JPS63175202A - magnetic memory package - Google Patents
magnetic memory packageInfo
- Publication number
- JPS63175202A JPS63175202A JP622987A JP622987A JPS63175202A JP S63175202 A JPS63175202 A JP S63175202A JP 622987 A JP622987 A JP 622987A JP 622987 A JP622987 A JP 622987A JP S63175202 A JPS63175202 A JP S63175202A
- Authority
- JP
- Japan
- Prior art keywords
- thermoelectric cooling
- magnetic head
- thin film
- magnetic
- amplifier circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001816 cooling Methods 0.000 claims abstract description 36
- 239000010409 thin film Substances 0.000 claims abstract description 30
- 230000007246 mechanism Effects 0.000 claims abstract description 6
- 230000000694 effects Effects 0.000 abstract description 12
- 239000004065 semiconductor Substances 0.000 abstract description 12
- 239000004020 conductor Substances 0.000 abstract description 6
- 230000005679 Peltier effect Effects 0.000 abstract description 4
- 239000002470 thermal conductor Substances 0.000 abstract description 4
- 239000004519 grease Substances 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 6
- 239000011261 inert gas Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000615 nonconductor Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/40—Protective measures on heads, e.g. against excessive temperature
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B23/00—Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
- G11B23/02—Containers; Storing means both adapted to cooperate with the recording or reproducing means
- G11B23/021—Containers; Storing means both adapted to cooperate with the recording or reproducing means comprising means for reducing influence of physical parameters, e.g. temperature change, moisture
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B25/00—Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing, e.g. dictating apparatus; Combinations of such apparatus
- G11B25/04—Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing, e.g. dictating apparatus; Combinations of such apparatus using flat record carriers, e.g. disc, card
- G11B25/043—Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing, e.g. dictating apparatus; Combinations of such apparatus using flat record carriers, e.g. disc, card using rotating discs
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B33/00—Constructional parts, details or accessories not provided for in the other groups of this subclass
- G11B33/14—Reducing influence of physical parameters, e.g. temperature change, moisture, dust
Landscapes
- Recording Or Reproducing By Magnetic Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は磁気メモリに係り、特に高密度磁気記録に好適
な、磁気ヘッド装置、磁気記録媒体および駆動機構内蔵
密封型の磁気メモリパッケージに関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic memory, and particularly to a magnetic head device, a magnetic recording medium, and a sealed magnetic memory package with a built-in drive mechanism suitable for high-density magnetic recording.
単位磁気記録媒体当りの記憶容量を上げるための高密度
磁気記録を実現するうえでの課題は、S/N比の確保と
ヘッド−媒体コンタクトのスペーシング損失の低減であ
る。The challenges in realizing high-density magnetic recording to increase the storage capacity per unit magnetic recording medium are ensuring a high S/N ratio and reducing spacing loss of the head-medium contact.
