[go: up one dir, main page]

JPS63172158A - Production of photomask - Google Patents

Production of photomask

Info

Publication number
JPS63172158A
JPS63172158A JP62003078A JP307887A JPS63172158A JP S63172158 A JPS63172158 A JP S63172158A JP 62003078 A JP62003078 A JP 62003078A JP 307887 A JP307887 A JP 307887A JP S63172158 A JPS63172158 A JP S63172158A
Authority
JP
Japan
Prior art keywords
thin film
substrate
photomask
diamond
light transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62003078A
Other languages
Japanese (ja)
Inventor
Tomio Kazahaya
風早 富雄
Ikuo Hosoya
郁雄 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP62003078A priority Critical patent/JPS63172158A/en
Publication of JPS63172158A publication Critical patent/JPS63172158A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/76Patterning of masks by imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

PURPOSE:To permit quick production of a photomask with high accuracy by forming a thin of diamond, diamond-like carbon or amorphous carbon on the surface of a substrate and projecting a high-energy beam to the specific points thereof, thereby drawing a prescribed pattern. CONSTITUTION:The substrater 1 is a flat plate made of quartz glass having high light transmittance and the flatness thereof is 1mum. The thin film 2 having the polycrystalline diamond structure is formed on the substrate 1. The thin film 2 formed in such a manner has excellent light transmittability in a wide wavelength region (0.3-40mum) from UV to IR and has also high hardness and good chemical resistance. The condensing point of the beam is adjusted to the point at which the beam does not arrive at the substrate 1 itself. The beam having the heat capacity sufficient to heat the projected part of the thin film 2 to about 1,500 deg.C is used. Since the beam can be condensed to 1mumphi in order to enhance the accuracy, the graphitized part 3 of a min. line width 1mum, i.e., the prescribed pattern of the low light transmittance is automatically drawn on the thin film 2. The quick production of the photomask having high accuracy is thereby permitted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、フォトマスクの製造方法に係り、特に、基板
上への薄膜形成とパターン描画との2工程からフォトマ
スクの製造ができるようしたものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a photomask, and in particular, to a method for manufacturing a photomask, which enables manufacturing of a photomask through two steps: forming a thin film on a substrate and drawing a pattern. It is something.

〔背景技術とその問題点〕[Background technology and its problems]

半導体素子や精密測定用スケール等に微細゛なスリット
等を区画、描画する手段の1つとしてフォトマスクが広
く利用されている。
Photomasks are widely used as a means for defining and drawing minute slits on semiconductor devices, precision measurement scales, and the like.

従来かかるフォトマスクは、平面ガラス等の基板の表面
または裏面に上記スリット等を形成するための例えばク
ロムを蒸着し、これにホトレジストを塗布し、その後写
真転写方法あるいはレーザビーム走査方法等によって所
定のパターンを描画し、続いて、ネガティブまたはポジ
ティブのホトレジストおよび蒸着材料に適応させた薬品
でエツチングし、その結果、レジスト剥離工程を行って
基板の表面に光遮断用のパターンを形成する方法によっ
て製造されていた。
Conventionally, such a photomask is made by depositing, for example, chromium on the front or back surface of a substrate such as flat glass to form the slits, coating this with photoresist, and then applying a photoresist to a predetermined pattern using a phototransfer method or a laser beam scanning method. They are manufactured by writing a pattern, followed by etching with a negative or positive photoresist and chemicals adapted to the deposition material, followed by a resist stripping process to form a light-blocking pattern on the surface of the substrate. was.

したがって、上記従来のフォトマスクの製造方法には次
のような問題があった。
Therefore, the conventional photomask manufacturing method described above has the following problems.

