JPS6316690A - Semiconductor light emitting device - Google Patents
Semiconductor light emitting deviceInfo
- Publication number
- JPS6316690A JPS6316690A JP16103586A JP16103586A JPS6316690A JP S6316690 A JPS6316690 A JP S6316690A JP 16103586 A JP16103586 A JP 16103586A JP 16103586 A JP16103586 A JP 16103586A JP S6316690 A JPS6316690 A JP S6316690A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- type
- oscillation
- semiconductor
- active region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/125—Distributed Bragg reflector [DBR] lasers
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔1既要〕
この発明は、分布反射形半導体レーザにかかり、活性領
域を量子井戸構造とし、回折格子による帰還領域は量子
井戸構造を有せず、かつ該活性領域のレーザ発振にかか
わる電子と正孔間のエネルギー準位差よりバンドギャッ
プが大きい半導体層とすることにより、
該帰還領域における光吸収損失を防止して、発振特性の
向上を実現するものである。[Detailed Description of the Invention] [1] The present invention relates to a distributed reflection type semiconductor laser, in which the active region has a quantum well structure, the feedback region by a diffraction grating does not have a quantum well structure, and the active region By forming a semiconductor layer with a band gap larger than the energy level difference between electrons and holes involved in laser oscillation, light absorption loss in the feedback region is prevented and oscillation characteristics are improved.
本発明は半導体レーザ、特に分布ブラッグ反射形半導体
レーザの光吸収損失を減少させ発振特性を向上する構造
の改善に関する。The present invention relates to improvements in the structure of semiconductor lasers, particularly distributed Bragg reflection type semiconductor lasers, for reducing optical absorption loss and improving oscillation characteristics.
光を情報信号の媒体とする光通信システムなどの高度化
を推進するために、縦モードの制御に適する分布ブラッ
グ反射形(DBR) レーザに対して分布帰還形(D
FB) レーザと同等以上の期待が寄せられているが、
従来のDBI?レーザには後述の如く、光吸収により帰
還が弱まるために良好な発振特性が得難いなどの問題点
があり、その改善が強く要望されている。In order to advance the sophistication of optical communication systems that use light as a medium for information signals, distributed Bragg reflection (DBR) lasers, which are suitable for longitudinal mode control, and distributed feedback (DBR) lasers are being developed.
FB) There are expectations equal to or higher than lasers, but
Traditional DBI? As will be described later, lasers have problems such as difficulty in obtaining good oscillation characteristics because feedback is weakened by light absorption, and there is a strong demand for improvement.
半導体レーザで従来多く行われているファプリー・ペロ
ー形共振器は、その1対の襞間面間の定在波すなわち縦
モードのモード次数が例えば2000程度と大きく、温
度変化に伴ってエネルギーバンドギヤノブが変化し発振
波長が変動するなどの要因もあって縦モードを制御する
ことが出来ない。The Fapley-Perot type resonator, which is commonly used in semiconductor lasers, has a standing wave between a pair of folds, that is, a longitudinal mode with a large mode order of, for example, about 2000, and the energy band gear changes as the temperature changes. It is not possible to control the longitudinal mode due to factors such as changing the knob and changing the oscillation wavelength.
これに対して、光導波路の界面に設けた回折格子によっ
て帰還を行う共振器を備えるDBRレーザ及びDFBレ
ーザでは、帰還に波長選択性を具えるために縦モードを
制御して単一波長を実現することが可能となる。On the other hand, DBR lasers and DFB lasers, which are equipped with a resonator that performs feedback using a diffraction grating provided at the interface of an optical waveguide, achieve a single wavelength by controlling the longitudinal mode to provide wavelength selectivity for feedback. It becomes possible to do so.