第1の課題である高S/N比を確保するためには、まず
、磁気ヘッドの高出力化を図らなければならない。高出
力化の手段としては、磁気コアの磁気回路を形成する磁
気コアの長さく以下磁路長と称す)を小さくすることが
考えられ、このため磁気コア、コイル等を薄膜で形成す
るいわゆる薄膜磁気ヘッドが有効である。しかし、薄膜
磁気ヘッドの磁路長を小さくするにつれて、コイルも微
細化されコイル断面積が減少するためにコイル抵抗が増
大し、結果的にヘッドインピーダンスノイズが増大して
期待した高S/N比を確保出来なくなるという問題が生
ずる。また、高密度磁気記録においては、筒周波帯域を
用いるとともに、トラック幅、記録波長ともに小さくな
ることから、記録媒体からの記録信号レベルが小さくな
り、ノイズは上記ヘッドインピーダンスノイズと再生ア
ンプの熱ノイズが支配的になる。高S/N比を確保する
ためには、上記ノイズをいかにおさえるかがポイントと
なる。ノイズをおさえる手段として、熱電冷却素子を利
用して磁気ヘッドおよびアンプ回路を冷却することが考
えられるが、現在これに類似した提案は見あたらない。In order to ensure a high S/N ratio, which is the first issue, it is first necessary to increase the output of the magnetic head. One possible means of increasing output is to reduce the length of the magnetic core (hereinafter referred to as magnetic path length) that forms the magnetic circuit of the magnetic core, and for this purpose, the so-called thin film that forms the magnetic core, coil, etc. A magnetic head is effective. However, as the magnetic path length of a thin-film magnetic head is made smaller, the coil becomes finer and the cross-sectional area of the coil decreases, resulting in an increase in coil resistance, which results in an increase in head impedance noise, resulting in a higher S/N ratio than expected. A problem arises in that it is no longer possible to secure the In addition, in high-density magnetic recording, a cylindrical frequency band is used, and both the track width and the recording wavelength are small, so the recording signal level from the recording medium becomes small, and the noise is caused by the head impedance noise mentioned above and the thermal noise of the reproduction amplifier. becomes dominant. In order to ensure a high S/N ratio, the key is how to suppress the above noise. As a means of suppressing noise, it is conceivable to use a thermoelectric cooling element to cool the magnetic head and amplifier circuit, but no similar proposal has been found at present.
第2の課題はスペーシング1員失の低減である。The second issue is spacing and reducing the loss of one person.
従来の磁気ヘッド、磁気ディスクのコンタクトの形!虚
は2種類ある。その1つは、ウィンチェスタ−型のフロ
ーティング磁気ヘットである。この種の磁気ヘッドは、
磁気ヘッドと磁気ディスク間に形成した空気流を利用し
てスペーシングを得ていることから、原理的にスペーシ
ング損失を低減することが困nである。他方は、特開昭
60−202579号公報に記載のように、磁気ディス
クあるいはフロッピー磁気ディスクを磁気ヘッドと直接
コンタクトする方法である。しかし、この種の方法は、
ヘッド媒体の相対速度が早くなると、摩擦係数が増すと
ともに、磁気ヘッドあるいは磁気ディスクの摩耗が進行
し、スペーシング1員失は低減可能ではあるが、安定し
たコンタクトおよび長寿命が得られないという問題があ
る。Conventional magnetic head, magnetic disk contact shape! There are two types of imaginary. One of them is a Winchester type floating magnetic head. This kind of magnetic head is
Since spacing is obtained by using the air flow formed between the magnetic head and the magnetic disk, it is difficult in principle to reduce the spacing loss. The other method is a method in which a magnetic disk or floppy magnetic disk is brought into direct contact with a magnetic head, as described in Japanese Patent Application Laid-Open No. 60-202579. However, this kind of method
As the relative speed of the head medium increases, the coefficient of friction increases and the wear of the magnetic head or magnetic disk progresses.Although it is possible to reduce the loss of one member of the spacing, there is a problem that stable contact and long life cannot be obtained. There is.
前述の熱電冷却素子に類似した構造のものとして、例え
ば、特開昭58−6186号、特開昭58−7888号
および特開昭56−126988号等公報に記載された
ものが挙げられる。Examples of thermoelectric cooling elements having a structure similar to the above-mentioned thermoelectric cooling elements include those described in Japanese Patent Application Laid-Open No. 58-6186, Japanese Patent Application Laid-Open No. 58-7888, and Japanese Patent Application Laid-Open No. 56-126988.
上記従来技術においては、高密度磁気記録を実現するう
えでの課題である薄膜磁気ヘッドのヘッドインピーダン
スノイズおよび再生アンプの熱ノイズの低減、およびス
ペーシング損失を安定コンタクトで実現する点について
配慮されておらず、高密度磁気記録が難しいという問題
があった。In the above conventional technology, consideration has been given to reducing the head impedance noise of the thin-film magnetic head and the thermal noise of the reproducing amplifier, which are issues in realizing high-density magnetic recording, and to realizing the spacing loss with stable contact. However, there was a problem that high-density magnetic recording was difficult.