すなわち、蒸着工程、塗布工程、描画工程、エツチング
工程、及び剥離工程の如く多工程から製造されているの
で製造時間が長く経済的負担が大きいという問題を有し
ていた。また、描画工程で精巧な作業をしてもエツチン
グ工程においてサイドエッチ現象等が生じ最終製品とし
ての精度が劣悪化するという問題があった。さらに、各
工程からの有害廃液等の処理設備を設けなければならず
、この点からも不経済という欠点があった、さらにまた
、傷や破1員を回避し長期間の使用に耐えるためにパタ
ーンの保護処理をしなければならないという問題があっ
た。
That is, since it is manufactured through multiple steps such as a vapor deposition process, a coating process, a drawing process, an etching process, and a peeling process, the manufacturing time is long and the economical burden is large. Further, even if elaborate work is performed in the drawing process, side etching phenomena occur in the etching process, resulting in a problem in that the accuracy of the final product deteriorates. Furthermore, it is necessary to install treatment equipment for hazardous waste liquids etc. from each process, which also has the disadvantage of being uneconomical.Furthermore, in order to avoid scratches and breakage and to endure long-term use, There was a problem in that the pattern had to be protected.

〔発明の目的〕[Purpose of the invention]

本発明は薄膜形成とパターン描画形成との2工程によっ
て迅速で高精度のフォトマスクを製造することができる
フォトマスクの製造方法を提供することを目的とする。
An object of the present invention is to provide a method for manufacturing a photomask that can quickly manufacture a photomask with high precision through two steps of forming a thin film and forming a pattern.

(問題点を解決するための手段および作用〕本発明は、
従来製造方法における描画等工程が非常に高精度である
こと並びにダイヤモンド構造等に高エネルギービームを
照射するとグラファイト化し当該部分の光透過率が掻滅
することに着目し、基板にダイヤモンド構造等のyi膜
を形成するとともにこれにパターンを直接描画する2工
程で製造できるようにして前記従来の問題点を解消しよ
うとするものである。
(Means and effects for solving the problems) The present invention has the following features:
Focusing on the extremely high precision of drawing and other processes in conventional manufacturing methods and the fact that when a diamond structure, etc. is irradiated with a high-energy beam, it turns into graphite and the light transmittance of that part disappears. The present invention aims to solve the above-mentioned problems of the conventional method by making it possible to manufacture the device in two steps: forming a pattern and directly drawing a pattern thereon.

これがため、光通過性に冨んだ基板の表面にダイヤモン
ド、ダイヤモンド状カーボン又はアモルファスカーボン
の薄膜を形成し、ついで該薄膜の特定箇所にその光透過
率を減少させるための高エネルギービームを照射して所
定のパターンを描画して、フォトマスクを製造する構成
とし、前記目的を達成するのである。
For this reason, a thin film of diamond, diamond-like carbon, or amorphous carbon is formed on the surface of a substrate with high light transmittance, and then a high-energy beam is irradiated to specific parts of the thin film to reduce its light transmittance. The above object is achieved by forming a photomask by drawing a predetermined pattern.

したがって、基板の表面にダイヤモンド構造等の薄膜を
形成し、その薄膜に所定の軌跡を描くよう高エネルギー
ビームを照射しつつ当該箇所をグラファイト化すれば、
その部分の光透過率が減少しその余の部分に対し光透過
率の低い所定のパターンを形成することができ、ここに
薄膜形成とパターン形成という2工程でフォトマスクを
製造することができる。
Therefore, if a thin film such as a diamond structure is formed on the surface of a substrate, and the thin film is irradiated with a high-energy beam so as to draw a predetermined trajectory, the corresponding area is graphitized.
A predetermined pattern can be formed in which the light transmittance of that portion is reduced and the light transmittance is low in the remaining portion, and a photomask can be manufactured using two steps of forming a thin film and forming a pattern.

〔実施例〕〔Example〕

本発明に係るフォトマスクの製造方法をこれを実施する
ための一つである自動描画装置を挙げながら図面を参照
して詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for manufacturing a photomask according to the present invention will be described in detail with reference to the drawings while citing an automatic lithography apparatus that is one for carrying out the method.

