JPS63163236A - Optical temperature sensor - Google Patents
Optical temperature sensorInfo
- Publication number
- JPS63163236A JPS63163236A JP31205086A JP31205086A JPS63163236A JP S63163236 A JPS63163236 A JP S63163236A JP 31205086 A JP31205086 A JP 31205086A JP 31205086 A JP31205086 A JP 31205086A JP S63163236 A JPS63163236 A JP S63163236A
- Authority
- JP
- Japan
- Prior art keywords
- light
- liquid crystal
- plate
- reflecting
- crystal plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 33
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 34
- 239000000463 material Substances 0.000 abstract description 12
- 239000011521 glass Substances 0.000 abstract description 10
- 238000010586 diagram Methods 0.000 description 9
- 239000013307 optical fiber Substances 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 238000002834 transmittance Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 3
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は加熱温度を遠隔地で検出する温度センサに関す
るものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a temperature sensor for remotely detecting heating temperature.
従来の技術
従来、この種の光温度センサは、第5図に示すような構
成であった。第5図において、la。2. Description of the Related Art Conventionally, this type of optical temperature sensor has had a configuration as shown in FIG. In FIG. 5, la.
1bは光ファイバ、2a+2bはロッドレンズ、3は光
の遮蔽板、4はコイル形状の形状記憶合金、5はバネで
ある。同図において、光ファイバlaから出射した光は
、ロッドレンズ2aで平行光線6に変換され、遮蔽板3
に設けられた穴7を通過したのち、ロッドレンズ2bで
再び集光され、光ファイバ1bに入射する。測定温度が
上昇すると形状記憶合金で作られたバネ4がたとえば縮
むために、遮蔽板3が平行光線6を遮蔽し、光ファイバ
Ibへ光が入射しない。測定温度が下降すると、形状記
憶合金のバネ4の縮む力が無くなり、バネ5が縮むこと
により遮蔽板3が元の位置に戻るので、平行光線6は再
び穴7を通過し、光ファイバ1bに入射する。1b is an optical fiber, 2a+2b is a rod lens, 3 is a light shielding plate, 4 is a coil-shaped shape memory alloy, and 5 is a spring. In the figure, light emitted from an optical fiber la is converted into parallel light rays 6 by a rod lens 2a, and a shielding plate 3
After passing through the hole 7 provided in the hole 7, the light is again focused by the rod lens 2b and enters the optical fiber 1b. When the measurement temperature rises, the spring 4 made of a shape memory alloy contracts, for example, so the shielding plate 3 blocks the parallel light rays 6 and no light enters the optical fiber Ib. When the measurement temperature falls, the shrinking force of the shape memory alloy spring 4 disappears, and the spring 5 contracts, causing the shielding plate 3 to return to its original position, so that the parallel light ray 6 passes through the hole 7 again and enters the optical fiber 1b. incident.
発明が解決しようとする問題点
このような従来の構成では、遠隔地で被測定物の温度を
検出するために、被測定物との間に光)プイバを配線す
る必要があり、また特に高電圧部の温度測定では、光フ
ァイバの外被を伝わる電気の漏れ(リーク)が発生する
問題点があった。本発明は、このような問題点を解決す
るもので、被測定物の温度を簡単な構成で、非接触に検
出できる光温度センサを提供することを目的としたもの
である。Problems to be Solved by the Invention In such a conventional configuration, in order to detect the temperature of the object to be measured at a remote location, it is necessary to wire an optical fiber between the object and the object to be measured. When measuring the temperature of the voltage section, there is a problem in that electricity leaks through the outer sheath of the optical fiber. The present invention has been made to solve these problems, and aims to provide an optical temperature sensor that can detect the temperature of an object to be measured in a simple and non-contact manner.
問題点を解決するための手段
本発明は上記問題点を解決するために、入射した光とお
およそ同し方向に光を反射する反射部の前面に、一定値
の温度を境として、光の通過率が大きく変化する(透明
または不透明に変化する)光の制御部材と、特定の波長
の光だけを選択して通過させる光学フィルタとを設けて
温度センサを構成するものである。Means for Solving the Problems In order to solve the above problems, the present invention has a structure in which light passes through the front surface of a reflecting part that reflects light in approximately the same direction as the incident light, with the temperature reaching a certain value as a boundary. A temperature sensor is constructed by providing a light control member whose rate changes greatly (changes from transparent to opaque) and an optical filter that selects and passes only light of a specific wavelength.