本発明は、上記問題を解決し、高S/N比を確保しかつ
スペーシング損失を低減した磁気メモリパッケージを提
供することを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetic memory package that solves the above problems, ensures a high S/N ratio, and reduces spacing loss.
上記目的は、薄膜磁気ヘッドおよび再生アンプ回路を熱
電冷却素子を用いて冷却して高S/N比を確保し、かつ
ヘッド−磁気記録媒体コンタクトを真空あるいは微量の
不活性ガス雰囲気において直接コンタクト方式をとるこ
とにより達成される。The above purpose is to cool the thin film magnetic head and the reproduction amplifier circuit using a thermoelectric cooling element to ensure a high S/N ratio, and to make the head-magnetic recording medium contact in a vacuum or in a trace amount of inert gas atmosphere using a direct contact method. This is achieved by taking .
異なる2つの物質の接合に電流を流すと、その接合の一
方では発熱、他方では吸熱が起こる(ベルチェ効果)。When a current is passed through a junction of two different materials, one side of the junction generates heat and the other side absorbs heat (Bertier effect).
このベルチェ効果を利用した熱電冷却素子が知られてい
る。本発明では熱電冷却素子の吸熱面上に薄膜磁気ヘッ
ドおよび再生回路を形成し、この熱電冷却素子に電流を
流して薄膜磁気ヘッドを冷却しコイル抵抗を減少させる
。これによりヘッドの磁路長を大幅に縮小できヘッド出
力の増大とともに冷却された再生回路をも含む全熱ノイ
ズが低減されて高S/N比が実現できる。Thermoelectric cooling elements that utilize this Beltier effect are known. In the present invention, a thin film magnetic head and a reproducing circuit are formed on the heat absorption surface of a thermoelectric cooling element, and a current is passed through the thermoelectric cooling element to cool the thin film magnetic head and reduce coil resistance. As a result, the magnetic path length of the head can be significantly reduced, the head output can be increased, and the total thermal noise including the cooled reproduction circuit can be reduced, thereby achieving a high S/N ratio.
また、真空あるいは微量の不活性ガスの雰囲気となる密
封ケース内に、薄膜磁気ヘッドおよび磁気記録媒体を内
蔵させたことにより、摩擦係数および摩耗の増大の原因
であった、大気中の酸素。In addition, by housing the thin-film magnetic head and magnetic recording medium in a sealed case with a vacuum or a trace amount of inert gas atmosphere, oxygen in the atmosphere, which was a cause of increased friction coefficient and wear, was removed.
水分等の影客を除去できるために、安定した直接コンタ
クトが実現できスペーシング損失の低減が可能となる。Since shadow particles such as moisture can be removed, stable direct contact can be achieved and spacing loss can be reduced.
以下、本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.
第1図は、本発明による磁気メモリパッケージの一実施
例を示す断面図であって、1a、1bは密封ケースで、
断熱効果を持たせるために2重構造となし、ケース1a
、lb間2aは真空空間である。ケース内2bは真空、
もしくは、アルゴン。FIG. 1 is a sectional view showing an embodiment of a magnetic memory package according to the present invention, in which 1a and 1b are sealed cases;
Case 1a has a double structure to provide insulation effect.
, lb 2a is a vacuum space. Inside the case 2b is vacuum,
Or argon.
ネオン等の微量の不活性ガス雰囲気で、3は第1の熱電
冷却素子である薄膜Cイl気ヘッド・アンプ回路・熱電
冷却一体化素子、4は熱伝導体、5は第2の熱電冷却素
子、6a、6bは電流取り出し端子、7は記録媒体とし
ての磁気ディスク、8a。In an atmosphere of a trace amount of inert gas such as neon, 3 is the first thermoelectric cooling element, which is a thin film head/amplifier circuit/thermoelectric cooling integrated element, 4 is the thermal conductor, and 5 is the second thermoelectric cooling element. Elements, 6a and 6b are current extraction terminals, 7 is a magnetic disk as a recording medium, and 8a.
