[go: up one dir, main page]

JPS63163304A - Laser light absorptive glass filter - Google Patents

Laser light absorptive glass filter

Info

Publication number
JPS63163304A
JPS63163304A JP31098186A JP31098186A JPS63163304A JP S63163304 A JPS63163304 A JP S63163304A JP 31098186 A JP31098186 A JP 31098186A JP 31098186 A JP31098186 A JP 31098186A JP S63163304 A JPS63163304 A JP S63163304A
Authority
JP
Japan
Prior art keywords
filter
glass
laser light
laser
light absorptive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31098186A
Other languages
Japanese (ja)
Inventor
Tamenobu Yamamoto
為信 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamamoto Kogaku Co Ltd
Original Assignee
Yamamoto Kogaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamamoto Kogaku Co Ltd filed Critical Yamamoto Kogaku Co Ltd
Priority to JP31098186A priority Critical patent/JPS63163304A/en
Publication of JPS63163304A publication Critical patent/JPS63163304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)

Abstract

PURPOSE:To provide the titled glass filter which is not broken in a short period when subjected to direct irradiation of lasers of middle and small outputs by forming the filter of a glass material which contains a laser light absorptive component and contains >=90wt.% SiO2. CONSTITUTION:The content of SiO2 in the glass filter contg. the laser light absorptive component is specified to >=90wt.%. The filter is, therefore, capable of maintaining the physical property as quartz glass, i.e., a high m.p. and low coefft. of expansion even if the filter contains the laser light absorptive component. Generation of a crack arising from the melting of the irradiated part and the local thermal melting thereof is thereby effectively prevented even if the laser of the middle or small output, for example, about 50W, is directly projected to the local part of the filter. Generation of the failure in the filter by the direction irradiation for a short period is thus obviated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、レーザ光線に対する保護眼鏡や遮蔽部材に使
用されるガラスフィルターに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a glass filter used for protective glasses or shielding members against laser beams.

(従来の技術とその問題点) 従来、レーザ光吸収フィルターとして、ポリカーボネイ
トやアクリル樹脂などの合成樹脂に有機物のレーザ光吸
収色素を練り込んで成形したもの、あるいはソーダ石灰
ガラスや硼珪酸ガラスにレーザ光吸収成分を添加して成
形したものが使用されている。
(Conventional technology and its problems) Conventionally, laser light absorption filters have been molded by kneading organic laser light absorption dyes into synthetic resins such as polycarbonate or acrylic resin, or by molding laser light absorption filters into soda lime glass or borosilicate glass. Molded products with added light-absorbing components are used.

しかしながら、このようなフィルターは、エネルギー密
度の高いレーザ光線が照射されると、合成樹脂製のもの
では照射部が溶融して穴があき、またガラスフィルター
の場合でも、照射部が部分的に熱膨張を起こしてフィル
ター全体が破壊してしまう。このため、フィルターとし
ての機能が失なわれるばかりでなく、失明に致るなど致
命的な人身事故を招来する虞れがあった。
However, when such filters are irradiated with a laser beam with high energy density, the irradiated area of synthetic resin filters melts and holes form, and even in the case of glass filters, the irradiated area becomes partially heated. It will expand and destroy the entire filter. For this reason, there was a risk that not only the function as a filter would be lost, but also fatal accidents such as blindness could occur.

特に、近年、医療用レーザや実験用レーザ等の中小型出
力のレーザ装置が普及するにつれて、このような虞れが
強く指摘されている。
In particular, in recent years, as small and medium-sized output laser devices such as medical lasers and experimental lasers have become widespread, such a risk has been strongly pointed out.

本発明はかかる問題点に鑑みなされたもので、中小型出
力のレーザの直接照射に対して、短時間では破損せず、
破損に敗る前に危険防止行動を容易にとることができる
レーザ光吸収フィルターを提供することを目的とする。
The present invention was developed in view of the above problems, and is designed to be able to withstand direct irradiation with a small to medium output laser without being damaged in a short period of time.
It is an object of the present invention to provide a laser light absorption filter that allows danger prevention actions to be easily taken before succumbing to damage.