作用
本発明は上記した構成により、離れた場所にある光源か
ら出射した特定波長の光を入射させ、光温度センサの反
射部による光の反射の有無を、光源の近傍にある受光部
で検出することで、一定温度状態が検出でき、優れた光
温度センサとして機能する。Effect: With the above-described configuration, the present invention allows light of a specific wavelength emitted from a light source located at a remote location to enter, and detects whether or not the light is reflected by the reflecting section of the optical temperature sensor using the light receiving section located near the light source. This allows it to detect a constant temperature state and functions as an excellent optical temperature sensor.
実施例
第1図は本発明の一実施例による光温度センサの構成図
である。第1図において、8はガラス板の中に液晶材料
を封入した液晶板、9は光の反射板、10は特定の波長
の光だけを通過させる光学フィルタ、1)は離れた位置
に設けた特定波長の光を出射する発光部、13は発光部
1)からの出射光を示す矢印、12は受光部、14は受
光部12に入射する反射光を示す矢印である。Embodiment FIG. 1 is a configuration diagram of an optical temperature sensor according to an embodiment of the present invention. In Figure 1, 8 is a liquid crystal plate with a liquid crystal material sealed in a glass plate, 9 is a light reflecting plate, 10 is an optical filter that allows only light of a specific wavelength to pass through, and 1) is provided at a remote location. A light emitting section that emits light of a specific wavelength; 13 is an arrow indicating light emitted from the light emitting section 1); 12 is a light receiving section; 14 is an arrow indicating reflected light incident on the light receiving section 12.
以下、その構成および動作を第2図と第3図を併用して
説明する。液晶板8および光学フィルタ10は反射板9
の前面に設けられている。反射板9は入射した光とほと
んど同じ角度で、逆向きに光を反射する機能を持つ。第
2図にこの反射板9の構成の説明図を示す。同図(al
は反射板9の反射面の図を示したもので、互いに直角な
3つの反射平面から成る反射部15を複数個同一平面に
配置したものである。同図(blはこの反射部15の光
の反射の様子を示す図で、入射光13は反射部15の内
部で完全反射を3回行い、入射光13に対して180度
の偏光角で出射し、反射光14となる。Hereinafter, its configuration and operation will be explained with reference to FIGS. 2 and 3. The liquid crystal plate 8 and the optical filter 10 are a reflection plate 9
is located in front of the. The reflecting plate 9 has a function of reflecting light in the opposite direction at almost the same angle as the incident light. FIG. 2 shows an explanatory diagram of the structure of this reflecting plate 9. The same figure (al
1 shows a diagram of the reflecting surface of the reflecting plate 9, in which a plurality of reflecting parts 15 each consisting of three reflecting planes perpendicular to each other are arranged on the same plane. The same figure (bl is a diagram showing how the light is reflected by the reflecting section 15. The incident light 13 is completely reflected three times inside the reflecting section 15, and is emitted at a polarization angle of 180 degrees with respect to the incident light 13. The reflected light becomes reflected light 14.
この動作は入射光13の入射角に全く依存せず、光の入
射方向に必ず反射する。This operation is completely independent of the angle of incidence of the incident light 13, and the light is always reflected in the direction of incidence.
次に、液晶板8は、光をほとんど損失なく通過するガラ
ス板の内部に液晶材料を封入したもので、液晶は第3図
の液晶の特性の説明図に示すように、一定の温度16を
境にして、光の透過率が大きく変化する特性を持ち、光
の通過を制御する部材として機能する。Next, the liquid crystal plate 8 is a glass plate in which a liquid crystal material is sealed inside which allows light to pass through with almost no loss. It has the characteristic that the light transmittance changes greatly at the border, and functions as a member that controls the passage of light.
再び第1図に戻って説明を続ける。液晶板8の温度が第
3図に示す一定温度16以下の時、液晶板8は不透明に
なり、任意の位置に設けた発光部1)から出射した特定
波長の光13は、光学フィルタ10を通過した後、液晶
板8内で吸収または散乱され、液晶板8を通過すること
ができない。Returning to FIG. 1 again, the explanation will be continued. When the temperature of the liquid crystal plate 8 is below a certain temperature 16 shown in FIG. After passing through, the light is absorbed or scattered within the liquid crystal plate 8 and cannot pass through the liquid crystal plate 8.
液晶板8の温度が一定値以上になると、液晶板8は透明
となり、発光部1)から出射した光13は光学フィルタ
10および液晶板8を通過し、反射板9で反射されて反
射光14となり、再び液晶板8および光学フィルタ10
を通過して、発光部1)の近傍に設けた受光部12に入
射する。When the temperature of the liquid crystal plate 8 exceeds a certain value, the liquid crystal plate 8 becomes transparent, and the light 13 emitted from the light emitting part 1) passes through the optical filter 10 and the liquid crystal plate 8, is reflected by the reflector plate 9, and becomes reflected light 14. Then, the liquid crystal plate 8 and the optical filter 10 are connected again.
and enters the light receiving section 12 provided near the light emitting section 1).
