JPS63175813A - Metal coated optical fiber core - Google Patents
Metal coated optical fiber coreInfo
- Publication number
- JPS63175813A JPS63175813A JP62006064A JP606487A JPS63175813A JP S63175813 A JPS63175813 A JP S63175813A JP 62006064 A JP62006064 A JP 62006064A JP 606487 A JP606487 A JP 606487A JP S63175813 A JPS63175813 A JP S63175813A
- Authority
- JP
- Japan
- Prior art keywords
- melting point
- metal
- fiber
- optical fiber
- coating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 66
- 239000002184 metal Substances 0.000 title claims abstract description 66
- 239000013307 optical fiber Substances 0.000 title claims abstract description 21
- 239000000835 fiber Substances 0.000 claims abstract description 85
- 239000011247 coating layer Substances 0.000 claims abstract description 44
- 238000002844 melting Methods 0.000 claims abstract description 43
- 239000010410 layer Substances 0.000 claims abstract description 37
- 230000008018 melting Effects 0.000 claims abstract description 36
- 239000000956 alloy Substances 0.000 claims abstract description 34
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 34
- 230000003287 optical effect Effects 0.000 claims abstract description 11
- 230000005540 biological transmission Effects 0.000 claims abstract description 10
- 239000003365 glass fiber Substances 0.000 claims abstract description 6
- 239000004033 plastic Substances 0.000 claims description 19
- 229920003023 plastic Polymers 0.000 claims description 19
- 229920006231 aramid fiber Polymers 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 9
- 230000003139 buffering effect Effects 0.000 claims 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 14
- 239000001257 hydrogen Substances 0.000 abstract description 14
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 11
- 239000004677 Nylon Substances 0.000 description 6
- 239000004760 aramid Substances 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 6
- 229920001778 nylon Polymers 0.000 description 6
- 238000000576 coating method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229920000271 Kevlar® Polymers 0.000 description 2
- 229920003369 Kevlar® 49 Polymers 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000004761 kevlar Substances 0.000 description 2
- 239000006223 plastic coating Substances 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、細径にして、水素環境下、側圧下、水圧下、
及び引張荷重下等における光伝送安定性に優れた、低損
失な元ファイバ心線に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention has a small diameter and can be used in a hydrogen environment, under lateral pressure, under water pressure,
The present invention also relates to a low-loss original fiber core with excellent optical transmission stability under tensile loads.
光伝送用媒体として使用される光学ガラスフアイパは通
常その直径がα2W以下であシ、また材質的にもろいの
で、その表面に傷が発生し易く、この傷が応力集中源に
なシ、外力が加わった場合、容易に破断してしまう。ま
たガラスファイバに側圧等の外力が作用してファイバに
マイクロベンドが生じると、光伝送損失が増加する。Optical glass fibers used as optical transmission media usually have a diameter of less than α2W and are made of brittle materials, so scratches can easily occur on the surface, and these scratches can become a source of stress concentration, causing external forces to be applied. If it is, it will easily break. Further, when an external force such as lateral pressure acts on the glass fiber and microbends occur in the fiber, optical transmission loss increases.
このため、一般的に第9図に断面図として示すように元
ファイバ1の表面にはヤング率CL1稽/電2程度の軟
らかいプラスチック緩衝層2を施して元ファイバ素線3
とし、更にヤング率50IV/fi”程度の硬いプラス
チック被覆層4t−施して、外径α3〜1.ロー程度の
元ファイバ心線5として取扱われる。更に元ファイバ心
線はケーブル化され、屋外等で使用される。For this reason, generally, as shown in the cross-sectional view in FIG.
Then, a hard plastic coating layer 4t with a Young's modulus of about 50 IV/fi is applied, and the core fiber is treated as a core fiber 5 with an outer diameter of α3 to 1.Rho.Furthermore, the core fiber is made into a cable and used outdoors, etc. used in
しかし、ケーブル中に水分が混入した場合、ケーブルを
構成する金属材料間に発生する局部電池作用等によって
水分が電気分解され、水素が発生することが知られてい
る。前記緩衝層及び被覆層の材料としてプラスチックを
用いた場合、水素のプラスチック中の拡散係数は約1O
−s−78で金属材料中の拡散係数に比べて1000倍
程度大きく、これらの材料中を水素が透過し易いので、
石英ガラス中の欠陥部と水素が反応して光損失が増加す
る欠点がある。またプラスチックのヤング率は通常50
0 K/i 7w”以下でおシ、金属材料に比べて低い
ので、元ファイバ心iに大きな側圧や水圧が作用すると
、被覆層が圧壊して、光損失が増加する欠点がある。However, it is known that when moisture gets mixed into the cable, the moisture is electrolyzed by local battery action that occurs between the metal materials that make up the cable, and hydrogen is generated. When plastic is used as the material for the buffer layer and the covering layer, the diffusion coefficient of hydrogen in plastic is approximately 1O.
-s-78 is about 1000 times larger than the diffusion coefficient in metal materials, and hydrogen easily permeates through these materials.