(問題点を解決するための手段) 上記目的を達成するために講じられた本発明のフィルタ
ーは、レーザ光吸収成分を有し、かつ5i02含有量が
90重量%以上とされているガラス材で形成されている
ことを構成とするものである。
(Means for Solving the Problems) The filter of the present invention taken to achieve the above object is made of a glass material that has a laser beam absorption component and has a 5i02 content of 90% by weight or more. It is a configuration that is formed.

(作  用) ガラスフィルターの組成において、5t02含有量が9
0重量%以上とされているので、レーザ光吸収′成分を
有しているにも拘らず、高融点かつ低膨張率という石英
ガラスとしての物理的性質を保持することができ、50
W程度の中小型出力のレーザがフィルターに局部的に直
接照射されても、照射部の熔融や局部的な熱膨張に伴う
割れの発生を有効に防止することができ、短時間の直接
照射ではフィルターに破損が生じない。
(Function) In the composition of the glass filter, the 5t02 content is 9
0% by weight or more, it is possible to maintain the physical properties of quartz glass, such as a high melting point and a low coefficient of expansion, even though it has a laser beam absorption component.
Even if the filter is locally directly irradiated with a small to medium output laser of about W, it can effectively prevent the melting of the irradiated part and the occurrence of cracks due to local thermal expansion. No damage to the filter.

(実施例) 本発明のガラスフィルターは、その組成中にレーザ光吸
収成分を有し、かつSiO□含有量が90ffi量%以
上とされている。
(Example) The glass filter of the present invention has a laser light absorbing component in its composition, and the SiO□ content is 90ffi% or more.

5i02含有量が90%未満では、石英ガラスとしての
物理的特性の劣化が著しく、所要の高融点、低膨張率を
確保することができず、出力50Wのレーザ光線の直接
照射によって破損する虞れがあるからである。
If the 5i02 content is less than 90%, the physical properties of quartz glass will deteriorate significantly, making it impossible to secure the required high melting point and low expansion coefficient, and there is a risk of damage due to direct irradiation with a laser beam with an output of 50 W. This is because there is.

本発明においては、医療用レーザの標準的出力である5
0Wを基準とし、この出力によるレーザ光線の1分間直
接照射によって破損しないことをガラス組成限定の条件
とした。
In the present invention, the standard output of a medical laser is 5.
The glass composition was limited to 0 W as a reference, and the glass composition must not be damaged by direct irradiation with a laser beam at this output for 1 minute.

レーザ光吸収成分としては、アルゴンレーザ用として硫
化カドミウム、コバルトイオン、金コロイドを例示する
ことができ、ルビーレーザ用とし     −て銅イオ
ン、コバルトイオンを例示することかでき、Nd −Y
AG レーザ用として銅イオン、鉄イオンを例示するこ
とができ、CO,レーザ用として鉄イオン、チタンイオ
ン、クロムイオンを例示することができる。
Examples of laser light absorption components include cadmium sulfide, cobalt ions, and gold colloids for argon lasers, copper ions and cobalt ions for ruby lasers, and Nd-Y.
Copper ions and iron ions can be used as examples for AG lasers, and iron ions, titanium ions, and chromium ions can be used as examples for CO and lasers.

これらの光吸収成分の含有量としては、0.1〜5重量
%の範囲が好ましい。0.1%未満では光吸収量が少な
く、一方、5%を越えると、レーザ光の吸光度は大きく
なるが、可視光線の透過率も減少し、フィルターを透し
ての対象物の視認が困難となる。
The content of these light-absorbing components is preferably in the range of 0.1 to 5% by weight. If it is less than 0.1%, the amount of light absorbed will be small, while if it exceeds 5%, the absorbance of laser light will increase, but the transmittance of visible light will also decrease, making it difficult to see the object through the filter. becomes.

