JPS63170292A - Aluminum nitride sintered body with metallized surface - Google Patents
Aluminum nitride sintered body with metallized surfaceInfo
- Publication number
- JPS63170292A JPS63170292A JP243187A JP243187A JPS63170292A JP S63170292 A JPS63170292 A JP S63170292A JP 243187 A JP243187 A JP 243187A JP 243187 A JP243187 A JP 243187A JP S63170292 A JPS63170292 A JP S63170292A
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- layer
- aluminum nitride
- metallized surface
- nitride sintered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 title claims description 24
- 238000005245 sintering Methods 0.000 claims description 32
- 229910052751 metal Inorganic materials 0.000 claims description 27
- 239000002184 metal Substances 0.000 claims description 27
- 239000000758 substrate Substances 0.000 claims description 16
- 229910052737 gold Inorganic materials 0.000 claims description 8
- 229910052697 platinum Inorganic materials 0.000 claims description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 230000000737 periodic effect Effects 0.000 claims description 5
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical group [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052788 barium Inorganic materials 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 229910017309 Mo—Mn Inorganic materials 0.000 claims 1
- 229910052802 copper Inorganic materials 0.000 claims 1
- 229910052763 palladium Inorganic materials 0.000 claims 1
- 229910052721 tungsten Inorganic materials 0.000 claims 1
- 238000000034 method Methods 0.000 description 27
- 239000010936 titanium Substances 0.000 description 23
- 239000010408 film Substances 0.000 description 15
- 238000009792 diffusion process Methods 0.000 description 14
- 239000000463 material Substances 0.000 description 14
- 239000012752 auxiliary agent Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 10
- 150000002739 metals Chemical class 0.000 description 10
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 8
- 238000001465 metallisation Methods 0.000 description 7
- 239000011521 glass Substances 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- 239000000292 calcium oxide Substances 0.000 description 5
- 230000017525 heat dissipation Effects 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 239000011104 metalized film Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010292 electrical insulation Methods 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- -1 Pe*Os Chemical compound 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Landscapes
- Ceramic Products (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は窒化アルミニウム焼結体に関し、更に詳しくい
えば表面に信頼性の高い実用的な接合強度を備えた金属
化面を有する窒化アルミニウム焼結体に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an aluminum nitride sintered body, and more particularly to an aluminum nitride sintered body having a metallized surface with a highly reliable and practical bonding strength.
従来の技術
一般に、半導体装置あるいはこれらを利用する装置、機
器は、各種の能動・受動素子を含んでいるが、これらは
発熱の問題を内包している。従って、これ等素子等を安
定かつ信頼性良く動作させるためには、実装の際の最良
の熱設計を行うことが必要であり、これは半導体装置等
の設計、製作において極めて重要である。2. Description of the Related Art Semiconductor devices and devices and equipment using them generally include various active and passive elements, but these have the problem of heat generation. Therefore, in order to operate these elements stably and reliably, it is necessary to perform the best thermal design during mounting, which is extremely important in the design and manufacture of semiconductor devices and the like.
更に、近年半導体装置の高速動作化、高集積化等の大き
な動向がみられ、特にLSIなどでは集積度の向上が著
しい。このため基板材料の放熱性が重要視されるように
なってきた。Furthermore, in recent years, there has been a major trend toward faster operation and higher integration of semiconductor devices, and in particular, there has been a remarkable increase in the integration density of LSIs and the like. For this reason, importance has been placed on the heat dissipation properties of substrate materials.
一方、IC基板用セラミックスとしては従来アルミナが
用いられてきたが、従来のアルミナ焼結体の熱伝導率で
は放熱性が不十分であり、ICチップの発熱量の増大に
十分対応できなくなりつつある。そこで、このようなア
ルミナ基板に代わるものとして高熱伝導率を有する窒化
アルミニウムを用いた基板あるいはヒートシンクなどが
注目され、その実用化のために多数の研究がなされてい
る。On the other hand, alumina has traditionally been used as ceramics for IC boards, but the thermal conductivity of conventional alumina sintered bodies is insufficient for heat dissipation, and it is becoming increasingly difficult to cope with the increased heat generation of IC chips. . Therefore, as an alternative to such alumina substrates, substrates or heat sinks using aluminum nitride, which has high thermal conductivity, have attracted attention, and many studies have been conducted to put them into practical use.
この窒化アルミニウムは、本来材質的に高熱伝導性並び
に高絶縁性を有し、またベリリアとは違って毒性がない
ために、半導体工業にふいて、特に絶縁材料やパッケー
ジ材料として有望視されている。Aluminum nitride is a material that inherently has high thermal conductivity and high insulation properties, and unlike beryllia, it is non-toxic, making it particularly promising as an insulating material and packaging material in the semiconductor industry. .
窒化アルミニウムCMN)焼結体は熱伝導率が高いので
、上記のように集積回路(I(2)用基板として、ある
いはヒートシンクなどとして注目されている。しかしな
がら、このような興味ある特性を有する一方で、MN焼
結体は金属あるいはガラス質等との接合強度に問題があ
る。ところでこの焼結体はその表面に直接、市販されて
いるメタライズペーストを塗布する厚膜法もしくは活性
金属または金属の薄膜を蒸着などの手法で形成する薄膜
法などを利用して、金属化層を付与した状態で使用する
ことが一般的である。しかしながら、このような方法に
よっては実用に十分耐え得る接合強度を得ることはでき
ず、実際には金属化前または金属化操作中に何等かの手
法で表面を改質し、他の例えば金属等との接合性を改善
する必要がある。Aluminum nitride (CMN) sintered bodies have high thermal conductivity, so as mentioned above, they are attracting attention as substrates for integrated circuits (I(2)) or as heat sinks.However, while having such interesting properties, However, MN sintered bodies have a problem in bonding strength with metals, glass, etc. By the way, this sintered body can be manufactured by applying a commercially available metallizing paste directly onto the surface of the MN sintered body, or by using the thick film method, or by applying active metals or metals. It is common to use a metallized layer by using a thin film method, in which a thin film is formed by a method such as vapor deposition.However, depending on this method, it is difficult to achieve a bonding strength that is sufficient for practical use. In fact, it is necessary to modify the surface by some method before metallization or during the metallization operation to improve bondability with other materials, such as metals.
このようなMN焼結体の表面改質のための従来法として
は、MN焼結体表面に酸化処理等を施して酸化物層を形
成する方法が知られている。即ち、例えば、MN焼結体
表面にSiO* 、Am!srs 、ムライト、Pe5
o s s Cu等の酸化物層を形成する方法である。As a conventional method for surface modification of such a MN sintered body, a method is known in which an oxidation treatment or the like is performed on the surface of the MN sintered body to form an oxide layer. That is, for example, SiO*, Am! on the surface of the MN sintered body. srs, mullite, Pe5
This is a method of forming an oxide layer such as oss Cu.