A drawback is that hydrogen reacts with defects in the quartz glass, resulting in increased optical loss. Also, the Young's modulus of plastic is usually 50.
Since it is lower than 0 K/i 7w'' and is lower than that of metal materials, it has the disadvantage that when large lateral pressure or water pressure acts on the original fiber core i, the coating layer is crushed and optical loss increases.
このような欠点を補うため特開昭57−145044号
、同57−111266号各公報に記載されているよう
に、元ファイバ外周へ蒸着又は真空めっきにより、直接
金属被覆を施す方法が用いられていた。しかし、これら
の構造は第10図に断面図として示すように、元ファイ
バ1の表面と金属被覆層7との間に緩衝層金有していな
いので、金属層の被覆において、元ファイバにマイクロ
ペンドが生じ、低損失な元ファイバ心線の製造が困難で
あるという欠点があった。−例として、現在最も低損失
なアルミ被覆光ファイバの損失は波長1.3μmにおい
て、約106B/krnであり、現状の技術ではこれ以
上の低損失は困難である。In order to compensate for these drawbacks, a method is used in which metal coating is applied directly to the outer periphery of the original fiber by vapor deposition or vacuum plating, as described in Japanese Patent Application Laid-open Nos. 57-145044 and 57-111266. Ta. However, as shown in the cross-sectional view in FIG. 10, these structures do not have a buffer layer between the surface of the original fiber 1 and the metal coating layer 7, so when coating the original fiber with the metal layer, microscopic This method has disadvantages in that bends occur and it is difficult to manufacture a core fiber core with low loss. - As an example, the loss of aluminum-coated optical fiber, which currently has the lowest loss, is about 106 B/krn at a wavelength of 1.3 μm, and it is difficult to achieve a lower loss with the current technology.
一方、特公昭5B−9054号公報に記載されているよ
うに、元ファイバ1の周囲にシリコーン緩衝層2を施し
、ナイロン被覆4t−施した第9図に示す構造の心線5
の損失はl 55 aB/km程度でラシ、元ファイバ
の理論限界にほぼ等しい低損失心線が実現されてシシ、
低損失な元ファイバ心線を実現するには緩衝層が不可欠
でらるO
また特開昭56−53602号、同56−78802号
☆公報に記載のように肉厚のある金属条体に特殊な加工
を施し、該金属条体内に元ファイバを埋め込むようにし
た構造も提案されている。On the other hand, as described in Japanese Patent Publication No. 5B-9054, a silicone buffer layer 2 is applied around the original fiber 1, and a core wire 5 having the structure shown in FIG.
The loss is approximately 155 aB/km, and a low-loss core wire almost equal to the theoretical limit of the original fiber has been realized.
A buffer layer is indispensable in order to realize a low-loss original fiber core. A structure has also been proposed in which the original fiber is embedded within the metal strip by processing the metal strip.
特開昭56−53602号、同56−78802号各公
報に記載の構造は第11図及び第12図(構造図として
示すように、金属被覆層として、組合せ金属条9を用い
たシ、突合せ成形金属管10を用いたりしているが、突
合せ部からの水素の浸入を防止するのは困難である。突
合せ部をろう付けや、溶接によって密閉して、水素の浸
入を防止することは可能であるが、この場合には製造工
程において金属被覆層の温度が上昇して、金属被覆層内
部の元ファイバ素線若しくは心線のプラスチック材料の
特性を損う恐れがあるので、金属被覆層の細径化は内径
2爛程度が限界であシ、これ以上の細径化は困難である
という欠点がある。The structure described in JP-A-56-53602 and JP-A-56-78802 is shown in FIGS. Although a formed metal tube 10 is used, it is difficult to prevent hydrogen from entering from the abutting portion.It is possible to seal the abutting portion by brazing or welding to prevent hydrogen from entering. However, in this case, the temperature of the metal coating layer increases during the manufacturing process, which may damage the properties of the original fiber or core plastic material inside the metal coating layer. The limit for reducing the diameter is about 2 diameters, and there is a drawback that it is difficult to reduce the diameter further.
金属被覆層として冷間引抜き成形管若しくは冷間押用し
成形管を用いる場合も、金属被覆層内部の温度上昇を抑
制するため、内径2w程度が限界であシ、長尺製造が困
難である。Even when a cold-drawn or cold-pressed tube is used as the metal coating layer, the inner diameter is limited to about 2W in order to suppress the temperature rise inside the metal coating layer, making it difficult to manufacture long tubes. .