尚、レーザ光吸収成分は、吸光度が4以上となるように
含有させることが望ましい。その理由は、出力50Wク
ラスのレーザ光を直視して、人体が異常を感じ防護動作
に移るまでの時間を0.25秒とすると、 ANSr(
八MHI?ICAN  NATIONAL  5TAN
DARロ ■N5TITtlTE  Z −136,1
)980)に規定された最大許容露光量以下にするため
には、吸光度を4以上とする必要があるからである。こ
こで、最大許容露光量とは、眼もしくは皮膚に危険な影
響又は有害な生体変化なしで、人体に露光されてもよい
レーザ放射のエネルギーレベルをいう。
Note that it is desirable that the laser light absorbing component be contained so that the absorbance is 4 or more. The reason for this is that if the time it takes for the human body to sense an abnormality and take protective action when looking directly at a laser beam with an output of 50W is 0.25 seconds, ANSr(
Eight MHI? ICAN NATIONAL 5TAN
DARRO ■N5TITtlTE Z -136,1
) 980), the absorbance needs to be 4 or more. Here, maximum permissible exposure refers to the energy level of laser radiation that the human body may be exposed to without dangerous effects on the eyes or skin or harmful biological changes.

本発明に係るフィルター用ガラスの製造は、光吸収成分
の粉末と水晶粉末との混合物を溶融すればよいが、光吸
収成分の単独添加が困難なものについては、予めソーダ
石灰ガラスや硼珪酸ガラスに添加しておき、このガラス
粉末を水晶粉末と混合溶融することにより容易に所期組
成のものが得られる。
The filter glass according to the present invention can be manufactured by melting a mixture of light-absorbing component powder and crystal powder, but if it is difficult to add the light-absorbing component alone, it may be necessary to melt the mixture of the light-absorbing component powder and quartz crystal powder. By mixing and melting this glass powder with quartz powder, a product having the desired composition can be easily obtained.

ところで、レーザ光のフィルター透過率を減少させるに
は、レーザ光吸収成分の含有のみならず、フィルター表
面にレーザ光を反射する反射膜を形成することが有効で
ある。この反射膜は、入射側又は透過側(入射側の反対
側)のいずれかの表面に形成すればよいが、後者の表面
に形成する方がレーザ光の直接照射による損傷を受けに
くく好適である。また、2枚のフィルターを反射膜を介
して重合して用いてもよい。
Incidentally, in order to reduce the filter transmittance of laser light, it is effective not only to include a laser light absorbing component but also to form a reflective film that reflects laser light on the filter surface. This reflective film may be formed on either the incident side or the transmission side (the side opposite to the incident side), but it is preferable to form it on the latter surface because it is less likely to be damaged by direct laser beam irradiation. . Alternatively, two filters may be used by polymerizing them with a reflective film interposed therebetween.

尚、レーザ光吸収成分を含有しない石英ガラス表面に反
射膜のみ形成することは、石英ガラス自体の光吸収性は
ほとんどないので、レーザ光の直接照射によって損傷を
受は易く、ひいては損傷部分から高エネルギーのレーザ
光が透過するので好ましくない。
Note that forming only a reflective film on the surface of quartz glass that does not contain any laser light absorbing components will result in damage from direct laser light irradiation, as the quartz glass itself has almost no light absorbing properties, and as a result, it will cause damage to occur from the damaged area. This is not preferable because the energetic laser light is transmitted through it.

反射膜を形成する物質として具体的に例示すると、アル
ゴンレーザ、ルビーレーザ、 Nd−YAGレーザ、 
 CO□レーザに対しては金、銀、Aff、Mg(単独
又は組合せ)が、C02レーザに対してはCu。
Specific examples of substances forming the reflective film include argon laser, ruby laser, Nd-YAG laser,
Gold, silver, Aff, Mg (alone or in combination) for CO□ lasers and Cu for CO2 lasers.