しかしながら、上記の例示のような酸化物層はガラス層
、アルミナ層などに対しては良好な親和性を有し、強固
な結合を生ずるが、MN焼結体自体とは親和性が小さく
、信頼性に問題があるものと考えられる。However, although the oxide layer as exemplified above has good affinity with the glass layer, alumina layer, etc. and forms a strong bond, it has little affinity with the MN sintered body itself and is reliable. It is thought that there is a problem with sexuality.
発明が解決しようとする問題点
以上述べたように、電気絶縁性かつ熱伝導率が極めて良
好であることから、良好な放熱性が要求されるIC絶縁
基板やヒートシンク材料として期待されるMN焼結体は
、その表面を金属化して使用することが多いが、これら
に対する接合強度の点で問題があった。そこで、上記の
ような各種方法が考えられたが、いずれも不十分であり
、実用性十分な金属化面を有するMN焼結体はいまのと
ころ得られていない。Problems to be Solved by the Invention As mentioned above, MN sintered material has extremely good electrical insulation and thermal conductivity, and is therefore expected to be used as an IC insulating substrate or heat sink material that requires good heat dissipation. The body is often used with its surface metallized, but there have been problems in terms of bonding strength to these metals. Therefore, various methods such as those described above have been considered, but all of them are insufficient, and a MN sintered body having a metallized surface sufficient for practical use has not yet been obtained.
即ち、従来のM、N焼結体とメタライズペースト(例え
ば、市販のフリット、ケミカルポンドタイプのもの)を
塗布する厚膜法では良好な接合強度を得ることができな
かった。これは該導体ペーストが元来M2O3用であり
、MN層とは反応性が良くないためである。That is, good bonding strength could not be obtained by the conventional thick film method of applying M, N sintered bodies and metallizing paste (for example, commercially available frit or chemical pound type). This is because the conductive paste is originally for M2O3 and does not have good reactivity with the MN layer.
また、酸化物層を形成させながら、もしくは形成後、金
属化を施す方法が知られている7v!N焼結体表面の酸
化物処理が知られている。しかしながら、上記SiOs
、M!Js 、ムライト、Pe*Os 、CuO等の
酸化物層はMNとの反応性に乏しい。また、たとえ反応
層が形成されたとしても、該反応層は本質的に酸化物層
と類似しているためにMN表面との反応性は殆ど改善さ
れず、従ってMN焼結体との接合強度も改善されない。In addition, a method is known in which metallization is applied while or after the oxide layer is formed. Oxide treatment of the surface of N sintered bodies is known. However, the above SiOs
,M! Oxide layers such as Js, mullite, Pe*Os, and CuO have poor reactivity with MN. Moreover, even if a reaction layer is formed, the reaction layer is essentially similar to an oxide layer, so the reactivity with the MN surface is hardly improved, and therefore the bonding strength with the MN sintered body is is not improved either.
更に、この酸化物処理は緻密性、膜の接合強度の点でも
問題がある。Furthermore, this oxide treatment has problems in terms of density and film bonding strength.
即ち、MN表面の酸化物処理は、例えば以下のような式
で表わされ:
2MN+−Ox→N15Os + Nx↑該反応に伴っ
て窒素ガスが発生する場合があり、得られる酸化膜は著
しく多孔質の膜となる。That is, the oxide treatment of the MN surface is expressed, for example, by the following formula: 2MN+-Ox→N15Os+Nx↑Nitrogen gas may be generated as a result of this reaction, and the resulting oxide film is extremely porous. It becomes a film of quality.
また、活性金属を用いた厚膜法、薄膜法によっても、十
分な接合強度を期待することは難しい。Further, it is difficult to expect sufficient bonding strength even by thick film methods or thin film methods using active metals.
即ち、これは窒化物と反応性が高い活性金属を用いた場
合でも、MNが著しく化学的に安定であるために、これ
らの間の十分な接合強度が得られず、結合が困難である
ことによるものと思われる。In other words, even when active metals that are highly reactive with nitrides are used, MN is extremely chemically stable, so sufficient bonding strength cannot be obtained between them, making bonding difficult. This seems to be due to
以上の如く、MN焼結体と金属化層を実用性十分な接合
強度とするための各種試みはいずれも満足すべきもので
はなかった。従って、金属層もしくは金属酸化物等並び
にMN焼結体両者に対して親和性を有する様な構造を設
定して、これらの間の結合を保証し、金属化層とMN焼
結体の接合強度を改善し得るあらたな技術の開発が切に
望まれている。As described above, all attempts to achieve a bond strength sufficient for practical use between the MN sintered body and the metallized layer have not been satisfactory. Therefore, by setting a structure that has affinity for both the metal layer or metal oxide, etc. and the MN sintered body, the bond between them is guaranteed, and the bonding strength between the metallized layer and the MN sintered body is strengthened. The development of new technology that can improve this is desperately needed.
そこで、本発明の目的は絶縁性並びに放熱性に優れた金
属化層とAIN焼結体の接合強度を改善することにある
。即ち、接合強度が優れ、信頼性の高い金属化面を有す
るMN焼結体を提供することにある。Therefore, an object of the present invention is to improve the bonding strength between a metallized layer having excellent insulation properties and heat dissipation properties and an AIN sintered body. That is, the object of the present invention is to provide a MN sintered body having excellent bonding strength and a highly reliable metallized surface.
状に鑑みて、上記目的の金属化面を有する窒化アルミニ
ウム焼結体を得るために種々検討・研究した結果、窒化
アルミニウム焼結体基板の金属化すべき表面上に該窒化
アルミニウム焼結体の焼結助剤の高濃度層を実現し、こ
れを介して金属化面を形成することが有利であることを
見出し、本発明に至った。In view of the above, various studies and researches were conducted in order to obtain an aluminum nitride sintered body having a metallized surface as described above. It has been found that it is advantageous to realize a highly concentrated layer of binder and form a metallized surface via this, leading to the present invention.
即ち、本発明の金属化面を有する窒化アルミニウム焼結
体は、窒化アルミニウム焼結体基板と、その上に設けら
れた元素周期律表の第Ua族元素の酸化物またはその混
合物からなる該窒化アルミニウム用焼結助剤の高濃度層
(以下高濃度焼結助剤層ともいう)と、該高濃度層を介
して上記焼結体基板上に設けられた金属層とで構成され
ることを特徴とするものである。That is, the aluminum nitride sintered body having a metallized surface of the present invention comprises an aluminum nitride sintered body substrate and an oxide of a group Ua element of the periodic table of elements provided thereon or a mixture thereof. It is composed of a high concentration layer of a sintering aid for aluminum (hereinafter also referred to as a high concentration sintering aid layer) and a metal layer provided on the sintered body substrate via the high concentration layer. This is a characteristic feature.