また特願昭61−50356号明細書に記載の構造は第
13図に断面図として示すように元ファイバ1の周囲に
プラスチック緩衝層2を施し、更にその上に溶融した低
融点合金を成形して、金属被覆層7を形成しているが、
プラスチック緩衝層2と、低融点合金間とでは金属結合
も化学結合もないことから接着力が弱く、ま九プラスチ
ック緩衝層20表面は滑らかなので摩擦力も小さく、安
定した金属被覆層を連続して成形するのは難かしい。ま
た低融点合金のヤング率は通常5000 Kll /v
m”以下と小さいため、張力印加時の金属被覆層ファイ
バ心線の破断を防止するためには金属被覆層7t−厚肉
化しなければならず、心線の細径化を損うという欠点が
あった。Furthermore, the structure described in Japanese Patent Application No. 61-50356 includes a plastic buffer layer 2 provided around the original fiber 1, as shown in the cross-sectional view in FIG. The metal coating layer 7 is formed by
There is no metallic bond or chemical bond between the plastic buffer layer 2 and the low melting point alloy, so the adhesive force is weak, and the surface of the plastic buffer layer 20 is smooth, so the frictional force is small, and a stable metal coating layer is continuously formed. It's difficult to do. Furthermore, the Young's modulus of low melting point alloys is usually 5000 Kll/v.
m'' or less, the metal coating layer must be made thicker to prevent the metal coating layer from breaking when tension is applied, which has the disadvantage of impairing the ability to reduce the diameter of the core wire. there were.
本発明の目的は、細径にして、十分な水素遮断性と耐圧
性、耐水圧性、耐引張り性金有し、長尺製造性に優れた
低損失な金属被覆層ファイバ心線を提供することにある
。An object of the present invention is to provide a metal-coated fiber core wire that has a small diameter, has sufficient hydrogen barrier properties, pressure resistance, water pressure resistance, and tensile resistance, has excellent long-length manufacturability, and has low loss. It is in.
本発明を概説すれば、本発明の第1の発明は金属被覆層
ファイバ心線に関する発明であって、光伝送用ガスファ
イバの周囲に、少なくとも1層の緩衝層、その周囲に長
手方向に連続して縦添え又はら旋状に施された繊維、更
にその周囲に融点が250℃以下の低融点合金の金属被
覆層を有する金属被覆層ファイバ心線において、該繊維
の耐熱温度が、該低融点合金の融点と同等以上であるこ
とt−特徴とする。To summarize the present invention, the first invention of the present invention relates to a metal-coated fiber core wire, which includes at least one buffer layer surrounding an optical transmission gas fiber, which is continuous in the longitudinal direction. In a metal-coated fiber core wire having fibers arranged longitudinally or spirally, and a metal coating layer of a low-melting point alloy having a melting point of 250°C or less surrounding the fibers, the heat resistance temperature of the fibers is The melting point is equal to or higher than the melting point of the alloy.
そして、本発明の第2の発明は他の金属被覆層ファイバ
心線に関する発明であって、光伝送用ガラスファイバの
周囲に緩衝層を少なくとも1層施した元ファイバ素線を
複数本同心円状又は並列に集合した集合体の周囲に、長
手方向に連続して縦添え又はら旋状に施された繊維、そ
の周囲に融点が250℃以下の低融点合金の金属被覆層
を有する金属被覆層ファイバ心線において、該繊維の耐
熱温度が、該低融点合金の融点と同等以上であることを
特徴とする。The second invention of the present invention relates to another metal-coated fiber core wire, in which a plurality of original fiber wires each having at least one buffer layer applied around an optical transmission glass fiber are arranged in a concentric or circular shape. A metal-coated layer fiber having fibers arranged in a vertical or spiral manner continuously in the longitudinal direction around an aggregate assembled in parallel, and a metal-coated layer of a low-melting point alloy having a melting point of 250°C or less around the fibers. The core wire is characterized in that the allowable temperature limit of the fiber is equal to or higher than the melting point of the low melting point alloy.
本発明においては、元ファイバの周囲に軟らかいプラス
チック等の緩衝層を少なくとも1層施して元ファイバ素
線とし、その上に被覆する金属の融点と同等以上の耐熱
温度を有する長尺繊維例えばアラミド繊維を縦添え若し
くはら旋巻きし、更にその周囲に金属材料からなる被覆
層を施し、金属の被覆方法としては、突合せ管の溶接成
形技術を用いず、プラスチック等の緩衝層と長尺繊維の
熱劣化を防止する九め、融点が250℃以下の低融点合
金を押出し被覆するか若しくは蒸着する。In the present invention, at least one buffer layer made of soft plastic or the like is applied around the original fiber to form the original fiber, and a long fiber such as aramid fiber having a heat resistance temperature equal to or higher than the melting point of the metal coated thereon is used. The material is vertically spliced or spirally wound, and a coating layer made of a metal material is applied around it.The metal coating method does not use welding forming technology of butt tubes, but uses a buffer layer such as plastic and heat treatment of long fibers. Ninth, to prevent deterioration, a low melting point alloy having a melting point of 250° C. or less is coated by extrusion or vapor deposited.