Moが、アルゴンレーザ、ルビーレーザに対してはZn
S−MgF2系干渉膜が、IJd −YAGレーザに対
しては八g  MgF2  Ag系干渉膜が有効である
Mo is Zn for argon laser and ruby laser
An S-MgF2-based interference film is effective, and an 8g MgF2-Ag-based interference film is effective for an IJd-YAG laser.

前記反射膜は、真空蒸着、イオンブレーティング等の薄
膜形成手段によって、数十〜数千人の厚さに形成される
The reflective film is formed to a thickness of several tens to several thousands of layers using a thin film forming method such as vacuum deposition or ion blating.

また、フィルターの入射側表面には、レーザ光の直接照
射によって肉眼認識可能な形態変化、例えば色彩や形状
変化の生じる感光層を形成することが好ましい。レーザ
光の照射状態の認識が容易となり、危険伺避行動がとり
易いからである。特に、目に見えない波長を有するレー
ザ光(例えば、赤外線域や紫外線域の波長のレーザ光)
に対して有効である。
Further, it is preferable to form a photosensitive layer on the entrance side surface of the filter, which causes a change in shape that can be recognized with the naked eye by direct irradiation with laser light, such as a change in color or shape. This is because it becomes easier to recognize the irradiation state of the laser beam and take action to avoid danger. In particular, laser light with invisible wavelengths (e.g., laser light with wavelengths in the infrared or ultraviolet range)
It is valid for

レーザ光が直接照射されると形態変化の生じる感光層と
して具体的には下記のものを例示することができる。
Specific examples of photosensitive layers that undergo a shape change when directly irradiated with laser light include the following.

アルゴンレーザ用としては、ポリカーボネイト。Polycarbonate for use with argon lasers.

アクリル樹脂、スチロール樹脂、塩化ビニル樹脂。Acrylic resin, styrene resin, vinyl chloride resin.

セルロース系樹脂等の透明合成樹脂をオレンジ色素、例
えば商品名カヤセットオレンジG、カヤセットオレンジ
A−N (いずれも日本化薬株式会社!I)を0.01
−0.5重量%添加したものを1〜3鰭厚に成形したも
のがよい。ルビーレーザ用としては、前記合成樹脂にク
リプトシアニンなどの色素を0.01〜0.5重量%添
加したものを0.5〜3龍厚に成形したものがよい。N
d −YAG レーザ用としては、前記合成樹脂に商品
名IR−126(アメリカンサイアナミツド社製) 、
 IRF −1)00(富士写真フィルム株式会社製)
などの色素を0.0】〜0.5重量%添加したものを0
.5〜31)厚に成形したものがよい。炭酸ガスレーザ
用としては、着色の有無に拘らず前記合成樹脂を0.1
〜3龍厚に成形したものがよい。
A transparent synthetic resin such as a cellulose resin is treated with an orange dye such as Kayaset Orange G, Kayaset Orange A-N (both manufactured by Nippon Kayaku Co., Ltd.!I) at 0.01%.
-0.5% by weight added and molded to a thickness of 1 to 3 fins is preferable. For use in ruby lasers, a material obtained by adding 0.01 to 0.5% by weight of a dye such as cryptocyanine to the above synthetic resin and molding it to a thickness of 0.5 to 3 mm is preferable. N
For use with d-YAG lasers, the synthetic resin may include the product name IR-126 (manufactured by American Cyanamids),
IRF-1)00 (manufactured by Fuji Photo Film Co., Ltd.)
0.0 to 0.5% by weight of pigments such as
.. 5-31) Thick molded ones are better. For use in carbon dioxide lasers, the synthetic resin may be used at 0.1
It is best to mold it to a thickness of ~3 mm.

次に、具体的実施例、比較例および従来例を掲げて説明
する。尚、添加量、組成%はすべて重量%である。
Next, specific examples, comparative examples, and conventional examples will be described. It should be noted that all amounts added and composition percentages are percentages by weight.

