric elements 26 and 27 have opposite polarities (the polarization polarities are indicated by + and - signs in FIG. 3). Then, the AC voltage applied to the terminal 30 is applied to the lead wire 30a.
The AC voltage applied to the back surface of each piezoelectric element 24 to 27 via the elastic plate 23 and applied to the terminal 31 is applied to the front surface of each piezoelectric element 24 to 27 via the lead wire 31a. There is.

次に、上記構成の作用について説明する。両加振体22
の各圧電素子24乃至27に交流電圧を印加すると、上
側の圧電素子24.25の分極極性と下側の圧電素子2
6.27の分極極性とが互いに逆極性になっていること
から、第1図に示すように例えば正の半サイクルで下側
の圧電素子26.27が右側にたわみ且つ上側の圧電素
子24゜25が左側にたわみ、反対に負の半サイクルで
夫々反対方向にたわむといった運動を繰返して振動する
。この振動に伴って、弾性板23の上端側部分は下側の
圧電素子26.27のたわみ方向に変位するように振動
して、トラフ28を斜め上下方向に振動させる。これに
よって、トラフ28上の搬送物32を斜め上方に跳上げ
る動作を繰返してこの搬送物32をトラフ28に沿って
図示左方向に移動せしめる。
Next, the operation of the above configuration will be explained. Both vibrating bodies 22
When an AC voltage is applied to each of the piezoelectric elements 24 to 27, the polarization of the upper piezoelectric elements 24 and 25 and the lower piezoelectric element 2
Since the polarization polarities of 6.27 and 6.27 are opposite to each other, as shown in FIG. 25 is deflected to the left, and then deflected in the opposite direction in a negative half cycle, repeating this motion to vibrate. With this vibration, the upper end portion of the elastic plate 23 vibrates so as to be displaced in the bending direction of the lower piezoelectric elements 26 and 27, causing the trough 28 to vibrate diagonally in the vertical direction. As a result, the conveyance object 32 on the trough 28 is repeatedly lifted diagonally upward, thereby moving the conveyance object 32 along the trough 28 to the left in the figure.

而して本実施例では、下側の圧電素子26,27と上側
の圧電素子24.25とを互いに反対方向にたわませて
振動させるから、上側の圧?Ii素子24.25の振動
によって弾性板23の上端側部分は加振体22全体とし
ての振動方向(下側の圧電素子26.27のたわみ方向
)とは反対方向にそり曲げられることになる。このため
、振動時に弾性板23の」1端側部分か」下側の圧電素
子24゜25によって取付座29の傾斜面部29aに沿
うように曲げられるため、トラフ28側から弾性板23
に加わる曲げ力、即ち加振体22の振動を妨げる方向の
荷重を小さくできて、加振体22の振動振幅ひいてはト
ラフ28の振動振幅を大きくでき、十分な搬送速度を確
保できる。しかも、弾性板23とトラ、フ28との間に
曲げ剛性の低い連結部材を介在させずに済むから、その
連結部材を介在させることによる不具合、即ち搬送物の
重量変化により搬送速度が大きく変化してしまうという
不具合を解消できる。ちなみに第5図に示す実験結果に
よれば、本実施例では搬送物の重量が変化しても搬送速
度の変化は596以下であり、搬送速度が安定している
。また、低剛性の連結部材を用いたものに比し弾性板2
3とトラフ28との連結部分の剛性が高くなるから、機
械的な強度の向上にもなり、振動疲労による寿命を2倍
以上にすることができる。
In this embodiment, since the lower piezoelectric elements 26, 27 and the upper piezoelectric elements 24, 25 are deflected and vibrated in opposite directions, the pressure on the upper side? Due to the vibration of the Ii elements 24 and 25, the upper end portion of the elastic plate 23 is warped in a direction opposite to the vibration direction of the vibration body 22 as a whole (the direction in which the lower piezoelectric elements 26 and 27 bend). Therefore, during vibration, the first end of the elastic plate 23 is bent along the inclined surface 29a of the mounting seat 29 by the lower piezoelectric elements 24 and 25, so that the elastic plate 23 is bent from the trough 28 side.
The bending force applied to the vibrating body 22, that is, the load in the direction that prevents the vibration of the vibrating body 22, can be reduced, the vibration amplitude of the vibrating body 22, and thus the vibration amplitude of the trough 28, can be increased, and a sufficient conveyance speed can be ensured. Moreover, since there is no need to interpose a connecting member with low bending rigidity between the elastic plate 23 and the tiger and flap 28, problems caused by interposing the connecting member, that is, the conveyance speed changes greatly due to changes in the weight of the conveyed object. This can solve the problem of Incidentally, according to the experimental results shown in FIG. 5, in this example, even if the weight of the transported object changes, the change in the transport speed is 596 or less, and the transport speed is stable. In addition, compared to those using low-rigidity connecting members, the elastic plate 2
3 and the trough 28, the mechanical strength is improved, and the life due to vibration fatigue can be more than doubled.