本発明の金属、化層を有するMN焼結体において、まず
窒化アルミニウム焼結体基板としては、多量の気孔、不
純物等の欠陥を含まない良好な熱伝導率を有するもので
あることが重要である。In the MN sintered body having a metal and chemical layer of the present invention, it is important that the aluminum nitride sintered body substrate has good thermal conductivity and does not contain defects such as a large number of pores and impurities. be.
N)焼結体において、上記焼結助剤の高濃度層材料とし
て有用な第1Ia族元素としては、特にカルシウム(C
a)またはバリウム(Ha)を好ましい例として挙げる
ことができる。また、この高濃度助剤層の厚さは1〜1
00μmの範囲内の値とすることが好ましい。N) In the sintered body, the Group Ia element useful as the material for the high concentration layer of the sintering aid is particularly calcium (C
a) or barium (Ha) can be mentioned as a preferred example. Moreover, the thickness of this high concentration auxiliary agent layer is 1 to 1
It is preferable to set the value within the range of 00 μm.
このMN焼結体表面に高濃度焼結助剤層を形成するため
には、以下の如き様々な方法を採用することができる。In order to form a highly concentrated sintering aid layer on the surface of this MN sintered body, the following various methods can be employed.
まず、例えば焼結助剤として酸化セリウムを、窒化アル
ミニウム粉末に対して5〜10wt%及び有機バインダ
ーを添加した後、混練して厚みが1〜10+++a+の
グリーンシートを作製する。First, for example, cerium oxide as a sintering aid, 5 to 10 wt % to aluminum nitride powder, and an organic binder are added, and then kneaded to produce a green sheet having a thickness of 1 to 10+++a+.
このシートを適当な大きさに成形した後、脱バインダー
し、次いで1700〜2200℃の窒素中で30〜12
0分焼成する。焼成中、1600℃以上で焼結助剤の酸
化カルシウムが窒化アルミニウム粉末と反応して融液が
生じ、焼結を促進させる。しかしながら、その試料の焼
結が十分に完了しない間は多孔質であり、この毛細管を
助剤成分が通って表面へ拡散し、そして焼結が完了する
。この様に5wt%含有していた助剤のうち、はとんど
が表面に拡散しているため焼結体内の助剤の濃度が大き
く低下して′χ面から1〜100μmの深さまでは助剤
の濃度は培
天きく増加している。この拡散層の助剤成分は約20〜
50wt%と増加している。このため、拡散層の助剤成
分の量はグリーンシート作製時の焼結助剤の添加量の他
に、グリーンシートの厚み、焼結条件に大きく影響され
る。焼結助剤としては、酸化カルシウムの他に、窒化ア
ルミニウム用の焼結助剤であれば何ら差し扱えない。After forming this sheet into an appropriate size, the binder is removed, and then the sheet is heated at 30 to 12
Bake for 0 minutes. During firing, the sintering aid calcium oxide reacts with the aluminum nitride powder at 1600° C. or higher to form a melt, which promotes sintering. However, while the sample is not fully sintered, it is porous and the auxiliary components diffuse through the capillaries to the surface and sintering is complete. In this way, most of the 5 wt% of the auxiliary agent is diffused on the surface, so the concentration of the auxiliary agent in the sintered body decreases greatly, and the The concentration of auxiliary agents is increasing rapidly. The auxiliary component of this diffusion layer is about 20~
The content has increased to 50wt%. Therefore, the amount of the auxiliary component in the diffusion layer is greatly influenced by the thickness of the green sheet and the sintering conditions, in addition to the amount of the sintering auxiliary agent added during production of the green sheet. In addition to calcium oxide, any sintering aid for aluminum nitride can be used as the sintering aid.
かくして形成された焼結助剤の高濃度層上には所定の金
属化面が与えられる。この金属化面の形成法、使用する
材質等については特に特殊なものである必要はなく、従
来公知の各種方法並びに材料のいずれを使用することも
可能である。例えば、金属化面をAu、 Ag、 Pt
、 Pd#よびこれらの混合物などで形成する場合には
、例えばAu、 Au−Pt5Pt。A predetermined metallization surface is provided on the thus formed high concentration layer of sintering aid. The method of forming the metallized surface, the material used, etc. do not need to be particularly special, and any of the various conventionally known methods and materials can be used. For example, the metallized surface may be Au, Ag, Pt.
, Pd# or a mixture thereof, for example, Au, Au-Pt5Pt.
Ag、 Ag−Pdなどのペーストをスクリーン印刷法
でコーティングし、次いで大気中、酸素雰囲気中あるい
は窒素雲囲気中で、約850〜940℃の範囲内の温度
下で焼付けする厚膜ペースト法に従って形成することが
できる。同様に金属化(メタライズ)用材料がMo、
Mo−MuSCuまたはWなどである場合にも厚膜ペー
スト法を利用することができる。Formed according to a thick film paste method in which a paste such as Ag, Ag-Pd, etc. is coated by a screen printing method and then baked at a temperature within the range of about 850 to 940 ° C. in air, oxygen atmosphere, or nitrogen cloud atmosphere. can do. Similarly, the material for metallization is Mo,
The thick film paste method can also be used when the material is Mo-MuSCu or W.
しかしながら、上記例示の材料は単なる例示であって、
これにより何隻本発明を制限するものでは各種薄膜形成
法を利用して実現することができ、好ましくは物理蒸着
法、例えば真空蒸着法、スパッタ法、イオンブレーティ
ング法などを利用して形成することができ、この方法は
、特に二層以上の積層構造の金属化面を形成する際に有
利であり、周期律表第IVa族元素(チタン(Ti)、
ジルコニウム(Zr)またはハフニウム(Hf) /
(MoまたはPt) /(NiまたはAu) 、例えば
Ti/ Me/ Ni5Ti/闘o/Au。However, the above-mentioned exemplified materials are merely illustrative, and
Accordingly, the invention can be realized by using various thin film forming methods, preferably by using a physical vapor deposition method, such as a vacuum evaporation method, a sputtering method, an ion blating method, etc. This method is particularly advantageous when forming a metallized surface of a laminated structure of two or more layers, and is suitable for metallized surfaces of group IVa elements of the periodic table (titanium (Ti), titanium (Ti),
Zirconium (Zr) or Hafnium (Hf) /
(Mo or Pt) / (Ni or Au), for example Ti/Me/Ni5Ti/O/Au.