〈実施例1〉 (1)水晶粉末98%に銅粉末2%を添加して2000
〜2200℃に加熱溶融し、これを炭素型の成形型に流
し込んで厚さ約4鶴の青緑色のフィルター原板を得た。
<Example 1> (1) Adding 2% copper powder to 98% crystal powder
The mixture was heated and melted at ~2200° C. and poured into a carbon mold to obtain a blue-green filter original plate with a thickness of about 4 mm.

この原板の両面を研摩して、厚さ3■璽のガラスフィル
ターを得た。
Both sides of this original plate were polished to obtain a glass filter with a thickness of 3 cm.

(2)  このガラスフィルターの波長1.06μmに
おける吸光度を測定したところ4以上であった。
(2) The absorbance of this glass filter at a wavelength of 1.06 μm was measured and was 4 or more.

尚、吸光度の測定は、紫外・可視・赤外分光光度計を使
用した。一般に、分光光度計は、吸光度が4以上の場合
、測定の感度限界を越えるため4以上という測定値しか
得られない。
The absorbance was measured using an ultraviolet/visible/infrared spectrophotometer. Generally, when the absorbance is 4 or more, a spectrophotometer can only obtain a measured value of 4 or more because it exceeds the measurement sensitivity limit.

+31  Nd−YAG レーザの出力をtoo wと
し、ビームiV 3 amとして1分間照射したが、フ
ィルターに異常は生じなかった。
Although the output of the +31 Nd-YAG laser was set too high and the beam was irradiated with iV 3 am for 1 minute, no abnormality occurred in the filter.

〈実施例2〉 (ll  実施例!(I)と同様にして製作したガラス
フィルターの表面片側に真空蒸着により、八g  Mg
F2−へg系の反射膜を形成した。
<Example 2> (ll Example! 8g Mg was deposited on one side of the surface of a glass filter manufactured in the same manner as in (I) by vacuum evaporation.
A F2-g-based reflective film was formed.

(2)実施例1(2)と同様にして、波長1.06μm
における吸光度を測定したところ4以上であった。
(2) Same as Example 1 (2), wavelength 1.06 μm
When the absorbance was measured, it was 4 or more.

(3)反射膜形成側を透過側として、実施例1(3)と
同様の条件でレーザ光線の直接照射を行ったが異常はな
かった。
(3) Direct irradiation with a laser beam was performed under the same conditions as in Example 1 (3) with the reflective film formation side set as the transmission side, but no abnormality was observed.

〈実施例3〉 (1)  硼珪酸ガラス(組成: 5ift 75%、
Na207%、820t 15%、ARlz(h 3%
)にガ−)ス組成で7%となるようにFeを添加して着
色ガラスを溶製した。
<Example 3> (1) Borosilicate glass (composition: 5ift 75%,
Na207%, 820t 15%, ARlz(h 3%
) and Fe was added to give a glass composition of 7% to produce a colored glass.

(2)  着色ガラス粉末20%と水晶粉末80%とを
混合し、2000〜2200℃に加熱熔融した後、これ
を成形型に流し込んで褐色のフィルター原板を得た。
(2) 20% colored glass powder and 80% quartz powder were mixed, heated and melted at 2000 to 2200°C, and then poured into a mold to obtain a brown filter original plate.

この両面を研摩して厚さ3龍のガラスフィルターを得た
。このガラスフィルターの組成は下記の通りであった。
Both surfaces of the filter were polished to obtain a glass filter with a thickness of 3 mm. The composition of this glass filter was as follows.

Stow?94.0%  、 Na 20   :t、
 3 %  、 BICh:2.8XALOi:  o
、aχ、 Fe  : 1.3 Z(3)実施例1と同
様にして波長1.06μmにおける吸光度を測定したと
ころ4以上であった。
Stow? 94.0%, Na20:t,
3%, BICh:2.8XALOi: o
, aχ, Fe: 1.3 Z (3) When the absorbance at a wavelength of 1.06 μm was measured in the same manner as in Example 1, it was 4 or more.

