JPS63176350A - Slider for thin film magnetic head - Google Patents
Slider for thin film magnetic headInfo
- Publication number
- JPS63176350A JPS63176350A JP62004850A JP485087A JPS63176350A JP S63176350 A JPS63176350 A JP S63176350A JP 62004850 A JP62004850 A JP 62004850A JP 485087 A JP485087 A JP 485087A JP S63176350 A JPS63176350 A JP S63176350A
- Authority
- JP
- Japan
- Prior art keywords
- slider
- magnetic disk
- sintered body
- thin film
- magnetic head
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims description 17
- 239000000314 lubricant Substances 0.000 claims description 24
- 239000007787 solid Substances 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 16
- 150000002484 inorganic compounds Chemical class 0.000 claims description 8
- 229910010272 inorganic material Inorganic materials 0.000 claims description 8
- 101100069231 Caenorhabditis elegans gkow-1 gene Proteins 0.000 claims 1
- 150000003568 thioethers Chemical class 0.000 claims 1
- 239000000843 powder Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 238000000227 grinding Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 5
- 230000001050 lubricating effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000010408 film Substances 0.000 description 3
- 238000007667 floating Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- 150000004763 sulfides Chemical class 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910003185 MoSx Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910003087 TiOx Inorganic materials 0.000 description 1
- 229910003134 ZrOx Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052961 molybdenite Inorganic materials 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- HLLICFJUWSZHRJ-UHFFFAOYSA-N tioxidazole Chemical compound CCCOC1=CC=C2N=C(NC(=O)OC)SC2=C1 HLLICFJUWSZHRJ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Magnetic Heads (AREA)
- Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、磁気ディスク装置用の薄膜磁気ヘッド用スラ
イダに係り、特に、磁気ディスクとの摺動性がよく、か
つ加工性が良好なスライダとその製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a slider for a thin film magnetic head for a magnetic disk device, and particularly to a slider that has good sliding properties with a magnetic disk and good workability. and its manufacturing method.
磁気ディスク装置の分野では、増大する高記録密度化の
要請に応えるため、磁気ディスクと磁気ヘッドの浮上隙
間の狭小化が進んでいる。さらに。In the field of magnetic disk drives, the flying gap between a magnetic disk and a magnetic head is becoming narrower in order to meet the increasing demand for higher recording densities. moreover.
磁気特性がよい薄膜磁気ヘッドや薄膜ディスクの開発も
進められている。Development of thin-film magnetic heads and thin-film disks with good magnetic properties is also progressing.
薄膜磁気ヘッド・スライダは、その後部端面に薄膜素子
が設けられ、下部浮上面(摺動面)が磁気ディスク表面
に対接して保持され、磁気ディスクの回転によって生じ
る薄い空気導流によって磁気ディスク面上に浮上する機
能をもつ、従って、スライダは磁気ディスク回転の起動
、停止時には、必ず磁気ディスクと過渡的に摺動する。A thin-film magnetic head slider has a thin-film element on its rear end surface, and its lower air bearing surface (sliding surface) is held in contact with the magnetic disk surface. The slider has the function of floating upward, so the slider always slides transiently on the magnetic disk when starting or stopping rotation of the magnetic disk.
さらに、浮上隙間の狭小化(0,1〜0.3μm)によ
って予期しない接触が生じる機会がますます多くなる。Furthermore, the narrowing of the floating gap (0.1-0.3 μm) increases the chances of unexpected contact occurring.
このため、スライダの接触、摺動によって磁気ディスク
が受ける損傷が問題となっている。特に、薄膜ディスク
の場合には、これはより大きな問題となる。すなわち、
薄膜ディスクの磁性層(記録層)の厚さが極めて小さい
(0,05〜0.1μm)ので、許容される損傷の大き
さは極めて小さくなる。このため、スライダには、摺動
によって磁気ディスクに損傷を与えないものが強く望ま
れている。For this reason, damage to the magnetic disk due to contact and sliding of the slider has become a problem. In particular, this becomes a bigger problem in the case of thin film disks. That is,
Since the thickness of the magnetic layer (recording layer) of a thin-film disk is extremely small (0.05 to 0.1 μm), the amount of damage allowed is extremely small. For this reason, there is a strong desire for a slider that does not damage the magnetic disk due to sliding.