ここで、光学フィルタIOは周囲の色々な外光を遮断し
、発光部1)の光だけを選択するために設けたものであ
る。Here, the optical filter IO is provided to block out various external light in the surroundings and select only the light from the light emitting section 1).
以上の動作より、光学フィルタ10.液晶板8および反
射板9から成る温度センサに、外部より入射させた光の
反射の有無を、受光部12で検出することにより、被測
定物の温度を検出することができる。From the above operations, the optical filter 10. The temperature of the object to be measured can be detected by using the light receiving section 12 to detect whether or not light incident from the outside is reflected by the temperature sensor composed of the liquid crystal plate 8 and the reflection plate 9.
第4図は、本発明の他の実施例による構成図を示す。第
4図において、18は一定温度を境にして光の透過率が
大きく変化する液晶材料、19はその中に液晶材料18
を封入した光をほとんど損失なく通過させるガラス板、
17はガラス板19の片面に蒸着で形成した特定の波長
の光だけを通過させる光学フィルタ、13および14は
各々光の入射光および反射光を表す矢印で、20はガラ
ス板19の他方の面に一体に設けた光の反射部で、1つ
または複数個め、互いに直角な3つの平面をもつプリズ
ム(コーナーキューブ)部を一体に構成したものである
。FIG. 4 shows a block diagram according to another embodiment of the present invention. In FIG. 4, 18 is a liquid crystal material whose light transmittance changes greatly after reaching a certain temperature, and 19 is a liquid crystal material 18 contained therein.
A glass plate that allows light to pass through with almost no loss.
17 is an optical filter formed by vapor deposition on one side of the glass plate 19 and allows only light of a specific wavelength to pass through; 13 and 14 are arrows representing incident light and reflected light, respectively; 20 is the other side of the glass plate 19; This is a light reflecting section integrally provided with a prism (corner cube) section having one or more prisms (corner cubes) having three planes perpendicular to each other.
特定の波長をもつ入射光13は、光学フィルタ17を通
過後、温度に依存する液晶材料18の光の透過率の変化
に応じて、反射部20で反射され、反射光14となる。After passing through the optical filter 17, the incident light 13 having a specific wavelength is reflected by the reflecting section 20 and becomes reflected light 14 in accordance with the temperature-dependent change in the light transmittance of the liquid crystal material 18.
この実施例の基本動作は、第1図に示す実施例と同じで
ある。異なるのは、光学フィルタ17と液晶18と反射
部20とが一体に構成され、各々の間がガラスで充填さ
れており、空気層がないため空気とガラスの境界で光が
反射する損失(フレネル損失)が無く、有効に光を利用
できること、および光の反射作用としてプリズムの全反
射を用いたことである。The basic operation of this embodiment is the same as the embodiment shown in FIG. The difference is that the optical filter 17, liquid crystal 18, and reflection section 20 are integrated, and the space between them is filled with glass, and there is no air layer, so there is a loss (Fresnel) caused by light reflection at the boundary between air and glass. There is no loss) and the light can be used effectively, and the total reflection of the prism is used as the light reflection function.
以上のように本実施例では、簡単な構成で一定値以上の
温度の上昇を、反射光の有無によって検出でき、優れた
光温度センサとして機能する。As described above, this embodiment can detect a rise in temperature above a certain value with a simple configuration based on the presence or absence of reflected light, and functions as an excellent optical temperature sensor.
なお、本実施例では、反射部に入射する光の制御部材と
して、一定値以上の温度で光の透過率が高くなる(透明
になる)液晶を用いたが、一定値温度を境にして光の通
過を制御するものであれば、どのような材料および特性
であっても良い。また、一定値温度を境に光の透過率が
大きく変化する液晶を封入する材料として、ガラスを用
いたが、光がほとんど損失なく通過する材料であれば、
樹脂でも何を用いても良い。In this example, a liquid crystal whose light transmittance becomes high (becomes transparent) at a temperature above a certain value was used as a member for controlling the light incident on the reflecting part. Any material and property may be used as long as it controls the passage of the material. In addition, we used glass as a material to encapsulate the liquid crystal whose light transmittance changes greatly after reaching a certain temperature, but if it is a material that allows light to pass through with almost no loss,
Any resin may be used.