本発明の金属被覆層ファイバ心線は、従来の金属被覆光
ファイバ心線と異なシ、引張9特性に優れ長尺製造が可
能で、心線外径の細径化が可能であるという特長を有す
る。The metal-coated fiber core of the present invention differs from conventional metal-coated optical fiber cores in that it has excellent tensile properties and can be manufactured in long lengths, and the outer diameter of the core can be reduced. have
金属被覆層ファイバ心線は例えば先に提案した「元ファ
イバ金属被覆装置」のように、溶融した低融点合金をダ
イス内で固めて下から引くという方法によシ作成される
。作成方法の概要図を第2図に示す。8はダイスである
。プラスチック被覆をした元ファイバ累線3に直接低融
点合金を被覆する場合、元ファイバ素線と低融点合金と
の接着力は、金属結合、化学結合がなく、プラスチック
被覆光ファイバ素線の表面が滑らかなことから、ダイス
内面と低融点合金との摩擦力よシは充分には大きくない
ため、固ま〕始めて機械的強度が充分に発現しない低融
点合金は下方に引かれる途中でダイス内面との摩擦力に
よって切断し易く、長尺な金属被覆層ファイバ心線が得
にくい。The metal coated fiber core wire is produced, for example, by a method of solidifying a molten low melting point alloy in a die and drawing it from below, as in the previously proposed ``original fiber metal coating device''. A schematic diagram of the creation method is shown in Figure 2. 8 is a die. When the plastic-coated original fiber strand 3 is directly coated with a low-melting-point alloy, the adhesive force between the original fiber and the low-melting-point alloy is such that there is no metallic bond or chemical bond, and the surface of the plastic-coated optical fiber is Due to its smoothness, the frictional force between the inner surface of the die and the low melting point alloy is not large enough. It is easy to cut due to the frictional force, and it is difficult to obtain a long metal coated fiber core wire.
しかし元ファイバ素線の回シに例えばアラミド繊維を縦
添えすると、微細なアラミド繊維フィラメントに低融点
合金がまわって、接触面積が大きくなシ、密着性が良く
なシ、元ファイバ素線及びアラミド繊維層双方と低融点
合金との摩擦力がダイス内面と低融点合金との摩擦力よ
りも充分に大きくなシ、固まり始めた低融点合金は切断
されることなく、良好に金属被覆層が形成される。However, when aramid fibers, for example, are attached vertically to the original fiber wire, the low melting point alloy is wrapped around the fine aramid fiber filaments, resulting in a large contact area and poor adhesion. If the frictional force between both fiber layers and the low melting point alloy is sufficiently larger than the frictional force between the inner surface of the die and the low melting point alloy, the low melting point alloy that has begun to solidify will not be cut and a metal coating layer will be formed well. be done.
また、アラミド繊維層は200℃程度まで安定であシ、
溶融状態の低融点合金に侵されることはなく、アラミド
繊維のヤング率は13,000ゆ/−であシ、元ファイ
バのヤング率7,290ゆ/−より大きく、金属被覆光
ファイバ心線の引張勺特性が向上する。In addition, the aramid fiber layer is stable up to about 200℃,
It is not attacked by the low melting point alloy in the molten state, and the Young's modulus of the aramid fiber is 13,000 Y/-, which is higher than the Young's modulus of the original fiber, which is 7,290 Y/-, and it is the same as that of the metal-coated optical fiber core. Tensile strength properties are improved.
なお、合金の融点が約250℃超になると、最も耐熱性
のある緩衝層材料であるシリコーン樹脂の特性を損なう
と推定される。このため金属被覆層7の融点は250℃
以下に設定する必要がある。It is estimated that if the melting point of the alloy exceeds about 250° C., the properties of the silicone resin, which is the most heat-resistant buffer layer material, will be impaired. Therefore, the melting point of the metal coating layer 7 is 250°C.
The following settings are required.
この構造の元ファイバ心線の伝送損失は波長1.3μm
にて約(L 42 dB/kmであシ、実用に足る低損
失性を達成した。The transmission loss of the original fiber with this structure is 1.3 μm in wavelength.
The loss was approximately 42 dB/km, which is sufficient for practical use.
第3図に元ファイバ心線に水圧を作用させた場合の、心
線被覆層の座屈水圧(気圧、縦軸)と心線外径(鱈、横
軸)との関係の計算値をグラフとして示す。図中実線は
被覆層に低融点合金を用いた場合、破線はナイロンを用
いた場合金示す。ただし、ヤング率はそれぞれ3000
VJj /ym” 、及び100に9/■2とし、被覆
層の内径はα4mφとした。外径α9mφのナイロン被
覆心線では約500気圧で被覆層が座屈するのに対し、
合金被覆心線では外径0.6vaxφでも3000気圧
程度の水圧に耐え、心線外径の細径化及び耐水圧の大幅
な向上が可能となる。なお計算には次式を用いた◇
゛
ここでP:被覆層座屈水圧
E:被覆層のヤング率
シ:被覆層のポアソン比(約α55)
t:被覆層の肉厚 d:被覆層の外径また党ファイバ
への水素の透過の度合いは被覆層の拡散係数の大小に比
例するが、一般に金属の拡散係数はプラスチックと比べ
1/10”〜1/10’程度である。例えば常温25℃
における水素の拡散係数はポリエチレンで五〇×10″
″6ctl/ sec、鉄f X 88 X 10−1
0i/ sec、アルミで5.71×10−9275代
である。このため、金属を被覆した心線では、元ファイ
ノ々の周囲を隙間なく施すことができるので水素を充分
に遮断することができ、水素雰囲気中でも元増加なく使
用可能となる。Figure 3 is a graph showing the calculated relationship between the buckling water pressure (atmospheric pressure, vertical axis) of the core fiber coating layer and the outer diameter of the core (horizontal axis) when water pressure is applied to the original fiber core. Shown as In the figure, the solid line indicates gold when a low melting point alloy is used for the coating layer, and the broken line indicates gold when nylon is used for the coating layer. However, Young's modulus is 3000 for each
VJj /ym'' and 9/■2 to 100, and the inner diameter of the coating layer was α4mφ.In contrast to the case of a nylon coated core wire with an outer diameter α9mφ, the coating layer buckles at about 500 atm.
