[go: up one dir, main page]

JPS63164165A - Cadmium electrode for alkaline storage battery and its manufacture - Google Patents

Cadmium electrode for alkaline storage battery and its manufacture

Info

Publication number
JPS63164165A
JPS63164165A JP61311390A JP31139086A JPS63164165A JP S63164165 A JPS63164165 A JP S63164165A JP 61311390 A JP61311390 A JP 61311390A JP 31139086 A JP31139086 A JP 31139086A JP S63164165 A JPS63164165 A JP S63164165A
Authority
JP
Japan
Prior art keywords
carbon fiber
cadmium
active carbon
activated carbon
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61311390A
Other languages
Japanese (ja)
Other versions
JPH0789487B2 (en
Inventor
Kazutaka Iwasaki
和隆 岩崎
Shoichi Ikeyama
正一 池山
Hiroshi Kawano
川野 博志
Isao Matsumoto
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61311390A priority Critical patent/JPH0789487B2/en
Publication of JPS63164165A publication Critical patent/JPS63164165A/en
Publication of JPH0789487B2 publication Critical patent/JPH0789487B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/246Cadmium electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • H01M10/526Removing gases inside the secondary cell, e.g. by absorption by gas recombination on the electrode surface or by structuring the electrode surface to improve gas recombination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a cadmium electrode to secure a good electron conductivity and to have almost no cycle deterioration in the gas absorption capacity, by using an active carbon fiber processed with fluorine contained resin. CONSTITUTION:This cadmium electrode is composed of an active substance layer which consists of an active carbon fiber with fluorine contained resin attached over the surface, and an active substance which consists of mainly cadmium oxide or cadmium hydroxide and a conductive core material on whose surface the active substance layer is formed. Since the water-repelling property of the fluorine contained resin is given to the surface of the active carbon fiber in such a composition, the hydrophobic property of the active carbon fiber is improved, and wetting to the alkaline solution can be controlled adequately. Moreover, since the surface of the active carbon fiber is protected from covering with the alkaline solution owing to the repeated charge and discharge, its catalystic property can be maintained for long. Cousequently, the gas absorption capacity of the cadmium electrode in which the active substance layer of dispersed active carbon fiber is formed is not deteriorated even though the charge and discharge cycle is repeated, and the original favorable condition can be maintained for a long period of time.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ニッケルーカドミウム電池などのアルカリ蓄
電池、特に密閉形電池に用いられるカドミウム電極の改
良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to improvements in cadmium electrodes used in alkaline storage batteries such as nickel-cadmium batteries, particularly in sealed batteries.

従来の技術 従来、この種のアルカリ蓄電池用カドミウム電極には、
導電性芯材に活物質と樹脂繊維、結着剤等を混合したペ
ーストを塗着するペースト式電極が一般的である。この
電極は、製造工程の複雑な焼結式電極に比べて製法が簡
単で、製造コストが安価で、かつ高エネルギー密度が得
られる長所を有している。そこで、近年アルカリ蓄電池
の高容量化に伴い、この電極製法が主流になりつつある
Conventional technology Conventionally, cadmium electrodes for this type of alkaline storage battery include:
Paste-type electrodes are common, in which a paste containing an active material, resin fibers, binder, etc. is applied to a conductive core material. This electrode has the advantage of being simpler to manufacture, cheaper to manufacture, and capable of providing a higher energy density than a sintered electrode, which requires a complicated manufacturing process. Therefore, as alkaline storage batteries have increased in capacity in recent years, this electrode manufacturing method has become mainstream.

しかし、ペースト式電極は、焼結基板に活物質を含浸し
た焼結式電極と比較して電子伝導性が低いうえ、過充電
時に正極から発生する酸素ガスのカドミウム負極による
吸収が劣る欠点があった。
However, paste-type electrodes have lower electronic conductivity than sintered electrodes in which a sintered substrate is impregnated with an active material, and they also have the disadvantage that the cadmium negative electrode absorbs oxygen gas generated from the positive electrode during overcharging. Ta.