まず、基板上への薄膜を形成する膜形成を説明する。第
1図(A)において、基板1は光透過率の高い石英ガラ
ス製の平板形状であり、その平面度は1μmとされてい
る。そして、比較的低い圧力(40Torr)の下基板
1の温度を900°Cに保ち炭化水素系のメタン(CH
4)と水素(H2)の混合ガスを反応ガスとして、導波
管によりマイクロ波(2,45GHz)を導入して基板
1の周囲に放電プラズマを発生させつつその混合ガスを
電離させて化学的に活性なラジカル及びイオンを作り化
学反応を促進させるいわゆるプラズマ気相ill積法(
CVD)によって第1図(B)に見られるように基板1
上に約5μmの多結晶ダイヤモンド構造の薄膜2を形成
した。但し、反応時間等により例えば、100μmの膜
厚とすることもでき、また、数千Aとしてもよい。この
ように形成された薄膜2は、紫外から赤外にわたる広い
波長領域(0,3〜40μm)において優れた光透過性
を有するとともに高硬度で耐薬品性も良い。
First, film formation for forming a thin film on a substrate will be explained. In FIG. 1(A), a substrate 1 is a flat plate made of quartz glass with high light transmittance, and its flatness is 1 μm. Then, the temperature of the substrate 1 is kept at 900°C under a relatively low pressure (40 Torr), and hydrocarbon methane (CH
4) Using a mixed gas of hydrogen (H2) and hydrogen (H2) as a reaction gas, microwaves (2.45 GHz) are introduced through a waveguide to generate discharge plasma around the substrate 1 while ionizing the mixed gas to chemically The so-called plasma vapor phase illumination method (which generates active radicals and ions to promote chemical reactions)
As seen in FIG. 1(B), the substrate 1 is
A thin film 2 having a polycrystalline diamond structure having a thickness of about 5 μm was formed thereon. However, depending on the reaction time, etc., the film thickness may be, for example, 100 μm, or may be several thousand amps. The thin film 2 thus formed has excellent light transmittance in a wide wavelength range (0.3 to 40 μm) ranging from ultraviolet to infrared, and has high hardness and good chemical resistance.

次いで、所定パターンの描画工程を説明する。Next, the process of drawing a predetermined pattern will be explained.

この実施例に供した自動パターン描画装置は、第2図に
示すように本体10と制御装置20とCPU30と記憶
装置40とから構成され、高エネルギーの電子ビームに
よって所定パターンを描画するものである。本体10は
図で矢印で示したX軸方向にモータ13によって往復移
動されるXテーブル11 (ネジ機構等は省略している
。)と、Y軸方向にYモータ14によって往復移動され
るYテーブル12(ネジ機構等は省略している。)と、
電子銃15、集光レンズ16.16、ブランキング電極
17及びアパーチャ18とを含み形成された電子光学系
とからなり、電子銃15から出力されたビームを音響光
学変調器(AOM)から形成されたブランキング電極1
7によってブランキングしXテーブルll上にセットさ
れた基板lの薄膜2にビーム照射するものである。なお
、AOMは後記ブランキング制御ユニット22からの信
号が“O”の場合にはビームが薄膜2の上に照射し、一
方、信号が1”の場合にはアパーチャ18によって阻止
するよう作用する。但し、ドライバー等は図示省略した
The automatic pattern drawing device used in this example is composed of a main body 10, a control device 20, a CPU 30, and a storage device 40, as shown in FIG. 2, and draws a predetermined pattern using a high-energy electron beam. . The main body 10 consists of an X-table 11 that is reciprocated by a motor 13 in the X-axis direction shown by the arrow in the figure (screw mechanisms, etc. are omitted), and a Y-table that is reciprocated in the Y-axis direction by a Y motor 14. 12 (screw mechanism etc. are omitted),
It consists of an electron optical system formed including an electron gun 15, a condensing lens 16, 16, a blanking electrode 17, and an aperture 18, and a beam output from the electron gun 15 is formed by an acousto-optic modulator (AOM). blanking electrode 1
7, the beam is irradiated onto the thin film 2 of the substrate 1 set on the X table 11. The AOM operates so that the beam irradiates onto the thin film 2 when the signal from the blanking control unit 22 (to be described later) is "O", and is blocked by the aperture 18 when the signal is "1". However, the driver etc. are not shown.