The alloy coated core wire can withstand water pressure of about 3000 atmospheres even with an outer diameter of 0.6vaxφ, making it possible to reduce the outer diameter of the core wire and significantly improve the water pressure resistance. The following formula was used for calculation◇
゛Here, P: Buckling water pressure of the coating layer E: Young's modulus of the coating layer: Poisson's ratio of the coating layer (approximately α55) t: Thickness of the coating layer d: Outer diameter of the coating layer and permeation of hydrogen into the fiber The degree of diffusion is proportional to the diffusion coefficient of the coating layer, but generally the diffusion coefficient of metal is about 1/10" to 1/10' compared to plastic. For example, at room temperature 25 ° C.
The diffusion coefficient of hydrogen in polyethylene is 50×10″
″6ctl/sec, iron f x 88 x 10-1
0i/sec, 5.71 x 10-9275 for aluminum. For this reason, in a core wire coated with metal, it is possible to coat the periphery of the base metals without any gaps, so that hydrogen can be sufficiently blocked, and the core wire can be used even in a hydrogen atmosphere without increasing the base strength.
第4図に元ファイバ心線に張力を作用させた場合の伸び
特性を張力(kgfs縦軸)と伸び歪(%、横軸)との
関係でグラフとして示す。ただし、緩衝層の外径は(L
4m+、心線の外径は19鱈とした。図中実線は被覆層
に低融点合金のみを用いた場合、一点鎖線は緩衝層の周
囲にケブラー49を2280デニール縦添え、その周囲
に低融点合金を被覆した場合、破線は被覆層にナイロン
を用いた場合を示す。ただし、ヤング率は低融点合金3
000 Kll / ll11”% ケブラー49は1
200[1ゆ/−、ナイロン100ゆ/−1緩衝層α1
kJl /wx”、光ファイノ< 7 Q OOkg
7m”とした。なお計算には次式を用いた。FIG. 4 shows the elongation characteristics when tension is applied to the original fiber core wire as a graph of the relationship between tension (kgfs vertical axis) and elongation strain (%, horizontal axis). However, the outer diameter of the buffer layer is (L
4 m+, and the outer diameter of the core wire was 19 cod. In the figure, the solid line indicates the case where only a low melting point alloy is used for the coating layer, the dashed line indicates the case where 2280 denier Kevlar 49 is applied vertically around the buffer layer and the low melting point alloy is coated around it, and the dashed line indicates the case where nylon is used as the coating layer. The case where it is used is shown. However, Young's modulus is low melting point alloy 3
000 Kll / ll11”% Kevlar 49 is 1
200 [1 Y/-, nylon 100 Y/-1 buffer layer α1
kJl /wx”, optical phino < 7 Q OOkg
7m''.The following formula was used for calculation.
6 =
EnAn
e二伸び歪、F:張力、E:ヤング率、A:断面積、添
字n:各部材を示す0
元ファイバの許容伸び歪を12%とすると、ケブラーを
縦添えした金属被覆心線は約&5kpf程度の張力まで
耐えることができ、ケブラーなしの金属被覆心線に比べ
て2倍程度、従来のナイロン心線に比べて200倍程許
容張力を向上させることができる0
なお、長尺繊維の材料としては、その耐熱温度が合金の
融点に比べて高く、かつ元ファイノくの回シに容易に配
列できるものであれば、I#に制限はなく、その例とし
ては、アラミド繊維のほか、ポリエチレン繊維やガラス
繊維、ボロン繊維、ステンレス繊維等が挙げられる0ま
た、本発明のi7アイバ心線においては、金属被覆層の
周囲にプラスチック外被を施してもよい。プラスチック
外被の例としては、ポリエチレンやポリ塩化ビニル、テ
フロン及びナイロン等が挙げられる。6 = EnAn e2 elongation strain, F: tension, E: Young's modulus, A: cross-sectional area, subscript n: indicates each member 0 Assuming that the allowable elongation strain of the original fiber is 12%, a metal-coated core with Kevlar longitudinally attached The wire can withstand up to a tension of approximately &5 kpf, which is about twice as high as a metal-coated core wire without Kevlar, and about 200 times higher than a conventional nylon core wire. There is no restriction on I# as long as the material for the shaku fibers has a heat resistance temperature higher than the melting point of the alloy and can be easily arranged in a wafer pattern, such as aramid fibers. In addition, polyethylene fibers, glass fibers, boron fibers, stainless steel fibers, etc. may also be used.In addition, in the i7 fiber core wire of the present invention, a plastic jacket may be applied around the metal coating layer. Examples of plastic jackets include polyethylene, polyvinyl chloride, Teflon, and nylon.