スライダの摺動性(潤滑性)を向上する従来の方法には
、例えば、特開昭56−107326号公報、同56−
77949公報に示された方法がある。これらは、−5
−1有機系潤滑剤をスライダ摺動面にオーバーコート。Conventional methods for improving the slidability (lubricity) of a slider include, for example, Japanese Patent Application Laid-open No. 56-107326,
There is a method disclosed in Publication No. 77949. These are -5
-1 Overcoat the slider sliding surface with organic lubricant.
トしたのでは効果が持続せず、逆に厚くオーバーコート
したのでは実効的な浮上隙間が小さくできないという欠
点がある。また、含浸した場合には、そのしみ出しによ
ってスライダと磁気ディスクが粘着することがあるとい
う問題点がある。If it is overcoated, the effect will not last long, and if it is thickly overcoated, the effective floating gap cannot be reduced. Further, when impregnated, there is a problem that the slider and the magnetic disk may stick together due to the impregnation.
これらの問題点を解消するためには、潤滑剤として固体
潤滑剤を用いるのがよく、代表的には、Mo5z、WS
x等の硫化物がある。これらを用いた提案には、例えば
、特開昭58−150122号公報に示された、スライ
ダの摺動面に固体潤滑剤のスパッタ膜を形成する方法が
ある。しかしこの方法では、潤滑膜の厚さがせいぜい数
百へと薄いために、必ずしも希望の効果が接続せず、ま
た、スパッタリングの工程が必要なためヘッド製造工程
が複雑になるという問題点がある。別の提案としては特
開昭59−3742号公報に示された有機樹脂と固体潤
滑剤の混合体を用いてスライダを形成する方法が(・
5゛ある。しかし、この方法では軟かい有機樹脂が主〈
ん
であるためスライダが、摩耗や変形しやすく、また、ス
ライダのように高精密産品の加工が極めて難しいという
問題点があった。In order to solve these problems, it is best to use a solid lubricant as the lubricant, typically Mo5z, WS
There are sulfides such as x. Proposals using these methods include, for example, a method of forming a sputtered film of solid lubricant on the sliding surface of a slider, as disclosed in Japanese Patent Laid-Open No. 58-150122. However, this method has the problem that the lubricating film is only a few hundred thin at most, so the desired effect is not necessarily achieved, and the head manufacturing process is complicated because a sputtering process is required. . Another proposal is a method of forming a slider using a mixture of an organic resin and a solid lubricant, as disclosed in JP-A No. 59-3742. However, this method uses a soft organic resin. is the main
As a result, the slider is prone to wear and deformation, and there are also problems in that it is extremely difficult to process a high-precision product like the slider.
以上に述べたように、従来のスライダでは、磁気ディス
クとの摺動性(潤滑性)を長期にわたって良好かつ健全
に保つことが困難であった。As described above, in the conventional slider, it is difficult to maintain good and healthy sliding performance (lubricity) with the magnetic disk over a long period of time.
本発明の目的は、長期にわたって磁気ディスクとの良好
な潤滑性を有する薄膜磁気ヘッド用スライダを提供する
ことにある。An object of the present invention is to provide a slider for a thin film magnetic head that has good lubricity with a magnetic disk over a long period of time.
本発明の他の目的は、加工性が良好で多量のスライダの
効率的生産に適したスライダ材料を提供することにある
。Another object of the present invention is to provide a slider material that has good workability and is suitable for efficient production of a large amount of sliders.