8bは薄膜磁気ヘッド素子3のトラック送り用の駆動機
構、9は一体化素子3の薄膜磁気ヘッド素子と磁気ディ
スク7の良好なコンタクト圧を実現するためのパッド、
10は磁気ディスク7の回転を支持するための支持台、
11および12は磁気ディスク7の回転用モータ13の
駆動力を非接触で伝えるための磁石付の駆動a購である
。8b is a drive mechanism for track feeding of the thin film magnetic head element 3; 9 is a pad for realizing good contact pressure between the thin film magnetic head element of the integrated element 3 and the magnetic disk 7;
10 is a support stand for supporting the rotation of the magnetic disk 7;
Reference numerals 11 and 12 denote drive units equipped with magnets for transmitting the driving force of the motor 13 for rotating the magnetic disk 7 in a non-contact manner.
第2図は、第1図の薄膜磁気ヘッド・アンプ回路・熱電
冷却一体化素子の一構成例を示す断面図であって、17
は薄膜磁気ヘッド素子で、14は磁気コア、15は磁気
ギャップ、16はコイル、18は薄膜磁気ヘッド素子1
7の記録および再生用のアンプ回路、19aは吸熱側お
よび19bは発熱側の熱伝導体、20a、20bは電気
絶縁体でかつ熱伝導性の良好な材料、22は熱電冷却素
子を構成するp型半導体、23は同じくn型半導体、2
1a、21bは該半導体の電流接続部、24は電気的お
よび熱的な絶縁体である。FIG. 2 is a sectional view showing an example of the structure of the integrated thin film magnetic head/amplifier circuit/thermoelectric cooling element shown in FIG.
1 is a thin film magnetic head element, 14 is a magnetic core, 15 is a magnetic gap, 16 is a coil, and 18 is a thin film magnetic head element 1.
7, a recording and reproducing amplifier circuit; 19a is a heat conductor on the heat absorption side and 19b is a heat conductor on the heat generation side; 20a and 20b are electrical insulators and materials with good thermal conductivity; 22 is a p constituting a thermoelectric cooling element; type semiconductor, 23 is also an n-type semiconductor, 2
1a and 21b are current connections of the semiconductor, and 24 is an electrical and thermal insulator.
次に上記の様に構成された本発明の一実施例の動作を説
明する。(511気デイスク7は、駆動用回転モータ1
3の駆動力が磁石付駆動機構11.12により伝わりケ
ース内2bの真空雰囲気等の中で高速回転する。第1の
熱電冷却素子である薄膜磁気ヘッド・アンプ回路・熱電
冷却一体化素子3は、所定のトラック位置に配置される
様駆動機構8a、8bにより移動する。電流端子6a、
6bに直流電流を通すと、ペルチェ効果により第2の熱
電冷却素子5が働き、熱伝導体4およびそれと接触状態
にある前記一体化素子3が冷却される。この時、熱伝導
体4と該一体化素子3の接触面に真空グリース等を設け
れば更に熱伝導が良好となる。更に第2図に示した様に
、直列接続されたp型半導体22およびn型半導体23
に電流を流せば、同様にペルチェ効果で2段の熱電冷却
素子を構成し冷却効果が増大する。また、冷却すべき薄
膜磁気ヘッド素子17およびアンプ回路18の磁気ディ
スク側面(第2図で下面)は前記真空雰囲気等となって
おり断熱効果が期待できるので、更に冷却効果が増大す
る。この様に構成することにより、マイナス100 °
C以下の温度が実現できる。この様にして薄膜磁気ヘッ
ド素子17のコイル16および、アンプ回路18が能率
よ(冷却でき、各抵抗値を低減することにより高密度磁
気記録を実現する上での技術課題であった、ヘッドイン
ピーダンスノイズおよびアンプノイズが大幅に低減でき
、良好なS/N比が可能となる。なお上記ノイズNは下
式で示される。Next, the operation of an embodiment of the present invention configured as described above will be explained. (The 511 disk 7 is driven by the drive rotary motor 1.