すなわち第2図に従来例の模式側断面図を例示する如く
、DBRレーザは例えばn型半導体基板21上に、n型
クラッド層22、n型活性層23、p型ガイド層24を
順次エピタキシャル成長し、このガイド層24の表面に
回折格子のコルゲーション27を形成して、更にp型ク
ラッド層25、p型コンタクト層26をエピタキシャル
成長した半4体基体を用い、n型活性層23とp型ガイ
ド層24とからなる先導波路のコルゲーション27が形
成された領域と、p側電極29及びn(jQl電極30
に挟まれて電流注入が行われる領域とを分離して隣接さ
せている。That is, as shown in a schematic side sectional view of a conventional example in FIG. 2, a DBR laser epitaxially grows an n-type cladding layer 22, an n-type active layer 23, and a p-type guide layer 24 on an n-type semiconductor substrate 21, for example. A corrugation 27 of a diffraction grating is formed on the surface of this guide layer 24, and a p-type cladding layer 25 and a p-type contact layer 26 are epitaxially grown. 24, where the corrugation 27 of the leading wavepath is formed, and the region where the p-side electrode 29 and n(jQl electrode 30
The region sandwiched between the region and the region where current injection is performed are separated and adjacent to each other.
この様に、光の増幅を行う活性層23のキャリア注入領
域とコルゲーション27により光を帰還する領域とを空
間的に分離したDBRレーザは、この両作用が同一領域
で行われるDFBレーザに比較して設計上の自由度が多
く、更に優れたレーザの実現が期待されている。In this way, a DBR laser in which the carrier injection region of the active layer 23 that amplifies light and the region in which light is returned by the corrugation 27 are spatially separated is compared to a DFB laser in which both functions are performed in the same region. There are many degrees of freedom in design, and it is expected that even better lasers will be realized.
以上説明した様にDBRレーザは単一波長発振に晟も適
しており、高速変調時にも単一波長発振が保たれる光通
信の光源などに開発が進められているが、前記従来例の
DBRレーザでは、光を帰還する領域において光が活性
層23により吸収されるために帰還量が弱められ、良好
な発振特性が実現し難いという問題があり、その解決が
要望されている。As explained above, DBR lasers are suitable for single-wavelength oscillation, and are being developed as light sources for optical communications that maintain single-wavelength oscillation even during high-speed modulation. In lasers, there is a problem in that the amount of feedback is weakened because the light is absorbed by the active layer 23 in the region where the light is returned, making it difficult to achieve good oscillation characteristics, and a solution to this problem is desired.
前記問題点は、先導波路の一部分が対向する電極間に挟
まれて量子井戸構造を有する活性領域と光ガイド層とを
備え、
該先導波路の該電極に挟まれない部分は光を選択的に帰
還する回折格子を備えて量子井戸構造を有せず、かつ該
活性領域のレーザ発振にががわる電子と正孔間のエネル
ギー準位差よりバンドギャップが大きい半導体層からな
る本発明による半導体発光装置により解決される。The problem is that a part of the guide waveguide is sandwiched between opposing electrodes and includes an active region having a quantum well structure and a light guide layer, and a part of the guide wavepath that is not sandwiched between the electrodes selectively transmits light. A semiconductor light emitting device according to the present invention comprising a semiconductor layer that is equipped with a feedback diffraction grating, does not have a quantum well structure, and has a band gap larger than the energy level difference between electrons and holes that are involved in laser oscillation in the active region. Solved by the device.
本発明によれば、DBRレーザの活性領域を量子井戸構
造とし、先導波路の回折格子を形成してキャリアを注入
しない部分には、例えば不純物を拡散し活性領域の延長
部分を無秩序化して、量子井戸構造が存在しない状態と
する。According to the present invention, the active region of the DBR laser has a quantum well structure, and the portion where carriers are not injected by forming the diffraction grating of the guiding waveguide is diffused with impurities to disorder the extended portion of the active region, thereby forming a quantum well structure. Assume that no well structure exists.
加えて量子井戸構造の構成を予め選択してこの無秩序化
した半m体層のバンドギャップを、活性領域でレーザ発
振にかかわる電子と正孔のサブバンド間のエネルギー準
位差より大きくすることにより、発振波長の光が光導波
路の回折格子を形成した帰還領域で吸収されることなく
、大きい帰還率が得られ発振特性が向上する。In addition, by selecting the configuration of the quantum well structure in advance and making the band gap of this disordered semi-m-layer larger than the energy level difference between the electron and hole subbands involved in laser oscillation in the active region, , the light at the oscillation wavelength is not absorbed in the feedback region formed by the diffraction grating of the optical waveguide, resulting in a large feedback rate and improved oscillation characteristics.