また、制御装置20は、ビーム電流、ビーム径等を調整
するための電子光学系調整ユニント21と、磁気テープ
、磁気ディスクから形成された記憶装置40からの設計
パターンデータをCUP30で所定処理して求めた描画
パターン相当信号に基づきブランキング信号を出力する
ブランキング制御ユニット22とCPU30によってブ
ランキング制御等と同調させつつ各テーブル11.12
を位置づけ制御する送り制御ユニット24と、各テーブ
ル11.12の実際の移送変位量等を検出して上記ブラ
ンキング制御ユニット22、送り制御ユニット24等と
のタイミングをとり良好なビーム走査を行うための走査
制御ユニット23とから形成されている。
The control device 20 also processes design pattern data from an electron optical system adjustment unit 21 for adjusting beam current, beam diameter, etc. and a storage device 40 formed from a magnetic tape or a magnetic disk in a predetermined manner using a CUP 30. Each table 11.12 is synchronized with blanking control etc. by the blanking control unit 22 which outputs a blanking signal based on the determined drawing pattern equivalent signal and the CPU 30.
In order to perform good beam scanning, the timing of the feed control unit 24, which positions and controls the blanking control unit 22, the feed control unit 24, etc., is adjusted by detecting the actual transfer displacement amount of each table 11, 12, etc. It is formed from a scanning control unit 23.

したがって、ダイヤモンド構造の薄膜2が形成された基
板1を本体10のXテーブル11上にセットするととも
に記憶装置40に当該基板1に描画すべき該当パターン
設計データをセットし、全体を起動すれば、CPU30
からの指令信号に基づいてブランキング制御ユニット2
2が働き電子銃15からのビームをブランキングすると
ともに送り制御ユニット24が各テーブル11.12を
往復移動させるので、基板1上の薄膜2には所定パター
ンを描画する軌跡で高エネルギービームが照射される。
Therefore, by setting the substrate 1 on which the diamond-structured thin film 2 is formed on the X table 11 of the main body 10, setting the corresponding pattern design data to be drawn on the substrate 1 in the storage device 40, and starting up the entire system, CPU30
Blanking control unit 2 based on the command signal from
2 works to blank the beam from the electron gun 15, and the feed control unit 24 reciprocates each table 11, 12, so that the thin film 2 on the substrate 1 is irradiated with a high-energy beam in a trajectory that draws a predetermined pattern. be done.

ここに、電子銃15を含む電子光学系は、集光したビー
ムをもって薄膜2の照射部分をグラファイト化して光透
過率の低いものとするものであるから、ビームの集光点
は基板1自体にはとどかないポイントとなるようされる
とともに薄膜2の照射部分を約1500°Cに加熱する
に十分な熱容量をもつものとされまた、高精度化のため
41μmにビームを集光できるものとされているから基
板1の薄膜2上には最小線幅1μmのグラファイト化さ
れた部分3すなわち光透過率の低い所定のパターンが自
動描画できる(第1図(C)参照)。
Here, since the electron optical system including the electron gun 15 uses a focused beam to graphite the irradiated part of the thin film 2 to make it have low light transmittance, the focused point of the beam is on the substrate 1 itself. It is designed to be a point that cannot be reached, and has enough heat capacity to heat the irradiated part of the thin film 2 to about 1500°C, and is also designed to be able to focus the beam to 41 μm for high precision. Therefore, a graphitized portion 3 with a minimum line width of 1 μm, that is, a predetermined pattern with low light transmittance, can be automatically drawn on the thin film 2 of the substrate 1 (see FIG. 1(C)).