第6図は本発明をボ°ウル形パーツフィーダに適用した
第2実施例を示したもので、以下これについて説明する
。33は円盤状の基台で、これの上面には複数個の取付
座34を同一円周上に等間隔に設けている。そして、各
取付座34には、第1実施例と同一構成の加振体22の
弾性板23の下端を固定し、これによって各加振体22
が基台33上の同一円周上に夫々所定角度だけ傾斜され
た形態で等間隔に配置されている。更に、各加振体22
の弾性板23の上端には、搬送体たるボウル35を連結
している。
FIG. 6 shows a second embodiment in which the present invention is applied to a bowl-shaped parts feeder, which will be described below. Reference numeral 33 denotes a disc-shaped base, on the top surface of which a plurality of mounting seats 34 are provided at equal intervals on the same circumference. The lower end of the elastic plate 23 of the vibrating body 22 having the same configuration as that of the first embodiment is fixed to each mounting seat 34, so that each vibrating body 22
are arranged at equal intervals on the same circumference on the base 33, each inclined at a predetermined angle. Furthermore, each vibrator 22
A bowl 35 serving as a carrier is connected to the upper end of the elastic plate 23 .

このような構成のボウル形パーツフィーダにおいて、加
振体22の圧電素子24乃至27に交流電圧を印加する
と、下側の圧電素子26.27と上側の圧電素子24.
25とを互いに反対方向にたわませるように振動する。
In the bowl-shaped parts feeder having such a configuration, when an AC voltage is applied to the piezoelectric elements 24 to 27 of the vibrating body 22, the lower piezoelectric elements 26, 27 and the upper piezoelectric elements 24.
25 and vibrate in opposite directions.

この振動により、ボウル35が螺旋方向(周方向の斜め
上下方向)に振動して、ボウル35内の搬送物がボウル
35内周面の螺旋状の搬送路36に沿って順次搬送され
、その出口36aから排出されることになる。
Due to this vibration, the bowl 35 vibrates in a spiral direction (diagonally up and down in the circumferential direction), and the conveyed objects in the bowl 35 are sequentially conveyed along the spiral conveyance path 36 on the inner circumferential surface of the bowl 35, and the objects are conveyed at the exit of the bowl 35. It will be discharged from 36a.

この場合においても、下側の圧電素子26,27と上側
の圧電素子24.25とを互いに反対方向にたわませる
ように振動させるから、振動時に各弾性板2°3の」1
端側部分が圧電素子24.25によってボウル35の下
面に対しほぼ一定の角度を維持するように曲げられるこ
とになり、第1実施例と同じく搬送速度を大きくしかも
安定させることができる。
In this case as well, since the lower piezoelectric elements 26, 27 and the upper piezoelectric elements 24, 25 are vibrated so as to be deflected in opposite directions, each elastic plate has an angle of 2°3.
The end portions are bent by the piezoelectric elements 24, 25 so as to maintain a substantially constant angle with respect to the lower surface of the bowl 35, and as in the first embodiment, the conveying speed can be increased and stabilized.

尚、加振体22のIII造は上記実施例のものに限定さ
れず、例えば第7図に示す第3実施例のように弾性板2
3中央の変曲点部分に切欠部37を形成し、これによっ
て弾性板23の変形量ひいては振動振幅を増加させるよ
うにしても良い。
Note that the III structure of the vibrating body 22 is not limited to that of the above embodiment, and for example, as in the third embodiment shown in FIG.
A notch 37 may be formed at the inflection point at the center of 3, thereby increasing the amount of deformation of the elastic plate 23 and thus the vibration amplitude.

また、ボウル形パーツフィーダでは、ボウル35が周方
向に若干量変位するため、弾性板23に若干量のひねり
を加える必要がある。そこで、ボウル35から弾性板2
3に加えられるひねり方向の荷重を低減するために、第
8図に示す第4実施例のように各圧電素子24乃至27
の厚みに夫々勾配をつけるようにしても良い。この場合
、圧電素子24乃至27の厚み(電極間の距離)が小さ
い程、曲げ変位が大きくなるから、振動時に弾性板23
にひねりが加えられることになる。このため、ボウル3
5から弾性板23に加わるひねり方向の荷重も低減でき
て、ボウル35の振動振幅を一層大きくすることができ
る。
Furthermore, in the bowl-shaped parts feeder, since the bowl 35 is displaced by a certain amount in the circumferential direction, it is necessary to twist the elastic plate 23 by a certain amount. Therefore, from the bowl 35 to the elastic plate 2
In order to reduce the load in the twisting direction applied to the piezoelectric elements 24 to 27, as in the fourth embodiment shown in FIG.
It is also possible to give a gradient to the thickness of each. In this case, the smaller the thickness of the piezoelectric elements 24 to 27 (the distance between the electrodes), the larger the bending displacement.
There will be a twist added to it. For this reason, bowl 3
5 can also reduce the load in the twisting direction applied to the elastic plate 23, and the vibration amplitude of the bowl 35 can be further increased.