以下本発明を実施例により具体的に説明する一0第1図
は本発明の実施例の光導波路を縦断する模式側断面図で
あり、例えば下記の様に製造される。The present invention will be described in detail below with reference to Examples.10 FIG. 1 is a schematic side sectional view taken longitudinally of an optical waveguide according to an example of the present invention, which is manufactured, for example, in the following manner.
すなわち、n型GaAs半導体基板工上に分子線エピタ
キシャル成長(MBE)法等により、先ずクラッド層2
、活性領域とする多重量子井戸構造3、ガイド層4を例
えば下記の様に成長する。That is, first, a cladding layer 2 is formed on an n-type GaAs semiconductor substrate using a molecular beam epitaxial growth (MBE) method or the like.
, a multi-quantum well structure 3 serving as an active region, and a guide layer 4 are grown, for example, as follows.
4 A1.Ga+−、As(x=0.15) p
−lXl0Il′30Qnm3 多重量子井戸:3aX
6層+3b×5層3b AlxGal−MAs(xJ
、3) ノンドープ 7nm3a AlXGa+
−、As(x=0.05) ノンドープ 7nm2
八1.Ga、−XAs(x=0.4)
n−2X101a 3−このAlGaAsガイド
層4表面の1部に、回折格子のコルゲーション7を例え
ば周期245nm、深さ5゜nm程度として形成する。4 A1. Ga+-, As (x=0.15) p
-lXl0Il'30Qnm3 Multiple quantum well: 3aX
6 layers + 3b x 5 layers 3b AlxGal-MAs (xJ
, 3) Non-doped 7nm3a AlXGa+
-, As (x=0.05) non-doped 7nm2
81. Ga, -XAs (x=0.4)
n-2X101a 3-On a part of the surface of this AlGaAs guide layer 4, a corrugation 7 of a diffraction grating is formed with a period of 245 nm and a depth of about 5 nm, for example.
このコルゲーション7のパターンは従来技術により2光
束干渉法を適用して形成する。The pattern of this corrugation 7 is formed by applying a two-beam interference method using a conventional technique.
再びMB2法等により、クラッド層5、コンタクト層6
を例えば下記の様に成長する。The cladding layer 5 and the contact layer 6 are formed again by the MB2 method etc.
For example, grow as shown below.
符号 組成 不純物 厚さcm
−”
6 GaAs p−7X10”
300nm5 AlxGa+−x^5(x=0.
4) p−lXl0” 3−この半導体基体のコ
ルゲーション7を形成した部分において、GaAsコン
タクト層6の表面からn型AlGaAsクラッド層2に
達する範囲8に不純物例えば亜鉛(Zn)を拡散する。Code Composition Impurity Thickness cm
-”6 GaAs p-7X10”
300nm5 AlxGa+-x^5 (x=0.
4) p-lXl0'' 3-In the portion of this semiconductor substrate where the corrugations 7 are formed, an impurity such as zinc (Zn) is diffused into a range 8 extending from the surface of the GaAs contact layer 6 to the n-type AlGaAs cladding layer 2.
この拡散は例えば砒化亜鉛(ZnAs)をソースとし、
温度700℃程度で表面濃度をI Xl01″cm−’
程度とする。なおこの不純物拡散による量子井戸構造の
無秩序化を前記コルゲーション7の形成前に実施しても
よい。This diffusion uses, for example, zinc arsenide (ZnAs) as a source,
At a temperature of about 700°C, the surface concentration is
degree. Note that this disordering of the quantum well structure by impurity diffusion may be performed before the formation of the corrugations 7.
次いで光導波路の幅を約3μmとするメサエッチングを
行って、例えばx =0.4程度のp型AlGaAs層
、n型AlGaAs層(何れも図示されない)を埋め込
み成長し、この半導体基体のコルゲーション7を形成せ
ず量子井戸構造3が保存されている部分のコンタクト層
6上にp側電極9、基板裏面にn側電極IOを配設する
。Next, mesa etching is performed to make the width of the optical waveguide about 3 μm, and a p-type AlGaAs layer and an n-type AlGaAs layer (none of which are shown) with x = 0.4, for example, are buried and grown, and the corrugation 7 of this semiconductor substrate is grown. A p-side electrode 9 is provided on the contact layer 6 in a portion where the quantum well structure 3 is preserved without being formed, and an n-side electrode IO is provided on the back surface of the substrate.