ここに、フォトマスク5を製造できた。Here, the photomask 5 could be manufactured.

さらに、この実施例では、実用上の保護の万全を期する
ためのパターン描画後、薄膜2に上記薄膜形成工程と同
様な手法によって平均5000Aのダイヤモンド構造の
保護膜4を形成した(第1図(D)参照)。
Furthermore, in this example, after pattern drawing to ensure practical protection, a diamond structure protective film 4 with an average diameter of 5000A was formed on the thin film 2 by the same method as the thin film forming process described above (see Fig. 1). (See (D)).

したがって、この実施例によれば、基板1上へダイヤモ
ンド構造の薄膜2を形成し、これに高エネルギービーム
を照射しつつ所定パターンを形成するだけでフォトマス
ク5が形成できるから、前記従来の方法に比較して迅速
に高精度の製品を製造するこ、とができる。また、ダイ
ヤモンド構造は広い波長領域における光透過特性が優れ
ているのでフォトマスク5としての光特性を十分に備え
るとともに硬度、機械強度、耐薬品性も高いので長期間
の安定使用が保障される。また、パターンは薄膜2内で
一体的に形成されクロム蒸着エツチング方法等による凹
凸がないのでパターンの変形や損失がなく高精度を長期
間にわたり保持することができる。
Therefore, according to this embodiment, the photomask 5 can be formed by simply forming the diamond-structured thin film 2 on the substrate 1 and forming a predetermined pattern while irradiating it with a high-energy beam. It is possible to manufacture high-precision products quickly compared to conventional methods. Further, since the diamond structure has excellent light transmission characteristics in a wide wavelength range, it has sufficient optical characteristics as the photomask 5, and also has high hardness, mechanical strength, and chemical resistance, so long-term stable use is guaranteed. Further, since the pattern is formed integrally within the thin film 2 and there are no irregularities caused by chromium vapor deposition and etching methods, there is no deformation or loss of the pattern, and high precision can be maintained for a long period of time.

また、2工程によってフォトマスク5が完成され、かつ
パターン描画装置により自動的にパターンが形成される
ので短期間に大量生産ができるとともに従来のエツチン
グ工程等がないのでこの点からも微細高精度が保障され
る。
In addition, since the photomask 5 is completed in two steps, and the pattern is automatically formed using a pattern drawing device, mass production can be carried out in a short period of time, and since there is no conventional etching process, high precision is achieved from this point of view. Guaranteed.

なお、以上の実施例によれば、基板1は石英ガラス板と
されていたが、薄膜2を形成可能で光透過率の高いもの
であればよいから、その他(青板、白板等)のガラスサ
ブストレートでも実施することができる。
Although the substrate 1 is made of quartz glass in the above embodiments, other glass (blue plate, white plate, etc.) may be used as long as it is capable of forming the thin film 2 and has high light transmittance. It can also be carried out with substrates.

また、薄膜2をCVD法で形成したが、要はダイヤモン
ド構造とできればよいから、熱フイラメント法、イオン
化蒸着法、スパッタリング法、レーザー蒸着法等によっ
て薄膜2を形成してもよい。
Further, although the thin film 2 is formed by the CVD method, the thin film 2 may be formed by a thermal filament method, an ionized vapor deposition method, a sputtering method, a laser vapor deposition method, etc., since it is sufficient to have a diamond structure.

また、パターン描画方法は電子ビームによる自動描画装
置によって行うものとしたがその装置は上記開示範囲に
限定されない、レーザービーム、X線等により描画する
ようしてもよい。
Moreover, although the pattern drawing method is performed by an automatic drawing device using an electron beam, the device is not limited to the scope disclosed above, and drawing may be performed using a laser beam, an X-ray, or the like.