上記目的は、適度な量の固体潤滑剤と他の無機化合物が
混合した焼結体をスライダ材料として用いることにより
達成される。The above object is achieved by using a sintered body mixed with an appropriate amount of solid lubricant and other inorganic compounds as the slider material.
このためには主材である無機化合物と固体潤滑−一トー
剤との混合焼結体を得なければならないが、科学−)的
に安定な一般に用いられる無機化合物が焼結する温度に
比べて、本発明で用いるMo5s、W S z等の硫化
物の固体潤滑剤の昇華、分解温度はかなり低いため、上
記混合焼結体を作製するのは従来困難であった。すなわ
ち、焼結体を得るために温度を上げると、主材が焼結す
る以前に固体潤滑剤は昇華、分解により消失してしまう
。To achieve this, it is necessary to obtain a mixed sintered body of the main material, an inorganic compound, and a solid lubricant, but the temperature is lower than the temperature at which chemically stable and generally used inorganic compounds are sintered. Since the sublimation and decomposition temperatures of sulfide solid lubricants such as Mo5s and W Sz used in the present invention are quite low, it has been difficult to produce the above-mentioned mixed sintered body. That is, when the temperature is raised to obtain a sintered body, the solid lubricant disappears due to sublimation and decomposition before the main material is sintered.
以下に本発明を詳細に述べる。 The present invention will be described in detail below.
本発明による混合焼結体では、固体潤滑剤としては代表
的にはMoSx、WSx等の硫化物を用いる。これらの
固体潤滑剤は焼結体の内部に均一に含まれるため、焼結
体を機械加工して得たスライダの摺動面には必ず固体潤
滑剤が露出している。In the mixed sintered body according to the present invention, sulfides such as MoSx and WSx are typically used as the solid lubricant. Since these solid lubricants are uniformly contained inside the sintered body, the solid lubricants are always exposed on the sliding surface of the slider obtained by machining the sintered body.
このたえ磁気ディスクとの摺動においては、上記の軟か
い固体潤滑剤が優先的に摺り出されてスライダ摺動面に
潤滑膜を形成するため、良好な潤滑性が長期にわたって
示される。また、無機化合物が主材であるため焼結体は
過度に軟かくなく、耐イダを加工作製する際には、内部
の固体潤滑剤の潤滑作用により、砥石を用いた研削によ
る発熱が低減される。このため、砥石の摩耗が減少し、
加工速度を上げることができる。However, during sliding with the magnetic disk, the above-mentioned soft solid lubricant is preferentially slid out and forms a lubricating film on the slider sliding surface, so that good lubricity is exhibited over a long period of time. In addition, since the main material is an inorganic compound, the sintered body is not excessively soft, and when processing the sintered body, the heat generated by grinding with a grinding wheel is reduced due to the lubricating action of the solid lubricant inside. Ru. This reduces wear on the grinding wheel and
Processing speed can be increased.
本発明による混合焼結体では固体潤滑剤の体積割合は1
〜50%がよい、1%未満では潤滑作用が期待できず、
50%を超えては焼結体が軟かくなりすぎ、精密加工性
や耐変形性に問題が生じる。In the mixed sintered body according to the present invention, the volume ratio of the solid lubricant is 1
~50% is good; less than 1% cannot expect a lubricating effect;
If it exceeds 50%, the sintered body becomes too soft, causing problems in precision workability and deformation resistance.
混合焼結体を製造するためには、Mo5z。To produce a mixed sintered body, Mo5z.
WSz等が消失しない温度まで焼結温度を下げなければ
ならない、WSxの場合は1200℃以下。The sintering temperature must be lowered to a temperature at which WSz etc. do not disappear; in the case of WSx, it is 1200°C or less.
Mo5tの場合は1150℃以下である。このような温
度でち密な焼結体を得るために、主材である無機化合物
は粒径が0.1μm以下の微細粉を原料とする。固体潤
滑剤は、少くとも粒径が5μm以下の原粒紛を用いる。In the case of Mo5t, the temperature is 1150°C or lower. In order to obtain a dense sintered body at such a temperature, the main inorganic compound is made of fine powder with a particle size of 0.1 μm or less. The solid lubricant uses raw powder having a particle size of at least 5 μm or less.