また、Nd−YAGレーザ(波長1.06μm 、ビー
ム径31■)を直接照射したところ、100WI分間で
は亀裂が生じたが、50W1分間では異常はなかった。
Further, when directly irradiated with a Nd-YAG laser (wavelength: 1.06 μm, beam diameter: 31 μm), cracks occurred after 100 WI minutes, but no abnormalities were observed after 50 W for 1 minute.

〈実施例4〉 +1)  実施例3(1)と同組成の硼珪酸ガラスにガ
ラス組成で6.8%となるようにCrを添加して着色ガ
ラスを溶製した。
<Example 4> +1) Cr was added to borosilicate glass having the same composition as in Example 3 (1) to give a glass composition of 6.8% to produce a colored glass.

(2)  着色ガラス粉末30%と水晶粉末70%とを
混合し、2000〜2200℃に加熱溶融した後、これ
を成形型に流し込んで緑色のフィルター原板を得た。
(2) 30% colored glass powder and 70% quartz powder were mixed, heated and melted at 2000 to 2200°C, and then poured into a mold to obtain a green filter base plate.

この両面を研摩して厚さ3龍のガラスフィルターを得た
。このガラスフィルターの組成は下記′の通りであった
Both surfaces of the filter were polished to obtain a glass filter with a thickness of 3 mm. The composition of this glass filter was as follows.

5iCh : 9L、0χ1、Na20  : 2.0
χ、Ba1t : 4.2X^9−0* :  0.8
X 、  Cr  : 2.0χ(3)波長10.6μ
mにおける吸光度を測定したところ4以上であった。
5iCh: 9L, 0χ1, Na20: 2.0
χ, Ba1t: 4.2X^9-0*: 0.8
X, Cr: 2.0χ(3) wavelength 10.6μ
When the absorbance at m was measured, it was 4 or more.

また、C02レーザ(波長10.6μm 、ビーム径3
1)、出力50W)を1分間直接照射したところ異常は
認められなかった。
In addition, C02 laser (wavelength 10.6 μm, beam diameter 3
1), an output of 50 W) was directly irradiated for 1 minute, and no abnormality was observed.

〈比較例1〉 (1)実施例3(1)と同組成の硼珪酸ガラスにガラス
組成で4.0%となるようにCrを添加して着色ガラス
を溶製した。
<Comparative Example 1> (1) Cr was added to borosilicate glass having the same composition as in Example 3 (1) to give a glass composition of 4.0% to produce a colored glass.

(2)着色ガラス粉末50%と水晶粉末50%とを混合
し、2000〜2200℃に加熱熔融した後、これを成
形型に流し込んで緑色のフィルター原板を得た。
(2) 50% colored glass powder and 50% quartz powder were mixed, heated and melted at 2000 to 2200°C, and then poured into a mold to obtain a green filter original plate.

この両面を研摩して厚さ3龍のガラスフィルターを得た
。このガラスフィルターの組成は下記の通りであった。
Both surfaces of the filter were polished to obtain a glass filter with a thickness of 3 mm. The composition of this glass filter was as follows.

5t02 : 86.0χ、Na20  ; 3.4χ
、BzO!: 7.2χ八9sCh  :  1.4X
  −Cr   : 2.0  χ(3)波長10.6
μmにおける吸光度を測定したところ4以上であった。
5t02: 86.0χ, Na20; 3.4χ
, BzO! : 7.2χ89sCh : 1.4X
-Cr: 2.0 χ(3) wavelength 10.6
When the absorbance in μm was measured, it was 4 or more.

しかし、CO,レーザ(波長10.6μm 、ビーム径
3鶴、出力50W)を直接照射したところ照射後50秒
後に破砕した。
However, when it was directly irradiated with CO and a laser (wavelength: 10.6 μm, beam diameter: 3, output: 50 W), it fractured 50 seconds after irradiation.