さらに、本実施例では、特定の波長の光を選択する光学
フィルタを、一定値温度を境に光の透過率が変化する液
晶の前面に設けたが、液晶と反射部との間に設けてもよ
い。また、光を反射する反射部として、本実施例では、
互いに直角に交わる3つの平面を用いて、光の全反射お
よび完全反射を利用して説明したが、入射光とほとんど
同じ方向に光を反射させるものであれば、どのような反
射部を用いても良いことは言うまでもない。Furthermore, in this example, an optical filter that selects light of a specific wavelength was provided in front of the liquid crystal whose light transmittance changes after reaching a certain temperature, but an optical filter was provided between the liquid crystal and the reflective section. Good too. In addition, in this example, as a reflection part that reflects light,
We have explained using three planes that intersect at right angles to each other and using total reflection and complete reflection of light, but what kind of reflecting part can be used as long as it reflects light in almost the same direction as the incident light? Needless to say, it's a good thing.
発明の効果
以上のように本発明によれば、光の反射部を用い、反射
光の有無により、被測定物の温度を検出するので、被測
定物との間に、光ファイバ等の配線を必要としない効果
がある。Effects of the Invention As described above, according to the present invention, the temperature of the object to be measured is detected based on the presence or absence of reflected light using a light reflecting section. It has an effect you don't need.
さらに、光の反射部として入射光とほぼ同じ方向に反射
する反射部を用いているので、反射部に入射させる光の
発光部の位置の制約が少なく、光軸調整を必要としない
効果がある。また、光を遮断する機能として、一定値の
温度を境にして光の通過を制御する部材(液晶)を用い
ているため、構成が簡単で、信頼性が高く、小形化でき
る効果が得られ、従来に比較して優れた光温度センサを
提供できる。Furthermore, since a reflective part that reflects in almost the same direction as the incident light is used as a light reflecting part, there are fewer restrictions on the position of the light emitting part for the light to enter the reflective part, and there is no need for optical axis adjustment. . In addition, as the light blocking function uses a material (liquid crystal) that controls the passage of light at a certain temperature, the structure is simple, highly reliable, and can be miniaturized. , it is possible to provide an optical temperature sensor that is superior to conventional ones.
第1図は本発明の一実施例による光温度センサの構成図
、第2図は本発明の一実施例における反射部の構成の説
明図、第3図は一実施例における液晶の特性の説明図、
第4図は本発明の他の実施例による光温度センサの構成
図、第5図は従来の光温度センサの説明図である。
8・・・・・・液晶板、9・・・・・・光の反射板、1
0・・・・・・光学フィルタ、1)・・・・・・発光部
、12・・・・・・受光部、13・・・・・・出射光を
示す矢印、14・・・・・・反射光を示す矢印、15・
・・・・・反射部、16・・・・・・任意の一定温度、
17・・・・・・光学フィルタ、18・・・・・・液晶
材料、19・・・・・・ガラス板、20・・・・・・光
の反射部。
代理人の氏名 弁理士 中尾敏男 はか1名8−ヲ夜晶
板
q−−一光の301)反
7o−−一光学フΔルダ
1/−発光部
12− 受光部
13−一一出剤慟デ1示す矢印
14−m−反射光を示す矢印
第1図
q−m−光の反計板
13−−一入射光を示す矢印
/4−m−反射光を示す矢印
15− 反射部
第2図
第3図
一一一一 液晶の益友(°C)
f8−一一液通#糾
/9−−一力゛°ラス版
2D−−一光の反射部
卿4図
第 5 図FIG. 1 is a configuration diagram of an optical temperature sensor according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of the configuration of a reflecting section in an embodiment of the present invention, and FIG. 3 is an explanation of the characteristics of a liquid crystal in an embodiment. figure,
FIG. 4 is a configuration diagram of an optical temperature sensor according to another embodiment of the present invention, and FIG. 5 is an explanatory diagram of a conventional optical temperature sensor. 8...Liquid crystal plate, 9...Light reflecting plate, 1
0... Optical filter, 1)... Light emitting section, 12... Light receiving section, 13... Arrow indicating emitted light, 14...・Arrow indicating reflected light, 15・
...Reflector, 16...Arbitrary constant temperature,
17... Optical filter, 18... Liquid crystal material, 19... Glass plate, 20... Light reflecting section. Name of agent: Patent attorney Toshio Nakao 1 person 8-Night crystal plate q--Ikkou's 301) anti-7o--1 optical folder 1/-Light emitting part 12- Light receiving part 13-11 light emitting part 14 - Arrow showing m - Arrow showing reflected light Figure 1 q - M - Light counter plate 13 - 1 Arrow showing incident light / 4 - M - Arrow showing reflected light 15 - Reflection part No. Figure 2 Figure 3 1111 Liquid crystal user friend (°C) f8-11 Liquid crystal #condensation/9--Ichiriki゛°Last version 2D--Ikkou's reflection section Figure 4 Figure 5
Claims (3)
値の温度を境にして前記反射部に入射する光量を制御す
る光の制御部材と、前記反射部に入射する光の波長を選
択する光学フィルタとから構成したことを特徴とする光
温度センサ。(1) A reflecting section that reflects light in substantially the same direction as the incident light; a light control member that controls the amount of light that enters the reflecting section when a temperature reaches a certain value; An optical temperature sensor comprising an optical filter that selects a wavelength.