これらの原料粉は粒径が小さいため、その表面が活性で
あり焼結温度が低くなるのである。さらに、より低い温
度で焼結するために主材である無機化合物は、望ましく
LM料は均一に混合したのち、ホットプレス、または、
ホット・アイソスタティック・プレスの手法により圧力
を印加しながら温度を上げて焼結する。Since these raw material powders have small particle sizes, their surfaces are active and the sintering temperature is low. Furthermore, in order to sinter at a lower temperature, it is preferable to mix the LM material uniformly with the inorganic compound that is the main material, and then hot press or
Sintering is performed by increasing the temperature while applying pressure using the hot isostatic press method.
圧力を加えないで、ち密な焼結体を得るのは難しb)。It is difficult to obtain a dense sintered body without applying pressure b).
以下に本発明を実施例によりさらに詳細に説明するが1
本発明はこらら実施例に限定されない。The present invention will be explained in more detail with reference to Examples below.
The present invention is not limited to these examples.
〈実施例1〉
粉粒径が0.03μmのZrOx粉末(ただし8moQ
%のY2O3が固溶したもの)、0.05μmのT i
Oz粉末、及び、0.1pmのCa○粉末とMgO粉
末を主材原料として用いた。固体潤滑剤原料は粉粒径が
1μmのMo5s粉末を用いた。<Example 1> ZrOx powder with a particle size of 0.03 μm (8moQ
% Y2O3 in solid solution), 0.05 μm Ti
Oz powder, 0.1 pm Ca○ powder, and MgO powder were used as main raw materials. Mo5s powder with a particle size of 1 μm was used as the solid lubricant raw material.
M o S z粉末は、主材に対する体積割合が各々第
1表に示した割合となるように主材粉末に添加した後、
当該混合粉末にアセトンを加えて72時間ボールシリン
グし、均一に混合した。After adding the M o S z powder to the main material powder so that the volume ratio to the main material becomes the ratio shown in Table 1,
Acetone was added to the mixed powder and ball-silled for 72 hours to mix uniformly.
第1表
得たスラリは乾燥した後、金型に充填して圧粉成形しホ
ットプレス焼成に供した。ホットプレスでは、試料を黒
鉛型に装填し、その黒鉛を油圧プレスで圧縮して試料い
600kgf/cdの圧力を印加しつつ高周波誘導加熱
して温度を1100’Cとし、一時間焼成した。Table 1: After the obtained slurry was dried, it was filled into a mold, compacted and subjected to hot press firing. In the hot press, the sample was loaded into a graphite mold, the graphite was compressed using a hydraulic press, and the sample was heated by high frequency induction to a temperature of 1100'C while applying a pressure of 600 kgf/cd, and fired for 1 hour.
得た混合焼結体は、X線回折にかけたところ、各々主材
と固体潤滑剤(Most)が含まれており、M o S
zが消失していなかった。また、焼結体には気孔がほ
とんど見当らず、十分ち密であった。When the obtained mixed sintered body was subjected to X-ray diffraction, it was found that each contained the main material and the solid lubricant (Most), and the M o S
z had not disappeared. Further, the sintered body had almost no pores and was sufficiently dense.
焼結体は機械加工によりスライダ形状に仕上げた0図は
薄膜磁気ヘッド用スライダの一例を示す」
作製したスライダと磁気ディスクとの摺動性(潤滑性)
を次の手順で謂べた。まず、スライダが摺動面を磁気デ
ィスクにのせてジンバルバネによって保持し1次いで磁
気ディスクをスライダ位置での周速が40m/secと
なる回転速度で三十秒間回転させ、その後停止させた。The sintered body is machined into a slider shape. Figure 0 shows an example of a slider for a thin-film magnetic head." Sliding properties (lubricity) between the manufactured slider and magnetic disk
was said in the following steps. First, the sliding surface of the slider was placed on the magnetic disk and held by a gimbal spring, and then the magnetic disk was rotated for 30 seconds at a rotational speed such that the circumferential speed at the slider position was 40 m/sec, and then stopped.