史に、第9図に示す第5実施例のように上側の圧電素子
24.25の貼着位置を例えば左側に偏倚させ、下側の
圧電素子26.’27の貼着位置を右側に偏倚させた構
成としても、弾性板23にひねりを加えることができる
Historically, as in the fifth embodiment shown in FIG. 9, the attachment positions of the upper piezoelectric elements 24, 25 are shifted to the left side, and the attachment positions of the lower piezoelectric elements 26, 25 are shifted to the left side. A twist can be added to the elastic plate 23 even if the attachment position of '27 is shifted to the right side.

尚、−11記実施例では弾性板23を圧電素子24乃至
27の共通電極とする関係で、」二側の圧電索子24.
25の分極極性と下側の圧電索子26゜27の分極極性
とが互いに逆極性となるようにしたが、これに限定され
ず、例えば圧電素子24乃至27の分極極性を上下同一
として、印加電圧の極性を上下で逆極性とする構成とし
ても良い。
In the -11 embodiment, since the elastic plate 23 is used as a common electrode for the piezoelectric elements 24 to 27, the piezoelectric cords 24.
Although the polarization polarity of the piezoelectric elements 25 and the polarization polarity of the lower piezoelectric cords 26 and 27 are set to be opposite to each other, the present invention is not limited thereto. The polarity of the voltage may be reversed at the top and bottom.

[発明の効果コ 本発明は以上の説明から明らかなように、下側の圧電素
子と上側の圧電素子とを互いに反対方向にたわませて振
動させるから、搬送体側から弾性板に加わる曲げ力を小
さくできて、振動振幅ひいては搬送速度を大きくできる
。しかも、弾性板と搬送体との間に曲げ剛性の低い連結
部材を介在させずに済むから、搬送物の重量変化に伴う
搬送速度の変化の程度を小さくできて、搬送速度を安定
化できるという優れた効果を奏するものである。
[Effects of the Invention] As is clear from the above description, the present invention bends and vibrates the lower piezoelectric element and the upper piezoelectric element in opposite directions, so that the bending force applied to the elastic plate from the carrier side is reduced. can be made smaller, and the vibration amplitude and thus the conveyance speed can be increased. Moreover, since there is no need to interpose a connecting member with low bending rigidity between the elastic plate and the conveyor, the degree of change in conveyance speed due to changes in the weight of the conveyed object can be reduced, and the conveyance speed can be stabilized. It has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第5図は本発明を直進形パーツフィーダに適
用した第1実施例を示したもので、第1図は振動時の加
振体の側面図、第2図は全体の側面図、第3図は加振体
の側面図、第4図は同正面図、第5図は搬送物の重量と
搬送速度との関係を示した図であり、第6図は本発明を
ボウル形パーツフィーダに適用した第2実施例を示す全
体の斜視図、第7図は本発明の第3実施例を示す加振体
の正面図、第8図(a)、(b)は本発明の第4実施例
を示す加振体の正面図と断面図、第9図(a)、(b)
は本発明の第5実施例を示す加振体の正面図と振動時の
斜視図であり、そして第10図乃至第13図は従来例を
示したもので、第10図は第2図相当図、第11図は振
動形態を説明するための図、第12図は全体の斜視図、
第13図は振動形態を説明するための図である。 図面中、22は加振体、23は弾性板、24乃至27は
圧電素子、28はトラフ(搬送体)、35はボウル(搬
送体)である。 第1図 第 2 V 亀 3 図           鳥 4 図搬送物重
量(にgx+σ゛) 第 5 図 篇 6 図 (a)      (b) 第 7 図        篇 8 図(a)    
  (b) 第 9 図 第 11  図 為12  図
Figures 1 to 5 show a first embodiment in which the present invention is applied to a linear parts feeder. Figure 1 is a side view of the vibrating body during vibration, and Figure 2 is a side view of the entire body. , FIG. 3 is a side view of the vibrating body, FIG. 4 is a front view thereof, FIG. 5 is a diagram showing the relationship between the weight of the conveyed object and the conveyance speed, and FIG. FIG. 7 is a front view of the vibrating body showing the third embodiment of the present invention, and FIGS. 8(a) and (b) are the overall perspective view showing the second embodiment applied to a parts feeder. Front view and cross-sectional view of the vibrating body showing the fourth embodiment, FIGS. 9(a) and (b)
1 is a front view and a perspective view of a vibrating body showing a fifth embodiment of the present invention during vibration, and FIGS. 10 to 13 show conventional examples, and FIG. 10 is equivalent to FIG. 2. Figure 11 is a diagram for explaining the vibration form, Figure 12 is a perspective view of the whole,
FIG. 13 is a diagram for explaining the vibration form. In the drawing, 22 is a vibrating body, 23 is an elastic plate, 24 to 27 are piezoelectric elements, 28 is a trough (carrying body), and 35 is a bowl (carrying body). Figure 1 Figure 2 V Turtle Figure 3 Bird 4 Figure Weight of conveyed object (gx+σ゛) Figure 5 Figure 6 Figure 6 (a) (b) Figure 7 Figure 8 Figure 8 (a)
(b) Figure 9 Figure 11 Figure 12