そこで、電極の電子伝導性を向上させ、かつ同時に電極
の酸素ガスの吸収能力を改善するために、炭素繊維を活
性化した活性炭素繊維(あるいは繊維状活性炭ともいう
)を活物質中に分散させた活物質層を設けることが提案
されている。
Therefore, in order to improve the electron conductivity of the electrode and at the same time improve the oxygen gas absorption capacity of the electrode, activated carbon fiber (also called fibrous activated carbon), which is activated carbon fiber, is dispersed in the active material. It has been proposed to provide a layer of active material.

発明が解決しようとする問題点 しかしながら、このような従来の構成では、アルカリ水
溶液中で充電、放電のサイクルを繰り返すと、活性炭素
繊維の特性が劣化し、一般に考えられているカドミウム
電極によるガス吸収反応の次の2式において、 −02+H20+26−) 20H−−−−−−−−・
−(1)(1)式の電気化学的ガス吸収反応に関与する
活性炭素繊維の疎水性が低下して、(1)式の反応場と
考えられる活性炭素繊維における気・液・固の三相界面
が不安定な状態になり、活性炭素繊維による(1)式の
触媒効果が低下する傾向があった。したがって、カドミ
ウム電極のガス吸収能力が劣化し、電池内圧が上昇する
ため、電池のサイクル寿命が短いという問題点があった
Problems to be Solved by the Invention However, in such a conventional structure, repeated charging and discharging cycles in an alkaline aqueous solution deteriorate the properties of the activated carbon fiber, and the gas absorption by the cadmium electrode, which is generally thought to be In the following two equations of the reaction, -02+H20+26-) 20H--------
-(1) The hydrophobicity of the activated carbon fibers involved in the electrochemical gas absorption reaction of equation (1) decreases, causing the three types of gas, liquid, and solid in the activated carbon fibers, which are considered to be the reaction sites of equation (1), to decrease. The phase interface became unstable, and the catalytic effect of formula (1) by the activated carbon fibers tended to decrease. Therefore, the gas absorption ability of the cadmium electrode deteriorates and the internal pressure of the battery increases, resulting in a short cycle life of the battery.

本発明は、このような問題点を解決するもので、活性炭
素繊維の充放電サイクルによる特性劣化を防止すること
を目的とするものである。
The present invention solves these problems and aims to prevent the deterioration of characteristics of activated carbon fibers due to charge/discharge cycles.

問題点を解決するだめの手段 この問題点を解決するだめに本発明は、フッ素樹脂を表
面に付着させた活性炭素繊維と、酸化カドミウムもしく
は水酸化カドミウムを主とする活物質からなる活物質層
と、前記活物質層を表面に形成した導電性芯材からなる
ことを特徴とするものである。
Means to Solve the Problem In order to solve this problem, the present invention provides an active material layer consisting of activated carbon fibers with a fluororesin attached to the surface and an active material mainly composed of cadmium oxide or cadmium hydroxide. and a conductive core material having the active material layer formed on its surface.

作用 この構成によって、活性炭素繊維の表面に7ノ素樹脂の
撥水性が付与されるので、活性炭素繊維の疎水性が向上
し、アルカリ水溶液に対するぬれを適切にコントロール
できる。この構成により前記(1)式の反応場である気
、液、固の三相界面を長期間にわたって安定に保持する
ことが可能となる。
Function: With this configuration, the surface of the activated carbon fibers is given the water repellency of the 7-no-resin, so the hydrophobicity of the activated carbon fibers is improved, and wetting with an alkaline aqueous solution can be appropriately controlled. This configuration makes it possible to maintain the three-phase interface of gas, liquid, and solid, which is the reaction field of the above formula (1), stably for a long period of time.