この磁気ディスクの起動、停止を反復してスライダと磁
気ディスクを摺動させ磁気ディスクの損傷によってジン
パルバネに急激な負荷がかかるまでの反復回数を測定し
た。ただし、二十万回以上の測定は中止した。磁気ディ
スクは、Fθgos磁性粉末とA Q zOsフイラ粉
末が混練された有機物樹脂がA Q /M g合金円板
の表面に塗布された塗布型ディスクを用いた。測定には
、比較のために従来のスライダ材料であるAΩion/
TiC混合焼結体も用いた。The magnetic disk was started and stopped repeatedly to cause the slider and the magnetic disk to slide, and the number of repetitions until a sudden load was applied to the jinpul spring due to damage to the magnetic disk was measured. However, measurements over 200,000 times were discontinued. The magnetic disk used was a coated type disk in which an organic resin in which Fθgos magnetic powder and A Q zOs filler powder were kneaded was coated on the surface of an A Q /M g alloy disk. For comparison, conventional slider material AΩion/
A TiC mixed sintered body was also used.
第1表は測定結果を示す、この表によると。Table 1 shows the measurement results, according to this table.
Zr0z、T i Ox、CaO,MgOの酸化物を主
材とし、Mo5sを1〜50%含む混合焼結体は、ジン
バルバネが急激な負荷を受けるまでの摺動回数(摺動寿
命)がいずれも二十万回に近いがそれ以上である。これ
に対して従来材料のAQzOa/TiC焼結体では約四
万九千回であった。二十万回試験後もジンバルバネが急
激な負荷を受けなかった磁気ディスクを観察したところ
、損傷はほとんど見られなかった。一方、ジンバルバネ
が急激な負荷を受けた磁気ディスクでは擦過傷が見られ
た。The mixed sintered body, which is mainly made of oxides of ZrOz, TiOx, CaO, and MgO and contains 1 to 50% Mo5s, has a sliding number of times (sliding life) until the gimbal spring receives a sudden load. It's close to 200,000 times, but more. In contrast, the conventional material, AQzOa/TiC sintered body, was approximately 49,000 times. After 200,000 tests, the gimbal spring was not subject to sudden loads, and when we observed the magnetic disk, we found almost no damage. On the other hand, scratches were observed on the magnetic disk where the gimbal spring was subjected to sudden loads.
このように、本実施例によれば、M o S xを混合
した焼結体は長期にわたって磁気ディスクとの良好な摺
動性(潤滑性)を保つ効果がある。As described above, according to this embodiment, the sintered body mixed with M o S x has the effect of maintaining good slidability (lubricity) with the magnetic disk over a long period of time.
〈実施例2〉
実施例1の記載と同様の方法で第2表に示す十二種の焼
結体を作製した。<Example 2> Twelve types of sintered bodies shown in Table 2 were produced in the same manner as described in Example 1.
第2表
ただし固体潤滑剤はWSxに変え、ホットプレスによる
焼成温度は1200℃とした。Table 2 However, the solid lubricant was changed to WSx, and the firing temperature by hot press was 1200°C.
得た混合焼結体はX線回折で調べたところ、いずれもW
Sxが消失していなかった。また、焼結体には気孔がほ
とんど見られず、十分ち密であった。When the obtained mixed sintered bodies were examined by X-ray diffraction, it was found that all of them were W.
Sx had not disappeared. Further, the sintered body had almost no pores and was sufficiently dense.