The driving force of No. 3 is transmitted by the magnet-equipped drive mechanism 11.12 to rotate at high speed in a vacuum atmosphere or the like inside the case 2b. The integrated thin film magnetic head/amplifier circuit/thermoelectric cooling element 3, which is the first thermoelectric cooling element, is moved by drive mechanisms 8a and 8b so that it is placed at a predetermined track position. current terminal 6a,
When direct current is passed through 6b, the second thermoelectric cooling element 5 works due to the Peltier effect, and the thermal conductor 4 and the integrated element 3 in contact with it are cooled. At this time, if vacuum grease or the like is provided on the contact surface between the heat conductor 4 and the integrated element 3, the heat conduction will be further improved. Furthermore, as shown in FIG. 2, a p-type semiconductor 22 and an n-type semiconductor 23 are connected in series.
If a current is passed through, a two-stage thermoelectric cooling element will be formed due to the Peltier effect, and the cooling effect will increase. Further, the side surfaces of the magnetic disk (lower surface in FIG. 2) of the thin-film magnetic head element 17 and amplifier circuit 18 to be cooled are in the vacuum atmosphere, etc., and a heat insulation effect can be expected, so that the cooling effect is further increased. With this configuration, minus 100°
Temperatures below C can be achieved. In this way, the coil 16 of the thin-film magnetic head element 17 and the amplifier circuit 18 can be efficiently cooled, and by reducing each resistance value, the head impedance, which was a technical issue in realizing high-density magnetic recording, can be improved. Noise and amplifier noise can be significantly reduced, and a good S/N ratio can be achieved.The above noise N is expressed by the following formula.
N=■]G下「丁■
Kl :ボルツマン定数
R:ヘッドコイル抵抗およびアン
プの等価雑音抵抗の和
T :素、子温度
B :周波数帯域
室温時と比較すると、コイル抵抗Rは半分、温度Tは2
/3となることにより、ノイズNは室温時と比較して約
5dB低減できる。N=■] G lower Kl: Boltzmann constant R: Sum of head coil resistance and amplifier equivalent noise resistance T: Element, element temperature B: Frequency band Compared to room temperature, coil resistance R is half, temperature T is 2
/3, the noise N can be reduced by about 5 dB compared to room temperature.
また、本実施例の様に、真空あるいはm51の不活性ガ
スの雰囲気内で、FWJ!磁気ヘッド素子17および磁
気ディスク7が当接することにより、薄膜磁気ヘッド素
子7を冷却した場合に予想される結露、摩擦係数および
摺動摩耗増大の原因であった酸素、水分等の影響を排除
できるために、安定した直接コンタクトが実現できスペ
ーシング損失の低減が可能となる。Furthermore, as in this embodiment, FWJ! Due to the contact between the magnetic head element 17 and the magnetic disk 7, it is possible to eliminate the effects of oxygen, moisture, etc., which are expected to cause dew condensation, an increase in the coefficient of friction, and an increase in sliding wear when the thin-film magnetic head element 7 is cooled. Therefore, stable direct contact can be achieved and spacing loss can be reduced.
第3図は本発明の実施例における記録・再生特性図であ
って、同図に示す様に、(イ1気ディスクにco−Cr
等の垂直記録媒体を用い、トラック幅5μmおよび記録
波長0.3μmで記録再生した場合、従来構成と比較す
るとスペーシング量が0.03μm改善することにより
、スペーシング損失が約5dB低減でき、先の冷却によ
るノイズの低減量を含めると、合計で1odBのS/N
比の改善ができる。FIG. 3 is a recording/reproduction characteristic diagram in an embodiment of the present invention.