Claims (1)

【特許請求の範囲】[Claims] 1、搬送体を振動させるための加振体を、弾性板の側面
に板状の圧電素子を取付けて構成し、その圧電素子に電
圧を印加することによって圧電素子を弾性板と共にたわ
み振動させるようにしたものにおいて、前記圧電素子を
上下に二分割し、電圧印加時に下側の圧電素子と上側の
圧電素子とを互いに反対方向にたわませて振動させるよ
うに構成したことを特徴とする圧電駆動形搬送装置。
1. The vibrating body for vibrating the carrier is constructed by attaching a plate-shaped piezoelectric element to the side surface of an elastic plate, and by applying a voltage to the piezoelectric element, the piezoelectric element is caused to bend and vibrate together with the elastic plate. In the piezoelectric device, the piezoelectric element is divided into upper and lower halves, and the lower piezoelectric element and the upper piezoelectric element are bent and vibrated in opposite directions when a voltage is applied. Drive type conveyance device.
JP16275886A 1986-07-10 1986-07-10 Piezoelectric drive type conveying device Granted JPS6317716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16275886A JPS6317716A (en) 1986-07-10 1986-07-10 Piezoelectric drive type conveying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16275886A JPS6317716A (en) 1986-07-10 1986-07-10 Piezoelectric drive type conveying device

Publications (2)

Publication Number Publication Date
JPS6317716A true JPS6317716A (en) 1988-01-25
JPH0321447B2 JPH0321447B2 (en) 1991-03-22

Family

ID=15760678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16275886A Granted JPS6317716A (en) 1986-07-10 1986-07-10 Piezoelectric drive type conveying device

Country Status (1)

Country Link
JP (1) JPS6317716A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10309994B4 (en) * 2002-03-01 2005-11-03 Bühner, Kurt PKF elements for vibrating conveyor system with piezo drive
EP2011750A1 (en) * 2007-07-06 2009-01-07 Feintool Intellectual Property AG Linear vibration feeder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10309994B4 (en) * 2002-03-01 2005-11-03 Bühner, Kurt PKF elements for vibrating conveyor system with piezo drive
EP2011750A1 (en) * 2007-07-06 2009-01-07 Feintool Intellectual Property AG Linear vibration feeder

Also Published As

Publication number Publication date
JPH0321447B2 (en) 1991-03-22

Similar Documents

Publication Publication Date Title
US4795025A (en) Parts feeding apparatus of the piezoelectric drive type
JPS6317716A (en) Piezoelectric drive type conveying device
JPH0351210A (en) Piezoelectric drive type carrier device
KR101877578B1 (en) Vibration-type component conveying device
JPS62222917A (en) Piezoelectric driven type feeding device
JPH0255330B2 (en)
JPS62116415A (en) Parts feeder
JPH01203112A (en) Piezoelectricity type vibration giving body and piezoelectricity drive type transport device equipped with it
JPS624119A (en) Piezoelectric driving type conveyer
US3459292A (en) Spring system for vibratory parts feeders
JPH0544328Y2 (en)
JP2523065Y2 (en) Piezoelectric drive type transfer device
JPH0344963B2 (en)
JPH041136Y2 (en)
JPS624118A (en) Piezoelectric driving type conveyer
JPH0542969Y2 (en)
JP2002274632A (en) Linear feeder
JPS63258311A (en) Piezoelectric driving vibrator
JPH07309420A (en) Piezoelectric driving system feeder
JPH0242659Y2 (en)
JPS6260710A (en) Piezo drive bowl type parts feeder
JPH02198911A (en) Piezoelectric drive type transfer device
JPH0242660Y2 (en)
JPH0738027U (en) Piezoelectric drive type transport device
JP2002265033A (en) Vibrational component supply device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term