得た焼結体からスライダを作製し、実施例1に記載と同
様の方法で磁気ディスクとの摺動性(潤滑性)を調べた
。第2表はその結果を示す。これによるとWSzを1〜
50%含む混合焼結体は、ジンバルバネが急激な負荷を
受けるまでの摺動回数(摺動寿命)がいずれも二十万回
に近いかそれ以上であり、従来材のAQzOa/TiC
焼結体の四倍以上である。二十万回試験後もジンバルバ
ネが急激な負荷を受けなかった磁気ディスクを1!察し
たところ、損傷はほとんど見られなかった。その他の磁
気ディスクには擦過傷が見られた。A slider was produced from the obtained sintered body, and its sliding properties (lubricity) with respect to the magnetic disk were examined in the same manner as described in Example 1. Table 2 shows the results. According to this, WSz is 1~
The mixed sintered body containing 50% of the gimbal spring has a sliding number of times (sliding life) of approximately 200,000 times or more before receiving a sudden load, which is higher than the conventional material AQzOa/TiC.
This is more than four times that of a sintered body. 1 magnetic disk whose gimbal spring did not receive sudden loads even after 200,000 tests! Upon inspection, almost no damage was observed. Scratches were found on other magnetic disks.
本実施例によれば、WSzを混合した焼結体は、長期に
わたって磁気ディスクとの良好な摺動性(潤滑性)を保
つ効果がある。According to this example, the sintered body mixed with WSz has the effect of maintaining good slidability (lubricity) with the magnetic disk over a long period of time.
〈実施例3〉
実施例1に記載のZr0z粉末とM o S z粉末を
用いて、M o S 2の割合を第3表に示すように0
〜70%と変えた混合焼結体を、実施例1に記載と同様
の方法で作製した。<Example 3> Using the Zr0z powder and MoSz powder described in Example 1, the ratio of MoS2 was adjusted to 0 as shown in Table 3.
Mixed sintered bodies with varying concentrations of .about.70% were prepared in the same manner as described in Example 1.
得た焼結体は研削抵抗、磁気ディスクとの摩擦係数、及
び摩耗を調べた。The obtained sintered body was examined for grinding resistance, coefficient of friction with the magnetic disk, and wear.
研削抵抗はスライダ作製に用いるダイヤモンド砥石($
400)でこの焼結体に溝加工を行い、砥石回転のスピ
ンドルにとりつけた圧電素子で負荷を検出して測定した
。m定値はMo5zを混合しない場合を100として規
格化した。The grinding resistance is a diamond grindstone ($
400), grooves were formed on this sintered body, and the load was detected and measured using a piezoelectric element attached to a spindle for rotating a grindstone. The m constant value was standardized with the case where Mo5z was not mixed as 100.
磁気ディスクとの摩擦係数は、実施例1に記載と同様の
スライダを作製した後、その摺動面を磁気ディスクにの
せてジンバルバネによって保持し、スライダが浮上しな
い5m/seeの周速の回転速度で磁気ディスクを回転
させ、この時ジンバルバネにかかる力をジンバルバネに
とりつけた歪ゲージによって検出して測定した。測定値
はMo5tを混合しない場合を100として規格化した
。The coefficient of friction with the magnetic disk was calculated by fabricating a slider similar to that described in Example 1, placing its sliding surface on the magnetic disk and holding it with a gimbal spring, and setting the rotation speed at a circumferential speed of 5 m/see at which the slider did not float. The magnetic disk was rotated, and the force applied to the gimbal spring at this time was detected and measured by a strain gauge attached to the gimbal spring. The measured value was normalized with the case where Mo5t was not mixed as 100.
焼結体1の摩耗については、スライダを作製した後、実
施例1に記載と同様の方法で磁気ディスクと反復摺動さ
せ、これを二十万回反復した後。As for the wear of the sintered body 1, after the slider was manufactured, it was repeatedly slid on the magnetic disk in the same manner as described in Example 1, and this was repeated 200,000 times.