When recording and reproducing using a perpendicular recording medium with a track width of 5 μm and a recording wavelength of 0.3 μm, the spacing loss can be reduced by approximately 5 dB by improving the spacing amount by 0.03 μm compared to the conventional configuration. Including the amount of noise reduction due to cooling, the total S/N is 1 odB.
The ratio can be improved.
第4図(a)、 (blは第1図の薄膜磁気ヘッド・ア
ンプ回路・熱電冷却一体化素子の他の構成例を示す正面
図、側面図であって、第2図と同一符号は同一部分を示
し、25は共通基板である。4(a) and (bl are front and side views showing other configuration examples of the integrated thin film magnetic head/amplifier circuit/thermoelectric cooling element shown in FIG. 1; the same reference numerals as in FIG. 2 are the same). 25 is a common substrate.
同図に示した構成例では、共通基板25上に薄膜形成プ
ロセスで、薄膜磁気ヘッド素子17、アンプ回路18お
よび熱電冷却素子を構成するp型半導体22とn型半導
体23を形成するので量産性にすぐれた構成となってい
る。この様な構成でも上記実施。In the configuration example shown in the figure, the p-type semiconductor 22 and n-type semiconductor 23 that constitute the thin-film magnetic head element 17, the amplifier circuit 18, and the thermoelectric cooling element are formed on the common substrate 25 by a thin-film formation process, which facilitates mass production. It has an excellent structure. The above is carried out even with this kind of configuration.
例と同様の効果を得ることができる。The same effect as the example can be obtained.
また、以上説明した実施例ではパッケージを密封ケース
la、lbで2重構造としているが、ケース2b内の雰
囲気が真空の時は必ずしも2重構造とする必要がない。Further, in the embodiment described above, the package has a double structure with the sealed cases la and lb, but it is not necessarily necessary to have a double structure when the atmosphere inside the case 2b is vacuum.
以上説明したように、本発明によれば、薄膜磁気ヘッド
素子およびアンプ回路を熱電冷却素子を用いて冷却する
ことで、ヘッドインピーダンスノイズおよびアンプノイ
ズが低減でき、かつヘッド・(H気ディスクコンタクト
を真空あるいは微量の不活性ガス雰囲気におい°ζ直接
コンタクト方式をとることからスペーシング損失を安定
して低減でき、高密度m気記1.工におけるS / N
比を従来比で約10d13改苫することができる。As explained above, according to the present invention, head impedance noise and amplifier noise can be reduced by cooling the thin film magnetic head element and the amplifier circuit using a thermoelectric cooling element, and the head impedance noise and amplifier noise can be reduced. By using the °ζ direct contact method in a vacuum or a trace amount of inert gas atmosphere, it is possible to stably reduce spacing loss, and the S/N in high-density memory 1. machining is improved.
The ratio can be improved by about 10d13 compared to the conventional one.
この結果、コンピュータ用の大容盪のメモリあるいは、
高密度磁気記録を小形化に振り分けることにより再生用
の超小形メモリパッケージとしての応用が可能となる。This results in large amounts of memory for computers or
By allocating high-density magnetic recording to miniaturization, it becomes possible to apply it as an ultra-small memory package for playback.