つまり、充放電のくり返しによりアルカリ水溶液で活性
炭素繊維表面が被覆されることを防止し、その触媒能を
長期間維持できる。このことから活性炭素繊維を分散さ
せた活物質層を有するカドミウム電極のガス吸収能力が
、充放電サイクル数とともに劣化することなく、初期の
好ましい状態を長期間にわたって維持することとなる。
In other words, the activated carbon fiber surface is prevented from being coated with an alkaline aqueous solution due to repeated charging and discharging, and its catalytic ability can be maintained for a long period of time. From this, the gas absorption ability of a cadmium electrode having an active material layer in which activated carbon fibers are dispersed does not deteriorate with the number of charge/discharge cycles, and maintains its initial favorable state over a long period of time.

実施例 以下本発明の実施例を詳述する。Example Examples of the present invention will be described in detail below.

フッ素樹脂をその表面に付着させた活性炭素繊維(以下
フッ素樹脂処理活性炭素繊維という)は次のようにして
作成した。Swt% の四フッ化エチレン懸濁液に活性
炭素繊維(直径6〜16μm。
Activated carbon fibers having a fluororesin attached to their surfaces (hereinafter referred to as fluororesin-treated activated carbon fibers) were prepared as follows. Swt% of activated carbon fibers (6 to 16 μm in diameter) in a suspension of tetrafluoroethylene.

長さ3〜57ff、平均細孔直径20〜40人、比表面
積600〜120 oi/f 、アクリル繊維系活性炭
素繊維)を浸漬し、乾燥してフッ素樹脂処理活性炭素繊
維を得た。
A acrylic activated carbon fiber having a length of 3 to 57 ff, an average pore diameter of 20 to 40 pores, a specific surface area of 600 to 120 oi/f was immersed and dried to obtain a fluororesin-treated activated carbon fiber.

主活物質としての酸化カドミウム粉末1oO重量部に対
し、前記のフッ素樹脂処理活性炭素繊維を0.6重量部
加えて混合し、これにポリビニルアルコールのエチレン
グリコール溶液を適量加えて混練し、ペースト状にする
。このペーストを厚さQ、1ffのニッケルメッキした
開孔鉄板からなる芯材に塗着、乾燥後、公知の方法で化
成処理を行なって、厚さ約0.5fflJ+の極板を得
た。
To 100 parts by weight of cadmium oxide powder as the main active material, 0.6 parts by weight of the above-mentioned fluororesin-treated activated carbon fibers is added and mixed, and an appropriate amount of an ethylene glycol solution of polyvinyl alcohol is added and kneaded to form a paste. Make it. This paste was applied to a core material consisting of a nickel-plated perforated iron plate having a thickness of Q and 1 ff, and after drying, a chemical conversion treatment was performed by a known method to obtain an electrode plate with a thickness of about 0.5 fflJ+.

この本発明品の比較例としてフッ素樹脂処理活性炭素繊
維を通常の活性炭素繊維に置きかえて、前記本発明品の
場合と同様にして、比較用極板を得た。この本発明によ
る電極と比較用電極とを公知の構成方法によって焼結式
ニッケル電極と組み合わせて、本発明のカドミウム電極
を用いた電池人と、比較用電極を用いた電池Bを作成し
た。この人、Bの密閉形ニッケルーカドミウムアルカリ
蓄電池(公称容量500mAh、単3サイズ)を用いて
、過充電時の電池内圧のサイクル変化を比較した。
As a comparative example of the product of the present invention, a comparative electrode plate was obtained in the same manner as in the case of the product of the present invention, except that the fluororesin-treated activated carbon fibers were replaced with ordinary activated carbon fibers. The electrode according to the present invention and the comparative electrode were combined with a sintered nickel electrode using a known construction method to create a battery using the cadmium electrode according to the present invention and a battery B using the comparative electrode. This person used B's sealed nickel-cadmium alkaline storage battery (nominal capacity 500mAh, AA size) to compare the cycle changes in battery internal pressure during overcharging.