く比較例2〉 (1)市販の3龍厚の石英ガラス板に真空蒸若によりA
g−MgF2Ag系干渉反射膜(膜厚1.06μm)を
形成した。
Comparative Example 2〉 (1) A commercially available quartz glass plate with a thickness of 3 mm was coated with A by vacuum evaporation.
A g-MgF2Ag based interference reflection film (thickness: 1.06 μm) was formed.

(2)  この石英ガラス板について、実施例1と同様
にして波長1.06μmにおける吸光度を測定したとこ
ろ2.0であった。
(2) Regarding this quartz glass plate, the absorbance at a wavelength of 1.06 μm was measured in the same manner as in Example 1 and found to be 2.0.

また、実施例1と同様にしてNd −YAGレーザを直
接照射したところ、約10秒で反射膜が損傷した。この
際、石英ガラス板は反射膜が透過側となるようにセント
した。
Further, when the Nd-YAG laser was directly irradiated in the same manner as in Example 1, the reflective film was damaged in about 10 seconds. At this time, the quartz glass plate was placed so that the reflective film was on the transmission side.

〈従来例1〉 (1)市販のレーザ光線保護眼鏡用青色ガラスフィルタ
ー(アメリカンオプチカル社製、型番588)を用いて
波長1.06μmにおける吸光度を調べたところ4以上
であった・ (2)シかし、Nd −YAGレーザ(波長1.06.
crm 、ビーム径3鰭、出力15W)を1分間直接照
射したところ、出力が15Wであるにも拘らず破壊した
<Conventional Example 1> (1) Absorbance at a wavelength of 1.06 μm was examined using a commercially available blue glass filter for laser beam safety glasses (manufactured by American Optical Co., model number 588) and was found to be 4 or more. However, Nd-YAG laser (wavelength 1.06.
crm, beam diameter 3 fins, output 15W) for 1 minute, it was destroyed even though the output was 15W.

〈従来例2〉 (1)アクリル樹脂にレーザ光吸収剤(日本化薬株式会
社製、品番IRG −022)を練り込み、射出成形に
より3龍厚の緑色板材を得た。
<Conventional Example 2> (1) A laser light absorber (manufactured by Nippon Kayaku Co., Ltd., product number IRG-022) was kneaded into an acrylic resin, and a green plate material with a thickness of 3 dragons was obtained by injection molding.

(2)波長1.06μmにおける吸光度を調べたところ
4以上であった。
(2) The absorbance at a wavelength of 1.06 μm was examined and was 4 or more.

しかし、同レーザ(ビーム径3龍、出力10W)の1分
間直接照射では、出力がIOWであるにも拘らず溶融し
穴があいた。
However, when directly irradiated with the same laser (beam diameter 3x, output 10W) for 1 minute, it melted and a hole formed despite the output being IOW.

(発明の効果) 以上説明した通り、本発明のガラスフィルターは、その
組成中にレーザ光吸収成分を有し、かつ5in2含有量
が90重量%以上とされているので、レーザ光の吸収に
よって高エネルギーのレーザ光の透過を阻止すると共に
、高融点、低膨張率という石英ガラスとしての物理的特
性が保持されているため、出力50Wクラスのレーザ光
が直接照射されても、短時間ではフィルターの破壊が招
来せず、フィルターの破壊に伴う危険を確実に防止する
ことができる。
(Effects of the Invention) As explained above, the glass filter of the present invention has a laser beam absorbing component in its composition, and the 5in2 content is 90% by weight or more, so the glass filter of the present invention increases by absorption of laser beam. In addition to blocking the transmission of energetic laser light, it maintains the physical properties of quartz glass, such as high melting point and low expansion coefficient, so even if it is directly irradiated with a 50W output class laser light, the filter will not be able to pass through in a short period of time. Destruction does not occur, and the danger associated with the destruction of the filter can be reliably prevented.

このように、本発明のガラスフィルターは、中小型出力
のレーザ光に対する防護手段として極めて優れる。
As described above, the glass filter of the present invention is extremely excellent as a means for protecting against small to medium output laser beams.