第1図は本発明による磁気メモリパッケージの断面図、
第2図は第1図の薄膜磁気ヘッド・アンプ回路・熱電冷
却一体化素子の一構成例を示す断面図、第3図は本発明
の実施例における記録・再生特性図、第4図(al、
(b)は第1図の薄膜磁気ヘッド・アンプ回路・熱電冷
却一体化素子の断面図。
側面図である。
la、lb−・−・・密封ケース、3−・・−・・−第
1の熱雷冷却素子である薄膜磁気ヘッド・アンプ回路・
熱電冷却一体化素子、4−・−・−熱伝導体、5・−・
・−・・第2の熱電冷却素子、7−・・・−・−磁気デ
ィスク、9・・・・−・パッド、10−−−一−・・支
持台、13−・−・・−モータ、14−・−・−・磁気
コア、15−・−一一一一磁気ギャップ、16−・・・
・コイル、17・・−・−薄膜ヘッド素子、18−−〜
−−−−記録・再生アンプ回路、19 a 、 19
b ・−−−−一熱伝専体、20 a 、 20 b−
−−−−一電気絶縁体、22−−−−− P型半導体、
23−−−− n型半導体、25−・−・−共通基板。
第1図
1o、Ib:密封ケース 7:石肱
気−タスク2a、2b:空藺 8a、8
b:’t−ラ、り1吏り用のMtf1M3: 蔓M嘱1
ンシ圭1)lζコ−9二ノ(−シト4;財伝導体
IO−支持台
5: ’1i2tn熱電り却巻’rl 1,12:aB
7.xtyAg勅か1113:モータ
!ii1′2図
I5:礒叢キ千・シブ 23:n型半
導体16:コイル 24:砒罎イ本
I7: 4膜a!ヘツ)’素−7−
18:アンプ回路FIG. 1 is a cross-sectional view of a magnetic memory package according to the present invention;
2 is a sectional view showing an example of the structure of the integrated thin film magnetic head/amplifier circuit/thermoelectric cooling element shown in FIG. ,
(b) is a sectional view of the integrated thin film magnetic head, amplifier circuit, and thermoelectric cooling element shown in FIG. FIG. la, lb--... Sealed case, 3-...- Thin film magnetic head amplifier circuit which is the first thermal lightning cooling element.
Thermoelectric cooling integrated element, 4---thermal conductor, 5--
...Second thermoelectric cooling element, 7--Magnetic disk, 9--Pad, 10--1--Support, 13--Motor , 14-...-magnetic core, 15---1111 magnetic gap, 16-...
・Coil, 17...-Thin film head element, 18--
----- Recording/playback amplifier circuit, 19 a, 19
b ・----1 Heat transfer exclusive, 20 a, 20 b-
-----1 electrical insulator, 22---- P type semiconductor,
23--- n-type semiconductor, 25--- common substrate. Fig. 1 1o, Ib: Sealed case 7: Stone air - Task 2a, 2b: Empty air 8a, 8
b:'t-ra, Mtf1M3 for ri1ri: vine M嘱1
Nshi Kei 1) lζ ko-9 Nino (-sito 4; wealth conductor
IO-Support stand 5: '1i2tn thermoelectric arc'rl 1,12:aB
7. xtyAg 1113: Motor! ii1'2 Figure I5: 23: N-type semiconductor 16: Coil 24: I7: 4 films a! Hetsu) 'Element-7- 18: Amplifier circuit
Claims (1)
機構と、磁気ヘツド装置と、これらを収納する密封ケー
スとから成る磁気メモリパツケージにおいて、前記磁気
ヘツド装置は薄膜磁気ヘツドと再生アンプ回路と熱電冷
却素子とを一体にした一体化素子から構成され、薄膜磁
気ヘツドのヘツドインピーダンスノイズおよび再生アン
プ回路の熱ノイズを低減できる様に構成したことを特徴
とする磁気メモリパツケージ。1. A magnetic memory package consisting of a magnetic recording medium, a drive mechanism for driving the magnetic recording medium, a magnetic head device, and a sealed case housing these, wherein the magnetic head device includes a thin-film magnetic head and a reproduction amplifier circuit. A magnetic memory package comprising an integrated element including a thermoelectric cooling element and configured to reduce head impedance noise of a thin film magnetic head and thermal noise of a reproducing amplifier circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP622987A JPS63175202A (en) | 1987-01-16 | 1987-01-16 | magnetic memory package |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP622987A JPS63175202A (en) | 1987-01-16 | 1987-01-16 | magnetic memory package |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63175202A true JPS63175202A (en) | 1988-07-19 |
Family
ID=11632685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP622987A Pending JPS63175202A (en) | 1987-01-16 | 1987-01-16 | magnetic memory package |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63175202A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5032897A (en) * | 1990-02-28 | 1991-07-16 | International Business Machines Corp. | Integrated thermoelectric cooling |