更に活性領域の量子井戸構造3及び回折格子のコルゲー
ジシン7の長さが例えばそれぞれ約200μlとなる位
置で襞間し、この襞間による端面に反射防止コーティン
グ11を施している。Furthermore, the quantum well structure 3 of the active region and the corrugated thin 7 of the diffraction grating are provided with folds at positions where the lengths are, for example, about 200 μl each, and an antireflection coating 11 is applied to the end face between the folds.
本実施例では、活性領域を構成する量子井戸構造3のレ
ーザ発振にかかわる基底準位の電子と正孔のサブバンド
端間のエネルギ一単位差は1.53eVで発振波長が0
.82μInであるのに対して、量子井戸構造3をZn
拡散により無秩序化した手厚体層のバンドギャップは約
1.6 eVで発振波長の光を吸収しない。In this example, the one unit energy difference between the subband edges of electrons and holes at the ground level involved in laser oscillation in the quantum well structure 3 constituting the active region is 1.53 eV, and the oscillation wavelength is 0.
.. 82 μIn, while the quantum well structure 3 is made of Zn.
The band gap of the thick layer disordered by diffusion is about 1.6 eV, and it does not absorb light at the oscillation wavelength.
上述の実施例は闇値電流が相当する前記従来例の例えば
50抛八程度から100mA程度に減少し、かつ主発振
モードと他の発振モード間の利得差が増大して、定格出
力の高速変調時のモード安定性が顕著に向上している。In the above-mentioned embodiment, the dark value current is reduced from, for example, about 50 mA in the conventional example to about 100 mA, and the gain difference between the main oscillation mode and other oscillation modes increases, resulting in high-speed modulation of the rated output. The mode stability is significantly improved.
以上説明した実施例はGaAs/AlGaAs系半導体
材料を用いているが、例えばインジウム燐/インジウム
ガリウム砒素燐(InP/ InGaAsP)系など、
他の半導体材料を用いる半導体発光装置についても、本
発明により同様の効果を得ることができる。Although the embodiments described above use GaAs/AlGaAs-based semiconductor materials, for example, indium phosphorous/indium gallium arsenide phosphorus (InP/InGaAsP)-based materials, etc.
Similar effects can be obtained by the present invention for semiconductor light emitting devices using other semiconductor materials.
以上説明した如く本発明によれば、DBrlレーザの光
吸収損失を防止して発振特性の向上が達成され、高速変
調時にも単一波長発振が良く保持されるレーザとして光
通信システム等に大きい効果を与える。As explained above, according to the present invention, the optical absorption loss of the DBrl laser is prevented and the oscillation characteristics are improved, and the laser has a great effect on optical communication systems, etc. as a laser that maintains single wavelength oscillation well even during high-speed modulation. give.
【図面の簡単な説明】
第1図は本発明の実施例の模式側断面図、第2図は従来
例の模式側断面図である。
図において、
lはn型GaAs14反、
2はn型AlGaAsクラッド層、
3は量子井戸構造の活性領域、
3aはそのA lGaAsウェル層、
3bはそのAlGaAsバリア層、
4はp型AlGaAsガイド層、
5はp型AlGaAsクラッド層、
6はp型^lGaAsコンタクト層、
7は回折格子のコルゲーション、
8は不純物を拡散した範囲、
9はp (uII電極、
10はn側電極、
11は反射防止コーティングを示す。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic side sectional view of an embodiment of the present invention, and FIG. 2 is a schematic side sectional view of a conventional example. In the figure, l is n-type GaAs14, 2 is n-type AlGaAs cladding layer, 3 is the active region of quantum well structure, 3a is the AlGaAs well layer, 3b is the AlGaAs barrier layer, 4 is the p-type AlGaAs guide layer, 5 is a p-type AlGaAs cladding layer, 6 is a p-type ^lGaAs contact layer, 7 is a corrugation of a diffraction grating, 8 is a region in which impurities are diffused, 9 is a p (uII electrode, 10 is an n-side electrode, 11 is an antireflection coating) shows.