以下、本発明を実施例によシ史に具体的に説明するが、
本発明はこれら実施例に限定されない。Hereinafter, the present invention will be specifically explained using examples.
The invention is not limited to these examples.
実施例1
第1図は本発明の元ファイバ心線の1実施例の構造を示
す断面図であって、1は元ファイバ、2はプラスチック
緩衝層、3F′i元ファイバ素線、6はアラミド繊維層
、7は金属被覆層である。Example 1 FIG. 1 is a cross-sectional view showing the structure of an example of the original fiber core wire of the present invention, in which 1 is the original fiber, 2 is the plastic buffer layer, 3F'i original fiber wire, and 6 is the aramid fiber. The fiber layer 7 is a metal coating layer.
外径α125箇のシングルモード光ファイバの周囲にプ
ラスチック緩衝層として、シリコーン樹脂を外径(L4
■施し、前記プラスチック被覆層の周囲に500デニ一
ル程度のアラミド繊維(登録商標:ケプラー)t−縦添
えし、更にB1、pb%Sn 等からなる低融点合金を
押出し被覆して金属被覆層7を形成し、外径(L9−と
している。ちなみにB152%、Pb 51%、8n1
7チの配合による低融点合金の融点は約95℃である。Silicone resin was used as a plastic buffer layer around the single mode optical fiber with an outer diameter of α125.
■Aramid fibers (registered trademark: Kepler) T-of about 500 denier are attached vertically around the plastic coating layer, and then a low melting point alloy consisting of B1, PB%Sn, etc. is extruded and coated to form a metal coating layer. 7 and the outer diameter (L9-.By the way, B152%, Pb 51%, 8n1
The melting point of the low melting point alloy with the 7-chi blend is about 95°C.
実施例2
合、アラミド繊維がネジのような役割を果たー押出し方
向への低融点合金と繊維との密着力をよシ向上できる利
点がある。なおら旋状に巻く繊維体は図示したように一
本である必要はなく、複数線条であっても、また布状で
あってもかまわないことはいうまでもない。Example 2 In this case, the aramid fibers play a role like a screw, which has the advantage of improving the adhesion between the low melting point alloy and the fibers in the extrusion direction. It goes without saying that the spirally wound fibrous body does not have to be one as shown in the figure, and may be a plurality of filaments or a cloth-like filament.
実施例3
第6図は本発明の他の実施例の構造を示す断面図であり
、第1図で示した金属被覆心線の周囲にプラスチック外
被11が施されている0プラスチック外被11Fi金属
被覆層7を外力や摩耗から保護し、電気的絶縁の機能を
有し、屋外で使用したシ、他の心線と集合してケーブル
化する場合に効果がある。Embodiment 3 FIG. 6 is a sectional view showing the structure of another embodiment of the present invention, in which a plastic jacket 11 is provided around the metal-coated core wire shown in FIG. 1. It protects the metal coating layer 7 from external force and abrasion, has the function of electrical insulation, and is effective when used outdoors or when assembled with other core wires to form a cable.
実施例4
以上までの実施例では元ファイバを一本だけ含む緩衝層
付き素線を例に説明をしてきたが、本発明の効果の及ぶ
範囲は、これらに限定されるものではなく、複数の元フ
ァイバを含む集合体に対しても同様である。第7図、は
、複数の元ファイバを含む集合体について本発明を実施
した例の構造を示す断面図であシ、テープ形心線12の
周囲にアラミド繊維6を施し、更にその上に金属被覆層
を被覆している。これは複数の元ファイバ全必要とする
伝送路区間において、利便性を発揮する。Embodiment 4 In the above embodiments, explanations have been given using buffer layered strands containing only one original fiber, but the scope of the effects of the present invention is not limited to these, and The same applies to aggregates including original fibers. FIG. 7 is a cross-sectional view showing the structure of an example in which the present invention is applied to an aggregate including a plurality of original fibers, in which aramid fibers 6 are applied around the tape-shaped core wire 12, and metal It is covered with a coating layer. This provides convenience in transmission line sections that require all of a plurality of original fibers.
実施例5
第8図も複数の元ファイバを含む集合体について本発明
を実施した例の構造を示す断面図であり、数本の光フア
イバ素線3t−同心円状に集合したものの周囲にアラミ
ド繊維を施し、更に金属被覆層7を被覆している。Embodiment 5 FIG. 8 is also a cross-sectional view showing the structure of an example in which the present invention is implemented for an assembly including a plurality of original fibers, in which aramid fibers are arranged around several optical fiber strands 3t concentrically assembled. , and is further coated with a metal coating layer 7.