図は、0.1C電流で15時間充電し、0.20電流で
放電のサイクルを繰り返し、その途中の10サイクル目
と50サイクル目の充電のみを1C電流で2時間行い、
前記充電終了後0.2 G電流で放電した時の電池内圧
変化を示す。A−1は本発明電池人の1Qプサイル充電
時の内圧で、人−2は50サイクル充電時の内圧を示す
。同様に、B−1、B−2は比較電池Bの10サイクル
、50サイクル充電時の内圧である。
The figure shows a cycle of charging with a 0.1C current for 15 hours and discharging with a 0.20 current, and then charging only the 10th and 50th cycles in the middle with a 1C current for 2 hours.
The graph shows the change in internal pressure of the battery when discharging at a current of 0.2 G after the end of the charging. A-1 indicates the internal pressure of the battery according to the present invention during 1Q psi charge, and A-2 indicates the internal pressure during 50 cycles of charging. Similarly, B-1 and B-2 are the internal pressures of comparative battery B when charged for 10 cycles and 50 cycles.

図より明らかなように、充放サイクルの繰り返しにより
、比較電池Bの内圧上昇は著しいが、本発明電池人の内
圧上昇はわずかである。図において、電池A、Bの放電
時の圧力は大気圧との差が認められず(すなわち、図中
では0に近い内圧値)過充電時の圧力上昇は酸素ガスに
起因すると考えられる。したがって電池人、B間のサイ
クルによる前記圧力上昇の差は、酸素ガス吸収能力のサ
イクル変化に電池A、Bの能力差があることを示してい
る。つまり、酸素ガス吸収能力の違いは、電池人のカド
ミウム電極の活物質層内に含まれる活性炭素繊維の特性
がフッ素樹脂処理により劣化せず、その結果電池人のカ
ドミウム電極のガス吸収能力が好ましい初期状態で維持
されていると考えられる。
As is clear from the figure, as a result of repeated charging and discharging cycles, the internal pressure of Comparative Battery B increased significantly, but the internal pressure of the battery of the present invention increased only slightly. In the figure, there is no difference between the pressures of batteries A and B during discharging and the atmospheric pressure (that is, the internal pressure value is close to 0 in the figure), and the pressure increase during overcharging is thought to be caused by oxygen gas. Therefore, the difference in pressure increase due to cycles between batteries A and B indicates that there is a difference in capacity between batteries A and B in cycle changes in oxygen gas absorption capacity. In other words, the difference in oxygen gas absorption capacity is that the properties of the activated carbon fibers contained in the active material layer of the battery's cadmium electrode do not deteriorate due to fluororesin treatment, and as a result, the gas absorption capacity of the battery's cadmium electrode is favorable. It is considered that it is maintained in its initial state.

次に、活性炭素繊維の表面に付着させるフッ素樹脂の量
を検討するため、次表に示す4種の濃度の四フッ化エチ
レ/懸濁液でフッ素樹脂処理した活性炭素繊維を作成し
た。又この4種と無処理の活性炭素繊維を用いて、前記
本発明電池人と同様の方法で5種類の電池C,D、E、
F、Gを作成した。
Next, in order to examine the amount of fluororesin to be attached to the surface of activated carbon fibers, activated carbon fibers were prepared that were treated with fluororesin using ethylene tetrafluoride/suspension at four concentrations shown in the following table. Furthermore, using these four types and untreated activated carbon fiber, five types of batteries C, D, E,
Created F and G.