Ti/ Pt/ Au、 Zr/ Mo/ Ni5Zr
/ Mo/ Au5Zr/ Pt/Auなどの三層構造
で実現できる。Ti/Pt/Au, Zr/Mo/Ni5Zr
It can be realized with a three-layer structure such as /Mo/Au5Zr/Pt/Au.
物理蒸着法の中では、特にイオンブレーティング法が、
堆積膜の密着性等において優れていることから好ましく
、また最下層即ち高濃度焼結助剤層と接する層としては
上記第1Va族元素などの活性金属を用いることが有利
であり、これらは酸素または元素周期律表第nIa族元
素との化学親和性が高いことからMN焼結体基板用焼結
助剤の高濃度層と強固な結合を形成するものと期待され
る。Among the physical vapor deposition methods, the ion blating method is particularly
It is preferable because it has excellent adhesion of the deposited film, and it is advantageous to use active metals such as the above-mentioned Group 1 Va elements as the bottom layer, that is, the layer in contact with the high concentration sintering aid layer. Also, since it has a high chemical affinity with elements of group nIa of the periodic table of elements, it is expected to form a strong bond with the high concentration layer of the sintering aid for the MN sintered body substrate.
作 用
MNは本来的にガラスあるいは金属との親和性が著しく
悪く、そのため優れた熱伝導率(放熱特性)並びに電気
絶縁性を有するにも拘らず、現在までのところ実用化に
は程遠いものであった。即ち、MN焼結体をIC用基板
、ヒートシンクなどの材料として応用可能なものとする
ためには、これと金属等との親和性・濡れ性を改善して
、これらの間の高い密着強度を確保しなければならない
。Function: MN inherently has a very poor affinity with glass or metals, and therefore, although it has excellent thermal conductivity (heat dissipation properties) and electrical insulation properties, it is still far from being put to practical use. there were. In other words, in order to make the MN sintered body applicable as a material for IC substrates, heat sinks, etc., it is necessary to improve the affinity and wettability of the MN sintered body with metals, etc., and to achieve high adhesion strength between them. must be secured.
そのための解決策として、既に述べたようにMN焼結体
基板上に金属化面を施す前に酸化物等で表面処理を施す
方法が知られていたが、このような処理を施しても、こ
のような処理の結果得られた層とMNとの不整合性のた
めに十分な実用化し得るほどの密着強度を達成すること
ができず、しかもMN焼結体を表面処理することは工程
を複雑化し、得られる製品をコスト高なものとする。As a solution to this problem, a method has been known in which, as mentioned above, the MN sintered body substrate is subjected to surface treatment with an oxide or the like before being metallized, but even with such treatment, Due to the incompatibility between the layer obtained as a result of such treatment and the MN, it is not possible to achieve a sufficient adhesion strength for practical use, and surface treatment of the MN sintered body requires a process. This makes the resulting product more complex and more expensive.
以上述べた如き従来の金属化面を有するM’N焼結体の
作製においてみられた諸欠点は本発明に従って、金属化
すべき表面に焼結助剤が拡散した結果得られる高濃度焼
結剤層を有するMN焼結体を使用することにより殆ど解
決される。The various drawbacks observed in the production of conventional M'N sintered bodies having metallized surfaces as described above can be solved by using a highly concentrated sintering agent obtained as a result of diffusion of the sintering aid onto the surface to be metallized. This is mostly solved by using a MN sintered body with layers.
一般に、焼結助剤は焼結すべき物質に対して化学的に親
和性の高い化合物から選ばれたものであるはずであり、
焼結助剤の高濃度層とMN層との間には不整合性はない
ことが期待され、従ってこの高濃度層と7v!N焼結体
とは殆ど“一体物”であると考えられる。即ち、助剤成
分はMN粒子を十分に濡らし、良好な粒界組織を形成す
るものと考えられる。従って、この粒界組織層によって
主として構成される領域、即ち高濃度焼結助剤層につい
てもMN焼結体と同等の機械的強度が認められ、これら
の間の不整合性は殆どないものと考えて差しつかえない
。しかも、助剤は第IIa族元素の酸化物であるため厚
膜ペーストに含まれるガラス成分あるいは金属と極めて
濡れ性がよく、そのため金属化面と強固に接着する°こ
とができる。Generally, the sintering aid should be selected from compounds that have a high chemical affinity for the material to be sintered;
It is expected that there is no inconsistency between the sintering aid enriched layer and the MN layer, so that this enriched layer and the 7v! The N sintered body is considered to be almost an "integral body". That is, it is considered that the auxiliary component sufficiently wets the MN particles and forms a good grain boundary structure. Therefore, the mechanical strength equivalent to that of the MN sintered body is observed in the region mainly composed of this grain boundary structure layer, that is, the high concentration sintering aid layer, and there is almost no inconsistency between them. I can't help but think about it. Moreover, since the auxiliary agent is an oxide of a Group IIa element, it has excellent wettability with the glass component or metal contained in the thick film paste, and therefore can be firmly bonded to the metallized surface.
即ち、例えば金属化面がAu、 Ag5Pt系、Mo、
M。That is, for example, the metallized surface is Au, Ag5Pt system, Mo,
M.
−Mn1CuあるいはWなどの場合にはこれらのペース
トを塗布した後、適当な条件の下で焼成することにより
ペースト中に含まれているガラス成分あるいは金属成分
がMN焼結体表面に析出している焼結助剤成分と反応す
るか、あるいはこの助剤成分を介することで焼結体表面
の濡れ性が向上し、金属化面とMN焼結体が高い強度で
接着しているものと考えられる。- In the case of Mn1Cu or W, the glass or metal components contained in the paste are deposited on the surface of the MN sintered body by applying these pastes and firing them under appropriate conditions. It is thought that the wettability of the sintered body surface is improved by reacting with the sintering aid component or via this aid component, and the metallized surface and the MN sintered body are bonded with high strength. .
また、金属化面が第1Va族元素/MoまたはPt/A
uまたはNiの三層構造を有するものである場合、その
最内層即ちMN焼結体基板と直接あるいは高濃度焼結助
剤層を介してMN基板と接する層としての活性化金属層
は上記高濃度層の助剤成分と強固に結合することで高い
接合強度が確保されるものと考えられる。In addition, the metallized surface is a group 1 Va element/Mo or Pt/A.
In the case of a three-layer structure of U or Ni, the innermost layer, that is, the activated metal layer as a layer in contact with the MN sintered body substrate directly or through a high concentration sintering aid layer has the above-mentioned high concentration. It is thought that high bonding strength is ensured by strongly bonding with the auxiliary component of the concentration layer.