Claims (3)

【特許請求の範囲】[Claims] (1)レーザ光吸収成分を有するガラスフィルターにお
いて、 SiO_2含有量が90重量%以上とされていることを
特徴とするレーザ光吸収ガラスフィルター。
(1) A glass filter having a laser beam absorption component, characterized in that the SiO_2 content is 90% by weight or more.
(2)フィルターの表面にレーザ光反射膜が形成されて
いる特許請求の範囲第(1)項に記載のガラスフィルタ
ー。
(2) The glass filter according to claim (1), wherein a laser light reflecting film is formed on the surface of the filter.
(3)フィルターの入射側表面にレーザ光の照射によっ
て肉眼認識可能な形態変化を生じる感光層が形成されて
いる特許請求の範囲第(1)項又は第(2)項に記載の
ガラスフィルター。
(3) The glass filter according to claim (1) or (2), wherein a photosensitive layer that causes a change in shape that can be recognized with the naked eye by laser light irradiation is formed on the entrance side surface of the filter.
JP31098186A 1986-12-25 1986-12-25 Laser light absorptive glass filter Pending JPS63163304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31098186A JPS63163304A (en) 1986-12-25 1986-12-25 Laser light absorptive glass filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31098186A JPS63163304A (en) 1986-12-25 1986-12-25 Laser light absorptive glass filter

Publications (1)

Publication Number Publication Date
JPS63163304A true JPS63163304A (en) 1988-07-06

Family

ID=18011715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31098186A Pending JPS63163304A (en) 1986-12-25 1986-12-25 Laser light absorptive glass filter

Country Status (1)

Country Link
JP (1) JPS63163304A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245485A (en) * 2012-05-25 2013-12-09 Naberu:Kk Space partition structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119506A (en) * 1983-12-01 1985-06-27 Seiko Epson Corp Color filter manufacturing method
JPS63142302A (en) * 1986-12-04 1988-06-14 Nikon Corp Optical thin film having high resistance to laser light

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119506A (en) * 1983-12-01 1985-06-27 Seiko Epson Corp Color filter manufacturing method
JPS63142302A (en) * 1986-12-04 1988-06-14 Nikon Corp Optical thin film having high resistance to laser light

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245485A (en) * 2012-05-25 2013-12-09 Naberu:Kk Space partition structure

Similar Documents

Publication Publication Date Title
EP0710630B1 (en) Laser eyewear protection
US20070298242A1 (en) Lenses having dispersed metal nanoparticles for optical filtering including sunglasses
Ham Jr et al. The nature of retinal radiation damage: dependence on wavelength, power level and exposure time
CA1107555A (en) Colored dichroic, birefringent glass articles produced by optical alteration of additively-colored glasses containing silver and silver halides
US4057408A (en) Method for making photosensitive colored glasses
US1176313A (en) Transparent screen.
US3892582A (en) Process for changing the tint of a photochromic material and material formed thereby
US5047447A (en) Medium incorporating melanin as an absorbing pigment for protection against electromagnetic radiation
WO2006070830A1 (en) Protection glasses-use lens
CA2152450A1 (en) Ophthalmic lens
US3267807A (en) Plurality of shield units for absorbing energy from a laser beam
JPH02224756A (en) Radiation optical shield material for protecting eyes from a plurality of laser lights
US4854957A (en) Method for modifying coloration in tinted photochromic glasses
US4917481A (en) High intensity laser radiation protection
US5173811A (en) Nonlinear optical shield
US6612697B1 (en) Protective eyewear lens
JP6784914B2 (en) Manufacturing method of translucent resin base material, translucent resin base material and translucent molded product
US5729381A (en) Glasses for laser protection
JPS63163304A (en) Laser light absorptive glass filter
US5491117A (en) Optical filter glasses
DE3545892A1 (en) OPTICAL DEVICE
US3959171A (en) Optical filter for neodymium laser light
CN221998182U (en) Laser protection filter and welding mask with the filter
CN213581640U (en) Laser protection lens and laser protection glasses
Seward III Glass polarizers containing silver