さらに、以上のダイヤモンド構造とは、要はそ、の一部
を光透過率の低いグラファイト化とすることができれば
よいからいわゆるダイヤモンド状カーボン、アモルファ
スカーボン等を含む概念であり、この意味においてグラ
ファイト化のための高エネルギーは薄膜2のビーム照射
部分を上記実施例では約1500℃としたが、その種類
によっては300〜800°Cでもよい場合がある。こ
のように、本発明ではグラファイト化するためのエネル
ギー乃至温変、さらには薄膜2の厚さ等はフォトマスク
5としての品質等級や使用態様等に応じ任意に選択して
実施することができる。
Furthermore, the above-mentioned diamond structure is a concept that includes so-called diamond-like carbon, amorphous carbon, etc., since it is sufficient if a part of it can be made into graphite with low light transmittance. The high energy for the beam irradiation portion of the thin film 2 was set at about 1500° C. in the above embodiment, but it may be 300 to 800° C. depending on the type. As described above, in the present invention, the energy or temperature change for graphitizing, the thickness of the thin film 2, etc. can be arbitrarily selected depending on the quality grade of the photomask 5, the mode of use, etc.

(発明の効果) 以上説明したように、本発明は、基板上への薄膜形成と
その一部をグラファイト化しつつパターンを形成する2
工程で完成できるから迅速で高精度のフォトマスクを製
造できるという優れた効果を有する。
(Effects of the Invention) As explained above, the present invention provides two methods for forming a thin film on a substrate and forming a pattern while turning a part of the film into graphite.
Since it can be completed in one process, it has the excellent effect of being able to quickly manufacture a high-precision photomask.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかるフォトマスクの製造方法の一実
施例を示す工程説明図および第2図は同しくパターン描
画を行うための自動パターン描画装万の全体構成図であ
る。 l・・・基板、2・・・ダイヤモンド構造からなる薄膜
、3・・・薄膜のグラファイト化された部分、4・・・
保護居、5・・・フォトマスク、10・・・本体、20
・・・制御装置。
FIG. 1 is a process explanatory diagram showing an embodiment of the photomask manufacturing method according to the present invention, and FIG. 2 is an overall configuration diagram of an automatic pattern writing system for pattern writing. l... Substrate, 2... Thin film having a diamond structure, 3... Graphitized portion of the thin film, 4...
Protection home, 5... Photomask, 10... Body, 20
···Control device.

Claims (1)

【特許請求の範囲】[Claims] (1)光透過性に富んだ基板の表面にダイヤモンド、ダ
イヤモンド状カーボン又はアモルファスカーボンの薄膜
を形成し、ついで該薄膜の特定箇所にその光透過率を減
少させるための高エネルギービームを照射して所定のパ
ターンを描画して、フォトマスクを製造するようしたこ
とを特徴とするフォトマスクの製造方法。
(1) A thin film of diamond, diamond-like carbon, or amorphous carbon is formed on the surface of a substrate with high light transmittance, and then a high-energy beam is irradiated to specific parts of the thin film to reduce its light transmittance. A method for manufacturing a photomask, characterized in that the photomask is manufactured by drawing a predetermined pattern.
JP62003078A 1987-01-09 1987-01-09 Production of photomask Pending JPS63172158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62003078A JPS63172158A (en) 1987-01-09 1987-01-09 Production of photomask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62003078A JPS63172158A (en) 1987-01-09 1987-01-09 Production of photomask

Publications (1)

Publication Number Publication Date
JPS63172158A true JPS63172158A (en) 1988-07-15

Family

ID=11547305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62003078A Pending JPS63172158A (en) 1987-01-09 1987-01-09 Production of photomask

Country Status (1)