以上のいずれの場合においても、焼結助剤を構成してい
る第1Ia族元素およびこれと結合している酸素が、金
属化材料と71v!N焼結体七の強固な接合に対して大
きく寄与していることは明らかである。このようにMN
焼結体の金属化面側表面に高濃度焼結助剤層が存在する
ことは極めて重要であり、その厚さも臨界的条件きなる
。即ち、強固な接合を達成するのに最小限必要な高濃度
層の厚みは約1μm程度であり、一方咳高濃度層の厚み
が約100μmを越えた場合にはこの高濃度層の存在の
ためにMN’11.給体の特徴である高熱伝導性が低下
してしまうという別の問題が生じてくる恐れがある。そ
こで、本発明では該高濃度層の厚さを上記の如く1〜1
00μmの範囲内に制限することにより、金属化面とM
焼結体との高い接合強度を、AA’N焼結体固有の特性
を損うことなく確保するこ金属化面を有するM’N焼結
体は、既に述べたIC基板例えば高耐圧IC(HI(2
)、ヒートシンク等としてばかりでなく、金属とMN焼
結体との複合材料が必要とされるあらゆる分野において
有利に使用することができ、MNの有する興味ある特性
、即ち高熱伝導性、高電気絶縁性並びに高い機械的強度
を十分に発揮させることができる。In any of the above cases, the Group Ia element constituting the sintering aid and the oxygen bonded thereto are 71v! It is clear that this greatly contributes to the strong bonding of N sintered body 7. Like this MN
It is extremely important that a highly concentrated sintering aid layer exists on the metallized surface of the sintered body, and its thickness is also a critical condition. In other words, the minimum thickness of the highly concentrated layer required to achieve a strong bond is approximately 1 μm, whereas if the thickness of the highly concentrated layer exceeds approximately 100 μm, the presence of this highly concentrated layer in MN'11. Another problem may arise in that the high thermal conductivity, which is a characteristic of the feeder, is reduced. Therefore, in the present invention, the thickness of the high concentration layer is set to 1 to 1 as described above.
By limiting the range of 00 μm, the metallized surface and M
The M'N sintered body, which has a metallized surface that ensures high bonding strength with the sintered body without impairing the characteristics unique to the AA'N sintered body, can be used for the already mentioned IC substrates, such as high-voltage ICs ( HI(2
), it can be advantageously used not only as a heat sink, etc., but also in any field where a composite material of metal and MN sintered body is required. properties and high mechanical strength.
実施例
以下、実施例により本発明の金属化面を有するMN焼結
体を更に具体的に説明すると共に、その奏する利点を明
らかにする。また製造例によってその製法を具体的に説
明する。しかしながら、本発明の範囲は以下の例によっ
て何隻制限されない。EXAMPLES Hereinafter, the MN sintered body having a metallized surface of the present invention will be explained in more detail using examples, and the advantages thereof will be clarified. Further, the manufacturing method will be specifically explained using manufacturing examples. However, the scope of the invention is not limited by the following examples.
実施例1
添付第1図に、本発明に従う金属化面を有するAgN焼
結体の構成を模式的に示したが、図から明らかな如<、
MN焼結体1と、金属化面2と、これらの間に介在する
MN焼結体焼結助剤の高濃度層3とで構成される。ここ
で、金属化面2は以下の製造例に示されるように様々な
ものであり得、その厚さは従来公知のこの種の製品に尉
ける一般的範囲内の値とすることができる。Example 1 The attached FIG. 1 schematically shows the structure of an AgN sintered body having a metallized surface according to the present invention, and as is clear from the figure,
It is composed of a MN sintered body 1, a metallized surface 2, and a high concentration layer 3 of a MN sintered body sintering aid interposed between these. Here, the metallized surface 2 can be of various types, as shown in the manufacturing examples below, and its thickness can be within the usual range for products of this type known in the art.
製造例1
助剤としてCa5kよびBaOを5wt%添加した拡散
層(高濃度層)を有するMN焼結体に、Au、 Au−
Pt、 Ag−Pdペーストを厚さ25〜30μm程度
に塗布し、次いで大気中にて850〜940tで1o分
間焼付けを行い、金属化面を有するMN焼結体を形成し
た。かくして得た金属面上にo、81φの軟鋼線を半田
付して引張強度を求め、以下の表にまとめた。尚、表面
に拡散層を有しない均一に助剤(5wt%)が分散した
焼結体に同様にメタライズしたものをも作製し、これに
ついても上記同様に引張強度を測定し比較例きして併せ
て表に示した。Production Example 1 Au, Au-
Pt, Ag-Pd paste was applied to a thickness of about 25 to 30 μm, and then baked in the air at 850 to 940 tons for 10 minutes to form a MN sintered body having a metallized surface. A mild steel wire of 81φ was soldered onto the metal surface thus obtained, and the tensile strength was determined and summarized in the table below. In addition, a sintered body in which the auxiliary agent (5 wt%) was uniformly dispersed without a diffusion layer on the surface was also metalized in the same manner, and the tensile strength of this was also measured in the same manner as above, and a comparative example was prepared. They are also shown in the table.
製造例2
助剤と□して夫々CaO$よびBaOを5wt%添加し
た拡散層を有する3種のAiN焼結体に、W%Mo。Production Example 2 W%Mo was added to three types of AiN sintered bodies having diffusion layers to which 5wt% of CaO and BaO were added as auxiliary agents, respectively.
Me−Mnペーストを厚さ25〜32μm程度に塗布し
、弱還元雰囲気中で、前者は1400〜1750tl:
、後者二者は1320−1630℃で30分間焼付を行
い、金属面を有するMN焼結体を形成した。かくして得
た金属面上にNiメッキ後、0.8ma+φの軟銅線を
半田付けして引張強度を求め、以下の表にまとめた。尚
、表面に拡散層を有しない均一に助剤(5wt%)が分
散した焼結体に同様にメタライズしたものを作製し、こ
れらについても同様にして引張強度を求め比較例として
併せて表に示した。Me-Mn paste was applied to a thickness of about 25 to 32 μm, and the former was heated at 1400 to 1750 tl in a weak reducing atmosphere:
The latter two were baked at 1320-1630°C for 30 minutes to form MN sintered bodies with metal surfaces. After Ni plating was performed on the metal surface thus obtained, an annealed copper wire of 0.8 ma+φ was soldered to determine the tensile strength, which is summarized in the table below. In addition, metallized sintered bodies in which the auxiliary agent (5 wt%) was uniformly dispersed without a diffusion layer on the surface were prepared in the same way, and the tensile strengths of these were also determined in the same manner and are also shown in the table as a comparative example. Indicated.