(以下余白) これらの電池を1C電流で1.5時間充電し、1G電流
放電のサイクル試験にかけて、1oサイクルおよび10
0サイクル充電時の電池内圧の最大値と、6oプサイル
放電時の放電中間電圧を調べた結果を表に示す。表より
フッ素樹脂処理なしの電池Gは6oサイクルの放電中間
電圧が1.2vと高くて電子伝導性は良好であるが、1
00サイクルの電池内圧最大値が15kg/clと非常
に高く、無処理であるのでガス吸収能力が他の4種に比
べて著しく劣化したと考えられる。一方、高濃度(2o
wt%)フッ素樹脂懸濁液処理の電池Cは、電池内圧最
大値がサイクルを繰り返しても若干の上昇にとどまり、
ガス吸収能力は良好に維持されているが、放電中間電圧
が1.05 Vと他よりも低くなり、電圧特性が劣って
いた。これは、活性炭素繊維を高濃度のフッ素樹脂懸濁
液で処理したことにより、電極の電子伝導性が低下した
ためと考えられる。
(Left below) These batteries were charged with a 1C current for 1.5 hours and subjected to a 1G current discharge cycle test for 1o cycles and 10
The table shows the results of investigating the maximum value of the battery internal pressure during 0-cycle charging and the discharge intermediate voltage during 6o psi discharge. From the table, Battery G without fluororesin treatment has a high discharge intermediate voltage of 1.2 V in 6 o cycles and good electronic conductivity, but 1
The maximum internal pressure of the battery at cycle 00 was very high at 15 kg/cl, and because no treatment was used, it is thought that the gas absorption capacity was significantly deteriorated compared to the other four types. On the other hand, high concentration (2o
wt%) In battery C treated with fluororesin suspension, the maximum internal pressure of the battery only increased slightly even after repeated cycles;
Although the gas absorption ability was maintained well, the discharge intermediate voltage was 1.05 V, lower than the others, and the voltage characteristics were poor. This is thought to be because the electronic conductivity of the electrode was reduced by treating the activated carbon fibers with a highly concentrated fluororesin suspension.

これら電池G、Cに対して、電池Fはフッ素樹脂処理に
よりガス吸収能力が向上して充電時電池内圧の最大値が
低くなり、電池りは処理濃度を低めたことにより電子伝
導性が向上して放電中間電圧が高くなって、F、Dいず
れも電池特性が改善されている。しかし、Swt% フ
ッ素樹脂懸濁液処理の電池Eが、ガス吸収能力の長期間
維持と、電子伝導性の両面において最も優れていること
は表より明らかである。したがって、活性炭素繊維のフ
ッ素樹脂量は、)凹濁液濃度が2wt%をこえて、15
wt%をこえないフッ素樹脂懸濁液で処理した時に付着
する量が、電池特性上最適であると考えられる。
In contrast to these batteries G and C, battery F has improved gas absorption ability through fluororesin treatment, resulting in a lower maximum internal battery pressure during charging, and battery resin has improved electron conductivity due to lower treatment concentration. The discharge intermediate voltage is increased, and the battery characteristics of both F and D are improved. However, it is clear from the table that Battery E treated with Swt% fluororesin suspension is the best in both long-term maintenance of gas absorption capacity and electronic conductivity. Therefore, the amount of fluororesin in the activated carbon fiber is 15
It is considered that the amount that adheres when treated with a fluororesin suspension that does not exceed wt% is optimal in terms of battery characteristics.

発明の効果 以上のように本発明によれば、フン素樹脂処理した活性
炭素繊維を用いることにより、良好な電子伝導性が確保
され、ガス吸収能力のサイクル劣化がほとんどないカド
ミウム電極が得られ、サイクル寿命の優れたニッケルー
カドミウムアルカリ蓄電池が提供できるという効果が得
られる。
Effects of the Invention As described above, according to the present invention, by using activated carbon fibers treated with fluororesin, a cadmium electrode can be obtained which ensures good electronic conductivity and has almost no cycle deterioration in gas absorption capacity. The effect is that a nickel-cadmium alkaline storage battery with excellent cycle life can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、本発明電池と比較電池との充放電サイクルによる
電池内圧の変化を示す図である。
The figure is a diagram showing changes in battery internal pressure due to charging/discharging cycles of a battery of the present invention and a comparative battery.

Claims (2)