Country Link
JP (1) JPS63172158A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007019456A2 (en) * 2005-08-08 2007-02-15 Applied Materials, Inc. Semiconductor substrate process using an optically writable carbon-containing mask
US7312162B2 (en) 2005-05-17 2007-12-25 Applied Materials, Inc. Low temperature plasma deposition process for carbon layer deposition
US7312148B2 (en) 2005-08-08 2007-12-25 Applied Materials, Inc. Copper barrier reflow process employing high speed optical annealing
US7323401B2 (en) 2005-08-08 2008-01-29 Applied Materials, Inc. Semiconductor substrate process using a low temperature deposited carbon-containing hard mask
US7335611B2 (en) 2005-08-08 2008-02-26 Applied Materials, Inc. Copper conductor annealing process employing high speed optical annealing with a low temperature-deposited optical absorber layer
US7422775B2 (en) 2005-05-17 2008-09-09 Applied Materials, Inc. Process for low temperature plasma deposition of an optical absorption layer and high speed optical annealing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669633A (en) * 1979-11-13 1981-06-11 Nec Corp Production of reticle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669633A (en) * 1979-11-13 1981-06-11 Nec Corp Production of reticle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7312162B2 (en) 2005-05-17 2007-12-25 Applied Materials, Inc. Low temperature plasma deposition process for carbon layer deposition
US7422775B2 (en) 2005-05-17 2008-09-09 Applied Materials, Inc. Process for low temperature plasma deposition of an optical absorption layer and high speed optical annealing
WO2007019456A2 (en) * 2005-08-08 2007-02-15 Applied Materials, Inc. Semiconductor substrate process using an optically writable carbon-containing mask
WO2007019456A3 (en) * 2005-08-08 2007-11-15 Applied Materials Inc Semiconductor substrate process using an optically writable carbon-containing mask
US7312148B2 (en) 2005-08-08 2007-12-25 Applied Materials, Inc. Copper barrier reflow process employing high speed optical annealing
US7323401B2 (en) 2005-08-08 2008-01-29 Applied Materials, Inc. Semiconductor substrate process using a low temperature deposited carbon-containing hard mask
US7335611B2 (en) 2005-08-08 2008-02-26 Applied Materials, Inc. Copper conductor annealing process employing high speed optical annealing with a low temperature-deposited optical absorber layer
US7429532B2 (en) 2005-08-08 2008-09-30 Applied Materials, Inc. Semiconductor substrate process using an optically writable carbon-containing mask

Similar Documents

Publication Publication Date Title
KR101220641B1 (en) Manufacturing method for seamless mold
US4941942A (en) Method of manufacturing a mask support of sic for x-ray lithography masks
WO2004099875A2 (en) Etching of chromium layers on photomasks utilizing high density plasma and low frequency rf bias
JP2002169265A (en) Photomask blank and method of manufacturing photomask blank
JPS5814644B2 (en) Hikaridensouronoseizouhouhou
KR20040073400A (en) Photo mask blank, photo mask, method and apparatus for manufacturing of a photo mask blank
US20020197509A1 (en) Ion-beam deposition process for manufacturing multi-layered attenuated phase shift photomask blanks
JP5050532B2 (en) Imprint mold, imprint mold manufacturing method, and surface modification apparatus
KR20080106307A (en) Photomask Blanks and Photomasks and Their Manufacturing Methods
KR20130121040A (en) Photomask blank and manufacturing method thereof
JPS63172158A (en) Production of photomask
JPH05326402A (en) Manufacture of semiconductor device
KR0132573B1 (en) Mask fabrication method
JPH03129349A (en) Production of photomask
US20040115343A1 (en) Ion-beam deposition process for manufacturing multi-layered attenuated phase shift photomask blanks
JPS58169150A (en) Manufacture of photomask
JPH07295203A (en) Production of blank for halftone phase shift mask
JP3350235B2 (en) Method of manufacturing X-ray mask and X-ray mask obtained by the method
US20030077524A1 (en) Method of repairing pattern of phase shift mask and phase shift mask repaired using the same
JPH0248627B2 (en) HAKUMAKUKEISEIBUHINNOSEIZOHOHOOYOBISOCHI
JP4534709B2 (en) Diamond parts manufacturing method
JPH1090876A (en) Method and device for correcting defect
TW202509682A (en) Object holder
JPH062115A (en) Laser-beam machine and production of shielding plate for the machine
JPS6242417A (en) Thin film forming method