製造例3
助剤としてCaOおよびBaOを5wt%添加した拡散
層を有するAgN焼結体にCuペーストを厚さ10〜1
5μm程度に塗布し、非酸化性雰囲気中950〜105
0℃で、10分間焼付を行い゛、金属化面を有するAI
N焼結体を形成した。この金属化面上に、0.81φの
軟銅線を半田付けして引張強度を求め、以下の表にまと
めた。尚、表面に拡散層を有しない均一に助剤(5wt
%)が分散した焼結体に同様にメタライズしたものを比
較例として作製し、これら比較例についても上記同様に
引張強度を求め、結果を併せて表に示した。Production Example 3 Cu paste was applied to a thickness of 10 to 1 mm on an AgN sintered body having a diffusion layer to which 5 wt% of CaO and BaO were added as auxiliaries.
950-105 in a non-oxidizing atmosphere.
Baking was performed at 0℃ for 10 minutes.
A N sintered body was formed. An annealed copper wire of 0.81φ was soldered onto this metallized surface to determine the tensile strength, which is summarized in the table below. In addition, the auxiliary agent (5 wt.
Comparative examples were prepared using sintered bodies in which %) were dispersed and similarly metallized, and the tensile strengths of these comparative examples were determined in the same manner as above, and the results are also shown in the table.
第3表
製造例4
助剤として夫々CaOおよび[laOを5wt%添加し
た、拡散層を有する3種のMN焼結体にイオンブレーテ
ィング法でTi/ Mo/ Ni、 Ti/ Mo/
Au5Ti/Pt/ Ni5Ti/ Pt/ Au、
Zr/ Mo/ Ni5Zr/ Mo/ Au。Table 3 Production Example 4 Ti/Mo/Ni, Ti/Mo/
Au5Ti/Pt/Ni5Ti/Pt/Au,
Zr/Mo/Ni5Zr/Mo/Au.
Zr/ Pt/ Ni、 Zr/ Pt/ Au、 H
f/ Mo/ Ni、 Hf/ Mo/Au11ff/
Pt/ Ni、 If/ Pt/ Auを3層構造で
積層した。 Ti、 Zr、 Hfの膜厚は0.4〜0
.5tt m 、 No、Ptの膜厚は0.3〜0.5
μm、 Ni、 Auの膜厚は2.0〜2.5μmとし
た。この金属面上に0.8aImφの軟銅線を半田付け
して引張強度を求め、以下の様にまとめた。尚、表面に
拡散層を有しない、均一に助剤(5wt%)が分散した
焼結体に同様にメタライズしたものを比較例として作製
し、これら比較列についても上記同様に引張強度を求め
、結果を併せて表に示した。Zr/Pt/Ni, Zr/Pt/Au, H
f/Mo/Ni, Hf/Mo/Au11ff/
Pt/Ni and If/Pt/Au were laminated in a three-layer structure. The film thickness of Ti, Zr, and Hf is 0.4 to 0.
.. 5tt m, No, Pt film thickness is 0.3 to 0.5
The film thicknesses of Ni and Au were 2.0 to 2.5 μm. An annealed copper wire of 0.8 a Imφ was soldered onto this metal surface to determine the tensile strength, which was summarized as follows. Incidentally, a sintered body having no diffusion layer on the surface and in which the auxiliary agent (5 wt%) was uniformly dispersed was similarly metalized and produced as a comparative example, and the tensile strength was determined in the same manner as above for these comparative rows. The results are also shown in the table.
(f) AIN (CaO: 5wt%)a、拡散層の
厚み(μm) 1
メタライズ膜 Ti/Mo/Ni Ti/Me/A
u引張強度(Kg/mad”) ?、 8 8
.9()内は比較例 (1,1) (1,4)Ti
/Pt/Ni Ti/Pt/Au Zr/ Mo/
Ni Zr/ Mu/ Au9.6 9.1
8.0 8.0(1,3) (1
,4) (1,1) (1,0)Zr/P
t/Ni Zr/Pt/Au Hf/Mo/Ni
Hf/Mo/Au7.3 7.5 6.
8 6.0(1,2) (0,9)
(1,2) (1,3)Hf/Pt/Ni
Hf/Pt/Au6.0 6.0
(1,2) (1,3)
b、拡散層の厚み(μm) 10
メタライズ膜 Ti/Mo/Ni Ti/MO/A
n引張強度(にg/ms+’) 9.2 9.
1()内は比較例 (1,2) (1,1)Ti
/Pt/Ni Ti/Pt/Au Zr/Mo/N
i Zr/Mo/Au9.0 g、9
g、2 7.8(1,3) (1,1
) (0,9) (1,4)Zr/Pt/
Ni Zr/Pt/Au Hf/Mo/Ni I
ff/Mo/Au6.8 7.3 6.5
5.9(1,3) (1,4) (1,1)
(1,0)Hf/Pt/Ni Hf/Pt/Au
6.4 6.4
(0,9) (1,3)
C1拡散層の厚み(μm) 35
メタライズl! Ti/ No/ Nt Tt
/ Mo/ Au引張強度(Kg/ss″)8.5
8.8()内は比較例 (1,2) (1,3
)Ti/Pt/Ni Ti/Pt/Au Zr/M
o/Ni Zr/Mo/Au9.6 8.4
7.8 7J(1,0) (1,3
) (0,8) (1,1)Zr/Pt/
Ni Zr/Pt/Au Hf/Mo/Ni H
f/Mo/Au7.3 7.4 6.0
6.5(1,0) (1,2) (
1,1) (1,3)Hf/Pt/Ni 訂/
Pt/Au
6、1 6.°2
(0,9) (1,4)
(ii) AIN (BaO: 5wt%)a、拡散層
の厚み(μm) 1
メタライズ膜 Ti/Mo/Ni Ti/Mo/A
u引張強度(Kg/ms”) 9.2 9.4
()内は比較例 <1.0) (1,3)Ti/
Pt/Ni Ti/Pt/Au Zr/Mo/Ni
Zr/Mo/Au9.4 9.3 8
.2 8.1(1,0) (1,3>
(0,9) (1,3)Zr/Pt/Ni Zr
/Pt/Au Hf/Mo/Ni If/Mo/^
U8.3 8.4 6.6 6.4
(1,1) (1,0) (1,1) (
1,2)Iff/Pt/Ni Hf/Pt/Au6、
5 6.2
(1,3) (1,2)
b、拡散層の厚み(μm) 10
メタライズ膜 Ti/ Mo/ Ni Ti/ M
o/ Au引張強度(にgets■ジ 9.4
9.2()内は比較例 (0,9) (1,2)
Ti/Pt/Ni Ti/Pt/Au Zr/Mo
/Ni Zr/Mo/Au9.4 9.2
g、5 8.4(1,1) (1,
3) (1,1) (1,2)Zr/Pt
/Ni Zr/Pt/Au Hf/Mo/Ni
Ilf/Mo/Au8.2 8.3 6.