以上説明したように、本発明の金属被覆層ファイバ心線
は、元ファイバ素線の周囲に、繊維、例えばアラミド繊
維層、低融点の合金からなる被覆層を有するので細径で
あシながら、耐水圧、耐側圧、耐引張シに優れかつ、水
素雰囲気中での使用が可能でラル、低損失で長尺に製造
できることから、海底、川越え又は谷越えの長スパン架
空ケーブル区間、長大橋添架ケーブル区間、及びビル内
配管等あらゆる劣悪な環境下で使用可能となる。また、
本発明心線を集合してケーブルを作成する場合、心線自
体が上述のような機械的特性を有するため、ケーブル構
造への要求条件が少なくなり、経済性、環境適合性金目
指した設計が容易となる利点がある。As explained above, the metal-coated fiber core of the present invention has a coating layer made of fibers, such as an aramid fiber layer, and a low-melting-point alloy around the original fiber, so that it has a small diameter and It has excellent water pressure resistance, lateral pressure resistance, and tensile resistance, and can be used in a hydrogen atmosphere and can be manufactured in long lengths with low loss. It can be used in all kinds of harsh environments such as attached cable sections and piping inside buildings. Also,
When making a cable by assembling the core wires of the present invention, the core wires themselves have the above-mentioned mechanical properties, so the requirements for the cable structure are reduced, and the design aims for economical efficiency and environmental compatibility. It has the advantage of being easy.
第1図は本発明の元ファイバ心線の1実施例の構造を示
す断面図、第2図は金属被覆層ファイバ作成方法の概要
図、第3図は光ファイバ心面図、第10図は従来の金属
被覆層ファイバ心線の構造を示す断面図、第11図は元
ファイバ心線の外側に金属層として組合せ金属条を用い
た従来例の構造図、第12図は元ファイバ心線の外側に
金属層として突合せ成形管を用いた従来例の構造図、第
15図は従来の金属被覆層ファイバ心線の構造を示す断
面図である。
1:元ファイバ、2ニブラスチック緩衝層、5二光フア
イバ素線、4ニブラスチック被覆層、5:光フアイバ心
線、6:アラミド繊維、7:金属被覆層、8:ダイス、
9二組合せ金属条、10:突合せ成形金属管、11ニブ
ラスチツク外被、12:テープ形心線 。Fig. 1 is a sectional view showing the structure of one embodiment of the original fiber core of the present invention, Fig. 2 is a schematic diagram of the method for producing a metal coating layer fiber, Fig. 3 is a core view of the optical fiber, and Fig. 10 is 11 is a cross-sectional view showing the structure of a conventional metal coated fiber core. FIG. 11 is a structural diagram of a conventional example in which a combined metal strip is used as a metal layer on the outside of the original fiber core. FIG. 12 is a cross-sectional view of the original fiber core. A structural diagram of a conventional example using a butt-formed tube as a metal layer on the outside, and FIG. 15 is a cross-sectional view showing the structure of a conventional metal coated fiber core wire. 1: original fiber, 2 niblastic buffer layer, 5 two optical fiber wires, 4 niblastic coating layer, 5: optical fiber core, 6: aramid fiber, 7: metal coating layer, 8: dice,
9: Two combined metal strips, 10: Butt-formed metal tube, 11: Niblastic jacket, 12: Tape-shaped core wire.