Claims (1)
構造を有する活性領域と光ガイド層とを備え、 該光導波路の該電極に挟まれない部分は光を選択的に帰
還する回折格子を備えて量子井戸構造を有せず、かつ該
活性領域のレーザ発振にかかわる電子と正孔間のエネル
ギー準位差よりバンドギャップが大きい半導体層からな
ることを特徴とする半導体発光装置。[Claims] A portion of the optical waveguide is sandwiched between opposing electrodes and includes an active region having a quantum well structure and a light guide layer, and a portion of the optical waveguide that is not sandwiched between the electrodes selectively transmits light. 1. A semiconductor comprising a semiconductor layer that is equipped with a diffraction grating for feedback, does not have a quantum well structure, and has a band gap larger than the energy level difference between electrons and holes involved in laser oscillation in the active region. Light emitting device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16103586A JPS6316690A (en) | 1986-07-09 | 1986-07-09 | Semiconductor light emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16103586A JPS6316690A (en) | 1986-07-09 | 1986-07-09 | Semiconductor light emitting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6316690A true JPS6316690A (en) | 1988-01-23 |
Family
ID=15727356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16103586A Pending JPS6316690A (en) | 1986-07-09 | 1986-07-09 | Semiconductor light emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6316690A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0742620A1 (en) * | 1995-05-12 | 1996-11-13 | Thomson-Csf | Semi-conductor lasers |
US8472495B2 (en) | 2011-06-16 | 2013-06-25 | Mitsubishi Electric Corporation | Laser device and method of manufacture thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6215875A (en) * | 1985-07-12 | 1987-01-24 | Matsushita Electric Ind Co Ltd | Semiconductor device and manufacture thereof |
-
1986
- 1986-07-09 JP JP16103586A patent/JPS6316690A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6215875A (en) * | 1985-07-12 | 1987-01-24 | Matsushita Electric Ind Co Ltd | Semiconductor device and manufacture thereof |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0742620A1 (en) * | 1995-05-12 | 1996-11-13 | Thomson-Csf | Semi-conductor lasers |
FR2734097A1 (en) * | 1995-05-12 | 1996-11-15 | Thomson Csf | SEMICONDUCTOR LASER |
US5684817A (en) * | 1995-05-12 | 1997-11-04 | Thomson-Csf | Semiconductor laser having a structure of photonic bandgap material |
US8472495B2 (en) | 2011-06-16 | 2013-06-25 | Mitsubishi Electric Corporation | Laser device and method of manufacture thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5250462A (en) | Method for fabricating an optical semiconductor device | |
US5678935A (en) | Semiconductor optical waveguide and method of fabricating the same | |
US6256330B1 (en) | Gain and index tailored single mode semiconductor laser | |
US4318058A (en) | Semiconductor diode laser array | |
US6989550B2 (en) | Distributed feedback semiconductor laser equipment employing a grating | |
JPH0738204A (en) | Semiconductor optical device and manufacture thereof | |
EP0177221B1 (en) | Semiconductor laser | |
US5042049A (en) | Semiconductor optical device | |
JP3204485B2 (en) | Optical semiconductor device and manufacturing method thereof | |
EP0680119B1 (en) | Fabrication process for semiconductor optical device | |
US6287884B1 (en) | Buried hetero-structure InP-based opto-electronic device with native oxidized current blocking layer | |
EP0527615A1 (en) | Method of making tunable semiconductor laser | |
JPH07154024A (en) | Semiconductor laser | |
US5756373A (en) | Method for fabricating optical semiconductor device | |
GB2273813A (en) | Semiconductor laser with light modulator | |
US6560266B2 (en) | Distributed feedback semiconductor laser | |
JP2677232B2 (en) | Long wavelength semiconductor laser and manufacturing method thereof | |
JPH1022579A (en) | Light waveguide path structure, and semiconductor laser, modulator, and integrated semiconductor laser device using this light waveguide structure | |
JPS6316690A (en) | Semiconductor light emitting device | |
JP2003234541A (en) | Distributed feedback semiconductor laser element | |
JPH10242577A (en) | Semiconductor laser and method of manufacturing the same | |
CN115280609B (en) | Optics | |
US7042921B2 (en) | Complex coupled single mode laser with dual active region | |
JP2000353849A (en) | Optical semiconductor device and its manufacture | |
US5170404A (en) | Semiconductor laser device suitable for optical communications systems drive |