過または遮断を行う液晶から構成したことを特徴とする
特許請求の範囲第(1)項記載の光温度センサ。(2) The optical temperature sensor according to claim (1), wherein the light control member is composed of a liquid crystal that transmits or blocks light at a certain temperature.
の光の反射面から構成したことを特徴とする特許請求の
範囲第(1)項記載の光温度センサ。(3) The optical temperature sensor as set forth in claim (1), wherein the reflecting section is comprised of one or more sets of three light reflecting surfaces that intersect at right angles to each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31205086A JPS63163236A (en) | 1986-12-26 | 1986-12-26 | Optical temperature sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31205086A JPS63163236A (en) | 1986-12-26 | 1986-12-26 | Optical temperature sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63163236A true JPS63163236A (en) | 1988-07-06 |
Family
ID=18024617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31205086A Pending JPS63163236A (en) | 1986-12-26 | 1986-12-26 | Optical temperature sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63163236A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5177343A (en) * | 1974-12-27 | 1976-07-05 | Ritsuo Hasumi | FUKUGAN HANSHABAN |
JPS58106413A (en) * | 1981-12-21 | 1983-06-24 | Fujikura Ltd | Light reflecting sensor |
JPS61117426A (en) * | 1984-10-15 | 1986-06-04 | レブロン インコ−ポレ−テツド | Temperature sensing coloring device |
JPS61132830A (en) * | 1984-11-30 | 1986-06-20 | Sharp Corp | Liquid temperature sensor |
-
1986
- 1986-12-26 JP JP31205086A patent/JPS63163236A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5177343A (en) * | 1974-12-27 | 1976-07-05 | Ritsuo Hasumi | FUKUGAN HANSHABAN |
JPS58106413A (en) * | 1981-12-21 | 1983-06-24 | Fujikura Ltd | Light reflecting sensor |
JPS61117426A (en) * | 1984-10-15 | 1986-06-04 | レブロン インコ−ポレ−テツド | Temperature sensing coloring device |
JPS61132830A (en) * | 1984-11-30 | 1986-06-20 | Sharp Corp | Liquid temperature sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4494881A (en) | Intra-optical light beam sighting system for an infrared thermometer | |
US6097479A (en) | Critical angle sensor | |
US4288159A (en) | Optical temperature transducer | |
JPH02112735A (en) | Optical sensor | |
US20070262248A1 (en) | Optical Moisture Sensor And Method Of Making The Same | |
US2612817A (en) | Photoelectric exposure meter for incident light measurements | |
JPS63163236A (en) | Optical temperature sensor | |
JPS63163238A (en) | Optical temperature sensor | |
JPH01237424A (en) | Optical temperature sensor | |
JPS63163237A (en) | Optical temperature sensor | |
JPH01237423A (en) | Optical temperature sensor | |
KR101935016B1 (en) | Non-dispersive Infrared gas sensor using multi internal reflection | |
JPS6390866A (en) | Semiconductor photodetector | |
WO1998037406A1 (en) | Retroreflective systems for remote readout | |
JPS58106413A (en) | Light reflecting sensor | |
JPS6329220A (en) | Optical temperature sensor | |
JPS63163228A (en) | Optical temperature sensor | |
JPS5861408A (en) | Transmission type optical coupler | |
JPH07504269A (en) | Laser intensity monitoring device using metal thin film mask | |
JPH03156332A (en) | Temperature sensor | |
US3161772A (en) | Hyperimmersed bolometer system | |
JPS59176637A (en) | Temperature sensor | |
JPS61259189A (en) | Reflective type photoelectric switch | |
JP2000019110A (en) | Refractive index measuring apparatus | |
JPS62299730A (en) | Optical temperature sensor |