US5327315A (en) * | 1991-09-02 | 1994-07-05 | Matsushita Electric Industrial Co., Ltd. | Magnetic recorder with refrigeration element to locally cool tape |
EP0622637A3 (en) * | 1993-04-30 | 1995-10-18 | Ibm | Atomic layered materials for giant magnetoresistive sensor. |
US5827424A (en) * | 1996-09-26 | 1998-10-27 | International Business Machines Corporation | Contaminant reduction system for disk drives |
US6452740B1 (en) * | 2000-12-11 | 2002-09-17 | International Business Machines Corporation | Multi-stage thermoelectric microcoolers for cooling write coils and GMR sensors in magnetic heads for disk drives |
US6597544B2 (en) * | 2000-12-11 | 2003-07-22 | International Business Machines Corporation | Thermoelectric microcoolers for cooling write coils and GMR sensors in magnetic heads for disk drives |
US6987650B2 (en) * | 2003-05-22 | 2006-01-17 | Headway Technologies, Inc. | Device with thermoelectric cooling |
-
1987
- 1987-01-16 JP JP622987A patent/JPS63175202A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5032897A (en) * | 1990-02-28 | 1991-07-16 | International Business Machines Corp. | Integrated thermoelectric cooling |
US5327315A (en) * | 1991-09-02 | 1994-07-05 | Matsushita Electric Industrial Co., Ltd. | Magnetic recorder with refrigeration element to locally cool tape |
EP0622637A3 (en) * | 1993-04-30 | 1995-10-18 | Ibm | Atomic layered materials for giant magnetoresistive sensor. |
US5827424A (en) * | 1996-09-26 | 1998-10-27 | International Business Machines Corporation | Contaminant reduction system for disk drives |
US6452740B1 (en) * | 2000-12-11 | 2002-09-17 | International Business Machines Corporation | Multi-stage thermoelectric microcoolers for cooling write coils and GMR sensors in magnetic heads for disk drives |
US6597544B2 (en) * | 2000-12-11 | 2003-07-22 | International Business Machines Corporation | Thermoelectric microcoolers for cooling write coils and GMR sensors in magnetic heads for disk drives |
US6987650B2 (en) * | 2003-05-22 | 2006-01-17 | Headway Technologies, Inc. | Device with thermoelectric cooling |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63175202A (en) | magnetic memory package | |
JP3023883B2 (en) | Submount laser | |
JP2007287277A (en) | Magnetic head slider and head gimbal assembly | |
JP2007287190A (en) | Thin film magnetic head | |
JP2007280502A (en) | Magnetic head slider | |
JP4704947B2 (en) | Thin film magnetic head | |
KR20060004690A (en) | Semiconductor laser device | |
US20240233755A9 (en) | Magnetic head and magnetic recording device | |
US20060279878A1 (en) | Magnetic disk unit and magnetic head slider | |
JP2002312914A (en) | Disk drive and head assembly | |
JPS62128011A (en) | Thin film magnetic head | |
JP2001111165A (en) | Semiconductor light emitting device, optical head device and optical disk device | |
JPS6161163B2 (en) | ||
JPH0713094Y2 (en) | Flying slider | |
JP4130145B2 (en) | Magnetic disk drive and magnetic head slider | |
JPH03141015A (en) | Magnetic head | |
JPH0536047A (en) | Method for manufacturing magnetic disk device | |
JP2006099907A (en) | Magnetic disk drive and magnetic head slider | |
JP3606885B2 (en) | Levitation type thin film magnetic head | |
JPH07147006A (en) | Floating type thin-film magnetic head | |
JPS5990215A (en) | Head for vertical magnetization | |
JPH01267821A (en) | Magnetic head | |
JPH05314427A (en) | Magnetic head | |
JPS59210521A (en) | Magneto-resistance effect type reproducing head | |
JPS619812A (en) | Vertical magnetic recording and reproducing head |