【特許請求の範囲】[Claims] (1)酸化カドミウムもしくは水酸化カドミウムを主と
する活物質層を導電性芯材に支持させてなるカドミウム
電極であって、前記活物質層内に、フッ素樹脂を表面に
付着させた活性炭素繊維を含有したことを特徴とするア
ルカリ蓄電池用カドミウム電極。
(1) A cadmium electrode formed by supporting an active material layer mainly composed of cadmium oxide or cadmium hydroxide on a conductive core material, wherein the active material layer contains activated carbon fibers with a fluororesin attached to the surface. A cadmium electrode for an alkaline storage battery characterized by containing.
(2)フッ素樹脂付着の活性炭素繊維は、活性炭素繊維
をフッ素樹脂濃度が2〜15wt%の懸濁液に浸漬して
付着させ、これを活物質中に混入することを特徴とする
アルカリ蓄電池用カドミウム電極の製造法。
(2) Activated carbon fibers with fluororesin attached are an alkaline storage battery characterized in that activated carbon fibers are immersed in a suspension with a fluororesin concentration of 2 to 15 wt% to be attached, and this is mixed into the active material. Manufacturing method of cadmium electrode for use.
JP61311390A 1986-12-25 1986-12-25 Cadmium electrode for alkaline storage battery and manufacturing method thereof Expired - Lifetime JPH0789487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61311390A JPH0789487B2 (en) 1986-12-25 1986-12-25 Cadmium electrode for alkaline storage battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61311390A JPH0789487B2 (en) 1986-12-25 1986-12-25 Cadmium electrode for alkaline storage battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS63164165A true JPS63164165A (en) 1988-07-07
JPH0789487B2 JPH0789487B2 (en) 1995-09-27

Family

ID=18016607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61311390A Expired - Lifetime JPH0789487B2 (en) 1986-12-25 1986-12-25 Cadmium electrode for alkaline storage battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0789487B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109411759A (en) * 2018-10-25 2019-03-01 江苏海四达电源股份有限公司 A kind of high temperature modification lithium-ion-power cell and its pre- chemical synthesizing method
JPWO2022050211A1 (en) * 2020-09-01 2022-03-10

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109411759A (en) * 2018-10-25 2019-03-01 江苏海四达电源股份有限公司 A kind of high temperature modification lithium-ion-power cell and its pre- chemical synthesizing method
JPWO2022050211A1 (en) * 2020-09-01 2022-03-10
WO2022050211A1 (en) * 2020-09-01 2022-03-10 帝人株式会社 Resin-bonded fiber, and active material layer , electrode, and nonaqueous electrolyte secondary battery using same
CN116113731A (en) * 2020-09-01 2023-05-12 帝人株式会社 Resin binder fiber, and active material layer, electrode and nonaqueous electrolyte secondary battery using same

Also Published As

Publication number Publication date
JPH0789487B2 (en) 1995-09-27

Similar Documents

Publication Publication Date Title
JPS63164165A (en) Cadmium electrode for alkaline storage battery and its manufacture
JP3178018B2 (en) Paste cadmium cathode plate for alkaline storage batteries
JP3114419B2 (en) Sealed storage battery
JPH02281560A (en) Nickel-hydrogen alkaline storage battery
JP3203083B2 (en) Alkaline storage battery
JP3744677B2 (en) Method for producing sintered cadmium negative electrode
JPH10275619A (en) Paste cadmium electrode
JPH0715815B2 (en) Method for producing paste type cadmium cathode plate for alkaline storage battery
JPH04162353A (en) Seal alkaline secondary battery
JP2692795B2 (en) Paste type cadmium cathode for alkaline storage battery
JP3241441B2 (en) Cadmium negative electrode for alkaline storage batteries
JPS60117549A (en) Manufacture of lead-acid battery
JPH0410181B2 (en)
JPH0417260A (en) Cadmium negative electrode for alkaline storage battery
JPH01267950A (en) Separator for battery
JPH01267958A (en) Cadmium negative electrode for alkaline storage battery and its manufacture
JPH01286254A (en) Cadmium negative electrode for alkaline storage battery
JPH0432158A (en) Closed lead acid battery
JPS63164162A (en) Cadmium negative electrode for alkaline storage battery
JPS61138472A (en) Alkaline battery
JPH01130469A (en) Cadmium negative electrode for alkaline storage battery
JPS62184764A (en) Cadmium negative electrode for alkaline storage battery
JPH0419963A (en) Cadmium negative electrode for use in alkaline storage battery
JPS63221558A (en) Cadmium negative electrode for alkaline storage battery
JPS63146360A (en) Cadmium electrode for alkaline storage battery