4 6.3(1,4> (1,2>
(0,9) (1,3)Iff/Pt/Ni
Hf/Pt/Au6.4 6.4
(1,0) (1,4)
C9拡散層の厚み(μm) 35
メタライズM Ti/Mo/Ni、Ti/No/A
u引張強度(Kg/a+一つ 9.2 9.4(
)内は比較例 (1,1)(1,1)Ti/Pt/Ni
Ti/Pt/Au Zr/Mo/Ni Zr/
Mo/Au9.4 9.0 8.4
8.3(1,2) (0,9) (0,
8) (1,1)Zr/Pt/Ni Zr/P
t/Au Hf/Mo/Ni Hf/Mo/Ni8
.1 g、0 6.4 6.6(
0,9) (1,1) (0,8>
(1,2)11f/Pt/Ni fir/Pt/A
u6.3 6.2
(0,9> (1,3)
発明の効果
以上詳しく述べたように、本発明の金属化面を有するM
・N焼結体基板においては、MN焼結体自体並びにその
上に適用される金属化材料のいずれに対しても化学的親
和性、即ち濡れ性が良好である焼結助剤の高濃度層を設
けたことにより、これら両者の接合強度が著しく改善さ
れ、しかも該高濃度層の厚さを所定の範囲内に限定する
ことによりAj!N焼結体自体の固有の特性、即ち高い
電気絶縁性、熱伝導性並びに機械強度を十分に保持させ
、かつ発揮させることができる。(f) AIN (CaO: 5wt%) a, thickness of diffusion layer (μm) 1 Metallized film Ti/Mo/Ni Ti/Me/A
u Tensile strength (Kg/mad”) ?, 8 8
.. 9 () is a comparative example (1,1) (1,4)Ti
/Pt/Ni Ti/Pt/Au Zr/Mo/
Ni Zr/ Mu/ Au9.6 9.1
8.0 8.0(1,3) (1
,4) (1,1) (1,0)Zr/P
t/Ni Zr/Pt/Au Hf/Mo/Ni
Hf/Mo/Au7.3 7.5 6.
8 6.0 (1,2) (0,9)
(1,2) (1,3)Hf/Pt/Ni
Hf/Pt/Au6.0 6.0 (1,2) (1,3) b, Thickness of diffusion layer (μm) 10 Metallized film Ti/Mo/Ni Ti/MO/A
n tensile strength (g/ms+') 9.2 9.
1 () is a comparative example (1,2) (1,1)Ti
/Pt/Ni Ti/Pt/Au Zr/Mo/N
i Zr/Mo/Au9.0 g, 9
g, 2 7.8 (1, 3) (1, 1
) (0,9) (1,4)Zr/Pt/
Ni Zr/Pt/Au Hf/Mo/Ni I
ff/Mo/Au6.8 7.3 6.5
5.9(1,3) (1,4) (1,1)
(1,0)Hf/Pt/Ni Hf/Pt/Au
6.4 6.4 (0,9) (1,3) Thickness of C1 diffusion layer (μm) 35 Metallization l! Ti/ No/ Nt Tt
/Mo/Au tensile strength (Kg/ss'') 8.5
8.8 () is a comparative example (1,2) (1,3
) Ti/Pt/Ni Ti/Pt/Au Zr/M
o/Ni Zr/Mo/Au9.6 8.4
7.8 7J(1,0) (1,3
) (0,8) (1,1)Zr/Pt/
Ni Zr/Pt/Au Hf/Mo/Ni H
f/Mo/Au7.3 7.4 6.0
6.5(1,0) (1,2) (
1,1) (1,3)Hf/Pt/Ni revision/
Pt/Au 6,1 6. °2 (0,9) (1,4) (ii) AIN (BaO: 5wt%)a, thickness of diffusion layer (μm) 1 Metallized film Ti/Mo/Ni Ti/Mo/A
u tensile strength (Kg/ms”) 9.2 9.4
Comparative examples in parentheses <1.0) (1,3)Ti/
Pt/Ni Ti/Pt/Au Zr/Mo/Ni
Zr/Mo/Au9.4 9.3 8
.. 2 8.1(1,0) (1,3>
(0,9) (1,3)Zr/Pt/Ni Zr
/Pt/Au Hf/Mo/Ni If/Mo/^
U8.3 8.4 6.6 6.4
(1,1) (1,0) (1,1) (
1,2) If/Pt/Ni Hf/Pt/Au6,
5 6.2 (1,3) (1,2) b, Thickness of diffusion layer (μm) 10 Metallized film Ti/ Mo/ Ni Ti/ M
o/ Au tensile strength (gets ■ 9.4
9.2 () is a comparative example (0,9) (1,2)
Ti/Pt/Ni Ti/Pt/Au Zr/Mo
/Ni Zr/Mo/Au9.4 9.2
g, 5 8.4(1,1) (1,
3) (1,1) (1,2) Zr/Pt
/Ni Zr/Pt/Au Hf/Mo/Ni
Ilf/Mo/Au8.2 8.3 6.
4 6.3 (1,4>(1,2>
(0,9) (1,3)If/Pt/Ni
Hf/Pt/Au6.4 6.4 (1,0) (1,4) Thickness of C9 diffusion layer (μm) 35 Metallized M Ti/Mo/Ni, Ti/No/A
u tensile strength (Kg/a+one 9.2 9.4(
) is a comparative example (1,1)(1,1)Ti/Pt/Ni
Ti/Pt/Au Zr/Mo/Ni Zr/
Mo/Au9.4 9.0 8.4
8.3(1,2) (0,9) (0,
8) (1,1) Zr/Pt/Ni Zr/P
t/Au Hf/Mo/Ni Hf/Mo/Ni8
.. 1 g, 0 6.4 6.6 (
0,9) (1,1) (0,8>
(1,2) 11f/Pt/Ni fir/Pt/A
u6.3 6.2 (0,9> (1,3) Effects of the Invention As described in detail above, the M having the metallized surface of the present invention
- In the N sintered body substrate, a highly concentrated layer of sintering aid that has good chemical affinity, i.e., good wettability, both for the MN sintered body itself as well as for the metallization material applied thereon. By providing the Aj! The unique properties of the N sintered body itself, ie, high electrical insulation, thermal conductivity, and mechanical strength, can be sufficiently maintained and exhibited.