Claims (1)
の緩衝層、その周囲に長手方向に連続して縦添え又はら
旋状に施された繊維、更にその周囲に融点が250℃以
下の低融点合金の金属被覆層を有する金属被覆光ファイ
バ心線において、該繊維の耐熱温度が、該低融点合金の
融点と同等以上であることを特徴とする金属被覆光ファ
イバ心線。 2、該金属被覆層の周囲に、プラスチック材料からなる
被覆層を有する特許請求の範囲第1項記載の金属被覆光
ファイバ心線。 3、該繊維が、アラミド繊維である特許請求の範囲第1
項又は第2項記載の金属被覆光ファイバ心線。 4、光伝送用ガラスファイバの周囲に緩衝層を少なくと
も1層施した光ファイバ素線を複数本同心円状又は並列
に集合した集合体の周囲に、長手方向に連続して縦添え
又はら旋状に施された繊維、その周囲に融点が250℃
以下の低融点合金の金属被覆層を有する金属被覆光ファ
イバ心線において、該繊維の耐熱温度が、該低融点合金
の融点と同等以上であることを特徴とする金属被覆光フ
ァイバ心線。 5、該金属被覆層の周囲に、プラスチック材料からなる
被覆層を有する特許請求の範囲第4項記載の金属被覆光
ファイバ心線。 6、該繊維が、アラミド繊維である特許請求の範囲第4
項又は第5項記載の金属被覆光ファイバ心線。[Claims] 1. At least one buffer layer is provided around the optical transmission glass fiber, the fibers are continuous in the longitudinal direction around the buffer layer, and the fibers are provided in a longitudinally continuous or spiral manner, and the melting point layer is further provided around the buffer layer. A metal-coated optical fiber core having a metal coating layer of a low-melting-point alloy with a temperature of 250° C. or less, characterized in that the heat-resistant temperature of the fiber is equal to or higher than the melting point of the low-melting-point alloy. line. 2. The metal-coated optical fiber core according to claim 1, which has a coating layer made of a plastic material around the metal coating layer. 3. Claim 1, wherein the fiber is an aramid fiber
The metal-coated optical fiber core according to item 1 or 2. 4. A plurality of optical fiber wires each having at least one layer of buffering layer applied around the glass fiber for optical transmission are assembled in a concentric circle or in parallel, and are continuous in the longitudinal direction in a vertical or spiral shape. The fiber applied to the surrounding area has a melting point of 250℃
A metal-coated optical fiber core wire having a metal coating layer of a low-melting point alloy as described below, wherein the allowable temperature limit of the fiber is equal to or higher than the melting point of the low-melting point alloy. 5. The metal-coated optical fiber core according to claim 4, which has a coating layer made of a plastic material around the metal coating layer. 6. Claim 4, wherein the fiber is an aramid fiber
The metal-coated optical fiber core according to item 5 or item 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62006064A JPS63175813A (en) | 1987-01-16 | 1987-01-16 | Metal coated optical fiber core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62006064A JPS63175813A (en) | 1987-01-16 | 1987-01-16 | Metal coated optical fiber core |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63175813A true JPS63175813A (en) | 1988-07-20 |
Family
ID=11628155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62006064A Pending JPS63175813A (en) | 1987-01-16 | 1987-01-16 | Metal coated optical fiber core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63175813A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5008158A (en) * | 1988-11-07 | 1991-04-16 | Aluminum Company Of America | Production of metal matrix composites reinforced with polymer fibers |
US5561731A (en) * | 1995-06-15 | 1996-10-01 | Siecor Corporation | Flexible casing for optical ribbons |
US6449412B1 (en) * | 1998-06-30 | 2002-09-10 | Corning Cable Systems Llc | Fiber optic ribbon interconnect cable |
-
1987
- 1987-01-16 JP JP62006064A patent/JPS63175813A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5008158A (en) * | 1988-11-07 | 1991-04-16 | Aluminum Company Of America | Production of metal matrix composites reinforced with polymer fibers |
US5561731A (en) * | 1995-06-15 | 1996-10-01 | Siecor Corporation | Flexible casing for optical ribbons |
US6449412B1 (en) * | 1998-06-30 | 2002-09-10 | Corning Cable Systems Llc | Fiber optic ribbon interconnect cable |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100721885B1 (en) | Stranded wire and its manufacturing method | |
JPH06109956A (en) | Fiber optic cable | |
US4414428A (en) | Expanded metal containing wires and filaments | |
KR20120046745A (en) | Submersible composite cable and methods | |
CA2549476A1 (en) | Composite catheter braid | |
US7228627B1 (en) | Method of manufacturing a high strength aluminum-clad steel strand core wire for ACSR power transmission cables | |
US4051661A (en) | Wire strand and rope | |
JPS6047684B2 (en) | Superconducting composite and its manufacturing method | |
US20050061538A1 (en) | High voltage electrical power transmission cable having composite-composite wire with carbon or ceramic fiber reinforcement | |
JPS63175813A (en) | Metal coated optical fiber core | |
US4696543A (en) | Optical fiber cable having a low permeability to hydrogen | |
JP2847787B2 (en) | Overhead transmission line | |
JP3185349B2 (en) | Overhead transmission line | |
JPH10321049A (en) | Composite strand and manufacture thereof and lightweight/low slackness overhead wire using the compound stand | |
WO2003050825A1 (en) | High voltage electrical power transmission cable having composite-composite wire with carbon or ceramic fiber reinforcement | |
JPS62208011A (en) | Metal coated optical fiber core | |
JPS61198113A (en) | Optical fiber core | |
JPS6143683B2 (en) | ||
JPH10128428A (en) | Manufacture of alloy fine wire, alloy fine wire assembly, alloy fine wire strand, alloy fine wire textile, alloy fine wire knit fabric, alloy fine wire web and alloy fine wire felt | |
KR102754612B1 (en) | Electric power line using composite material, and method for manufacturing thereof | |
GB1571110A (en) | Optical cables | |
JP2551446B2 (en) | Composite wire of inorganic fiber and metal and method for producing the same | |
WO2023089919A1 (en) | Niobium-aluminum precursor wire, niobium-aluminum precursor twisted wire, niobium-aluminum superconducting wire, and niobium-aluminum superconducting twisted wire | |
JPH07282650A (en) | Compound superconductor | |
JPS618814A (en) | Low sag optical fiber built-in electric wire |