スライダ摺動面の変形を光干渉顕微鏡によって調べた。The deformation of the slider sliding surface was investigated using an optical interference microscope.
第3表はこれらの測定結果を示す、Mo5zを1%以上
混合した焼結体は、それ未満の焼結体と比べ、研削抵抗
が少なくとも25%以上小さくなり、磁気ディスクとの
摩擦係数は30%以上小さくなっている。一方、摩耗(
変形)はMo5tの割合が50%以下では生じなかった
。すなわち磁気ディスクと20万回反復摺動したスライ
ダの摺動面は、Mo5sの割合が70%のものは斜めに
ダレが生じていたが、50%以下のものはダレは生じて
いなかった。なお、スライダ摺動面を顕微鏡で観察した
結果、Mo5sの割合が0%、0.5%のものには明瞭
な擦過傷が見られた。同様にこれらと摺動した磁気ディ
スクにも擦過傷が見られた。Table 3 shows these measurement results. A sintered body containing 1% or more of Mo5z has a grinding resistance that is at least 25% lower than a sintered body that contains less than that amount, and a coefficient of friction with the magnetic disk of 30%. % or more smaller. On the other hand, wear (
Deformation) did not occur when the proportion of Mo5t was 50% or less. That is, on the sliding surface of a slider that was repeatedly slid against a magnetic disk 200,000 times, the slider with a Mo5s ratio of 70% had diagonal sag, but the slider with a Mo5s ratio of 50% or less did not sag. In addition, as a result of observing the sliding surface of the slider with a microscope, clear scratches were observed on the sliders containing 0% and 0.5% of Mo5s. Similarly, scratches were also seen on the magnetic disks that slid against these.
以上の測定結果は、固体潤滑剤がWSxの場合及び主材
が他のTi0z、CaO等の場合も同様であった。The above measurement results were the same when the solid lubricant was WSx and when the main material was other TiOz, CaO, etc.
以上の実施例によると、固体潤滑剤(Moss)の混合
割合が1%以上では研削抵抗と摩擦係数が減少し、かつ
磁気ディスクに長期にわたって損傷を与えない効果があ
る。逆に混合割合が50%よりも多いと、摺動によりス
ライダ自身が摩耗してしまい、薄膜磁気ヘッド用のスラ
イダとしては好ましくない。According to the above embodiments, when the mixing ratio of the solid lubricant (Moss) is 1% or more, the grinding resistance and the coefficient of friction are reduced, and there is an effect that no damage is caused to the magnetic disk over a long period of time. On the other hand, if the mixing ratio is more than 50%, the slider itself will wear out due to sliding, which is not preferable as a slider for a thin-film magnetic head.
本発明によれば、ヘッドの浮上隙間を小さくして記録密
度を向上させ、かつ、磁気ディスクの寿命を長くする効
果がある。また、加工効率を上げることができるので、
高精度のスライダを効率よく多量に加工作製できる。According to the present invention, the flying gap of the head is reduced, the recording density is improved, and the life of the magnetic disk is extended. In addition, processing efficiency can be increased, so
High-precision sliders can be efficiently manufactured in large quantities.
図は、本発明の位置実施例の薄膜磁気ヘッド・スライダ
の一例を示す斜視図である。
1・・・薄膜素子形成面、2・・・磁気ディスク摺動面
、 ・′711ぴ1
;昌;′FIG. 1 is a perspective view showing an example of a thin film magnetic head slider according to an embodiment of the present invention. 1... Thin film element forming surface, 2... Magnetic disk sliding surface, ・'711pi1;Chang;'
Claims (1)
との混合焼結体であることを特徴とする薄膜磁気ヘッド
用スライダ。 2、前記無機化合物は、ZrO_2、TiO_2、Ca
O、MgO、NiOの酸化物のうち一種または二種以上
を含むことを特徴とする特許請求の範囲第1項に記載の
薄膜磁気ヘッド用スライダ。 3、前記固体潤滑剤は少くともWS_2、MoS_2の
硫化物を含むことを特徴とする特許請求の範囲第1項ま
たは第2項に記載の薄膜磁気ヘッド用スライダ。 4、前記固体潤滑剤の体積割合は1〜50%であること
を特徴とする特許請求の範囲第1項、第2項または第3
項に記載の薄膜磁気ヘッド用スライダ。[Scope of Claims] 1. A slider for a thin film magnetic head, characterized in that it is a mixed sintered body of an inorganic compound as a main material and a solid lubricant as an auxiliary material. 2. The inorganic compounds include ZrO_2, TiO_2, Ca
The slider for a thin film magnetic head according to claim 1, characterized in that the slider contains one or more of O, MgO, and NiO oxides. 3. The slider for a thin film magnetic head according to claim 1 or 2, wherein the solid lubricant contains at least sulfides of WS_2 and MoS_2. 4. Claim 1, 2 or 3, characterized in that the solid lubricant has a volume ratio of 1 to 50%.
A slider for a thin film magnetic head described in .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62004850A JPS63176350A (en) | 1987-01-14 | 1987-01-14 | Slider for thin film magnetic head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62004850A JPS63176350A (en) | 1987-01-14 | 1987-01-14 | Slider for thin film magnetic head |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63176350A true JPS63176350A (en) | 1988-07-20 |
Family
ID=11595150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62004850A Pending JPS63176350A (en) | 1987-01-14 | 1987-01-14 | Slider for thin film magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63176350A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02248360A (en) * | 1989-03-17 | 1990-10-04 | Kao Corp | Metal oxide ceramic-molybdenum disulfide type combined material and sliding parts using the same |
-
1987
- 1987-01-14 JP JP62004850A patent/JPS63176350A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02248360A (en) * | 1989-03-17 | 1990-10-04 | Kao Corp | Metal oxide ceramic-molybdenum disulfide type combined material and sliding parts using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4814915A (en) | Magnetic head slider and material therefor | |
JPS6259075B2 (en) | ||
JPS63176350A (en) | Slider for thin film magnetic head | |
JPS5859147A (en) | Belt-shaped material conveying ceramic guide and its manufacture | |
EP0825355A2 (en) | Air lubricated hydrodynamic ceramic bearings | |
JP2977867B2 (en) | Material for magnetic head slider | |
US5820960A (en) | Thin zirconia disk substrate | |
JP2523908B2 (en) | Magnetic disk device, thin film magnetic head, and wafer for manufacturing thin film magnetic head | |
JP3215000B2 (en) | Non-magnetic ceramics for recording / reproducing head slider and method of manufacturing the same | |
US5648303A (en) | Non-magnetic ceramics for recording/reproducing heads and method of producing the same | |
JPS6278715A (en) | magnetic disk substrate | |
JP2865991B2 (en) | Magnetic disk drive and magnetic head slider | |
JPH052730A (en) | Magnetic disk device and magnetic head and wafer | |
Miyoshi | Friction and morphology of magnetic tapes in sliding contact with nickel-zinc ferrite | |
JPS63134562A (en) | Materials for magnetic head sliders | |
JPH05254938A (en) | Ceramic sintered compact | |
JPH06101115B2 (en) | Zirconia magnetic disk substrate and manufacturing method thereof | |
JPS63257206A (en) | Slider material for thin film magnetic heads | |
JPS62134826A (en) | Production of magnetic memory body | |
JP3121979B2 (en) | Non-magnetic ceramics for recording / reproducing head and method for producing the same | |
JP3121984B2 (en) | Non-magnetic ceramics for recording / reproducing head | |
JPH05282655A (en) | Magnetic recording medium | |
JPS6338770B2 (en) | ||
JP3325439B2 (en) | Slider for magnetic head and method of manufacturing the same | |
JPS62234223A (en) | Thin film magnetic head slider and its production |