更に、本発明において助剤として周期律表第■a族元素
の酸化物を選ぶことにより、この物質の高濃度層と厚膜
ペースト中のガラス成分もしくは金属と、あるいはまた
薄膜法によるTi、 Zr、 Hfの蒸着膜と強固に結
合し、実用化するのに十分な接合強度を持つ金属化M!
N焼結体製品を得ることができる。Furthermore, in the present invention, by selecting an oxide of an element of group IV a of the periodic table as an auxiliary agent, a high concentration layer of this substance can be combined with a glass component or metal in a thick film paste, or alternatively with Ti, Zr by a thin film method. , Metalized M!, which is strongly bonded to the Hf vapor deposition film and has sufficient bonding strength for practical use.
A N sintered product can be obtained.
添付第1図は、本発明の金属化面を有するMN焼結体の
構造を模式的に断面図を示したものである。
(主な参照番号)
1・・・MN焼結体FIG. 1 attached hereto shows a schematic cross-sectional view of the structure of a MN sintered body having a metallized surface according to the present invention. (Main reference number) 1...MN sintered body
Claims (7)
れた元素周期律表第IIa族元素の酸化物からなる該窒化
アルミニウム用焼結助剤の高濃度層と、該高濃度焼結助
剤層を介して上記基板上に設けらられた金属層とで構成
されることを特徴とする金属化面を有する窒化アルミニ
ウム焼結体。(1) An aluminum nitride sintered body substrate, a high concentration layer of the sintering aid for aluminum nitride made of an oxide of Group IIa element of the Periodic Table of Elements formed thereon, and the high concentration sintering aid. An aluminum nitride sintered body having a metallized surface, comprising a metal layer provided on the substrate with an agent layer interposed therebetween.
の厚さを有することを特徴とする特許請求の範囲第1項
記載の金属化面を有する窒化アルミニウム焼結体。(2) The aluminum nitride sintered body having a metallized surface according to claim 1, wherein the high concentration sintering aid layer has a thickness within the range of 1 to 100 μm.
ことを特徴とする特許請求の範囲第1項または第2項に
記載の金属化面を有する窒化アルミニウム焼結体。(3) The aluminum nitride sintered body having a metallized surface according to claim 1 or 2, wherein the Group IIa element is calcium or barium.
焼結助剤が毛管現象によって拡散されることによって形
成されたものであることを特徴とする特許請求の範囲第
1項〜第3項のいずれか1項に記載の金属化面を有する
窒化アルミニウム焼結体。(4) The sintering aid layer is formed by the sintering aid being uniformly dispersed during sintering and being diffused by capillary action. An aluminum nitride sintered body having a metallized surface according to any one of items 1 to 3.
から選ばれた少なくとも1種の金属からなるものである
ことを特徴とする特許請求の範囲第1項〜第4項のいず
れか1項に記載の金属化面を有する窒化アルミニウム焼
結体。(5) Any one of claims 1 to 4, wherein the metal layer is made of at least one metal selected from the group consisting of Ag, Au, Pt, and Pd. An aluminum nitride sintered body having a metallized surface according to item 1.
であることを特徴とする特許請求の範囲第1項〜第4項
のいずれか1項に記載の金属化面を有する窒化アルミニ
ウム焼結体。(6) The metal layer is Mo, Mo-Mn, Cu or W
An aluminum nitride sintered body having a metallized surface according to any one of claims 1 to 4.
面側から(第IVa族元素)/(MoまたはPt)/(N
iまたはAu)の順に設けられた三層構造を有するもの
であることを特徴とする特許請求の範囲第1項〜第4項
のいずれか1項に記載の金属化面を有する窒化アルミニ
ウム焼結体。(7) The metal layer is formed from the surface side of the aluminum nitride sintered body by (group IVa element)/(Mo or Pt)/(N
The sintered aluminum nitride having a metallized surface according to any one of claims 1 to 4, characterized in that it has a three-layer structure provided in the order of i or Au). body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP243187A JPH0725616B2 (en) | 1987-01-07 | 1987-01-07 | Aluminum nitride sintered body having metallized surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP243187A JPH0725616B2 (en) | 1987-01-07 | 1987-01-07 | Aluminum nitride sintered body having metallized surface |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63170292A true JPS63170292A (en) | 1988-07-14 |
JPH0725616B2 JPH0725616B2 (en) | 1995-03-22 |
Family
ID=11529073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP243187A Expired - Lifetime JPH0725616B2 (en) | 1987-01-07 | 1987-01-07 | Aluminum nitride sintered body having metallized surface |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0725616B2 (en) |
-
1987
- 1987-01-07 JP JP243187A patent/JPH0725616B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0725616B2 (en) | 1995-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4835344A (en) | Electronic component parts and method for manufacturing the same | |
JPS62202886A (en) | Aluminum nitride sintered body with metallized surface | |
JP4077888B2 (en) | Ceramic circuit board | |
JPH0510310B2 (en) | ||
US4737416A (en) | Formation of copper electrode on aluminum nitride | |
US6197435B1 (en) | Substrate | |
JP2822518B2 (en) | Method for forming metallized layer on aluminum nitride sintered body | |
JPH03179793A (en) | Surface structure of ceramic substrate and its manufacturing method | |
JPS62216979A (en) | Aluminum nitride sintered body with glass layer and manufacturing method thereof | |
JPS63170292A (en) | Aluminum nitride sintered body with metallized surface | |
JPH05238857A (en) | Method for metallizing substrate of aluminum nitride | |
JPS62182182A (en) | Aluminum nitride sintered body with metallized surface | |
JPS62197375A (en) | Aluminum nitride substrate | |
JPH02174145A (en) | Aluminum nitride structure and its manufacturing method | |
JPH08293654A (en) | Formation of metal film on ceramic base material and metal-coated ceramic structure | |
JPH0712993B2 (en) | Aluminum nitride sintered body having metallized surface | |
JP2000294696A (en) | Member for electronic circuit and manufacture of the same | |
JP2729751B2 (en) | Joining method of alumina ceramics and aluminum | |
JPS62143890A (en) | Aluminum nitride sintered body with metallized surface | |
JPS62167277A (en) | Aluminum nitride sintered body with metallized surface | |
JPS60107845A (en) | Circuit substrate for semiconductor | |
JPH03141169A (en) | Metallized structure of aluminum nitride substrate and bond structure of aluminum nitride substrate with metal plate | |
JPH03146487A (en) | Method for producing aluminum nitride sintered body with metallized layer | |
JPH09263472A (en) | Wiring board | |
JPH0196987A (en) | Superconducting circuit substrate and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |