[go: up one dir, main page]

JPS6316218B2 - - Google Patents

Info

Publication number
JPS6316218B2
JPS6316218B2 JP11983482A JP11983482A JPS6316218B2 JP S6316218 B2 JPS6316218 B2 JP S6316218B2 JP 11983482 A JP11983482 A JP 11983482A JP 11983482 A JP11983482 A JP 11983482A JP S6316218 B2 JPS6316218 B2 JP S6316218B2
Authority
JP
Japan
Prior art keywords
hot water
level
water level
molten steel
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11983482A
Other languages
Japanese (ja)
Other versions
JPS5910458A (en
Inventor
Koji Inazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11983482A priority Critical patent/JPS5910458A/en
Publication of JPS5910458A publication Critical patent/JPS5910458A/en
Publication of JPS6316218B2 publication Critical patent/JPS6316218B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は連続鋳造設備のモールド内の湯面レベ
ル制御方法に係わるものである。 一般に連続鋳造設備に於ては第1図に示すよう
に、水冷されたモールド1内に浸漬されたノズル
2を介してタンデイシユ3より溶鋼が鋳入され、
凝固した鋳片4は下方に設置されたピンチロール
(図示せず)によつて引抜かれる。 モールド1内の湯面レベルは、モールドから溶
鋼がオーバーフローしないように制御する必要が
あるが、その為にモールド上方にレベル計5が設
けられている。このレベル計5は、渦流方式のも
のが一般的で、1mm程度の精度で測定可能であ
る。検出された湯面レベル信号は調節計6に導び
かれ、ここで比例−積分を主とする演算が為され
た後、スライデイングノズル制御装置7にノズル
開度が出力される。スライデイングノズル制御装
置7は、スライデイングノズル8を駆動するモー
タ9に信号を与え、スライデイングノズル8は開
閉して、タンデイツシユ3からの溶鋼の流量を変
化させる。このスライデイングノズル8の開度
は、連動する開度計10により検出され、調節計
6に入力されている。図中Vは引抜速度、Wはタ
ンデイツシユ重量を示す。 以上が、従来一般的に実施されているモールド
湯面制御方式であるが、近年レベル計5が高精度
化したことと、この制御系にノイズとなるピンチ
ロール引抜速度の変化や、タンデイツシユ重量の
変化等を補償する技術が開発されたことにより、
湯面レベルの制御精度は飛躍的に向上した。その
一例を第2図に示す。湯面レベルは引抜速度の変
化にかかわらず安定しており、殆ど±5mm以内に
制御されている。図中αは±5mmを示す。参考の
ために示すと、従来設備では表1に示すように、
±5mmに全鋳造長の93%、±6mmに100%入つてい
る。
The present invention relates to a method for controlling the level of molten metal in a mold of continuous casting equipment. Generally, in continuous casting equipment, as shown in Fig. 1, molten steel is poured from a tundish 3 through a nozzle 2 immersed in a water-cooled mold 1.
The solidified slab 4 is pulled out by pinch rolls (not shown) installed below. The level of the molten metal in the mold 1 must be controlled so that molten steel does not overflow from the mold, and for this purpose a level meter 5 is provided above the mold. This level meter 5 is generally of the eddy current type and can measure with an accuracy of about 1 mm. The detected hot water level signal is led to the controller 6, where calculations mainly based on proportionality and integration are performed, and then the nozzle opening degree is output to the sliding nozzle control device 7. The sliding nozzle control device 7 gives a signal to a motor 9 that drives the sliding nozzle 8, and the sliding nozzle 8 opens and closes to change the flow rate of molten steel from the tundish 3. The opening degree of the sliding nozzle 8 is detected by an interlocking opening degree meter 10 and inputted to the controller 6. In the figure, V indicates the drawing speed, and W indicates the tundish weight. The above is the mold level control method that has been generally implemented in the past, but in recent years, the level meter 5 has become more accurate, and changes in the pinch roll drawing speed and tundish weight that cause noise in this control system. With the development of technology to compensate for changes, etc.
The accuracy of controlling the hot water level has improved dramatically. An example is shown in FIG. The hot water level remains stable regardless of changes in drawing speed, and is mostly controlled within ±5 mm. In the figure, α indicates ±5 mm. For reference, in conventional equipment, as shown in Table 1,
±5mm accounts for 93% of the total casting length, and ±6mm accounts for 100%.

【表】 一方モールド湯面レベル制御は、単にモールド
から溶鋼がオーバフローすることを防ぐばかりで
なく、鋳片の表面疵と大きな関係があることがわ
かつている。第3図は湯面変動と鋳片の湯じわと
の関係を示す。図中は軽微な湯じわであり、
は極めて大きな湯じわである。これによると、湯
面変動量が大きい程湯じわの標点が悪く、又湯面
変動量を微分した湯面変動速度が(正の場合)大
きい程、同じく湯じわ評点が悪化している。 又第4図は湯面上昇速度と湯じわ評点、第5図
は同じく湯面上昇速度と介在物の大きさの関係を
示す。これらから湯面上昇速度が大きい程湯じわ
が大きくなり、この時浮上すべき介在物が、凝固
シエルに捕捉されるからと考えられている。 前述したように湯面レベル制御が高精度化する
と、湯面の変化が小さく、従つて湯面上昇速度も
小さくなつて、良好な表面の鋳片が得られ、その
結果介在物の大きさも小さくなつて、介在物検査
等の工程の省略も可能となつた。 しかしながら湯面レベル制御の高精度化は、一
方では深刻な問題を提起した。それは浸漬ノズル
のパウダーによる局部侵食である。通常浸漬ノズ
ル2にはアルミナグラフアイトが用いられている
が、モールド内の湯面レベルが一定に保持される
と、溶鋼上に投入され、表面に滞溜するモールド
と溶鋼との潤滑用パウダーにより局部侵食され、
孔が開いて使用不能となつてしまう。第6図は浸
漬ノズルの部分拡大図であり、侵食部分を11で
示す。 通常連続鋳造操業では、溶鋼を入れたレードル
(図示せず)から、第1図に示すタンデイツシユ
3に溶鋼を鋳入して行なわれるが、生産性を上げ
る為に複数のレードルから順次連続的にタンデツ
シユ3に鋳入して、操業を行う連続−連続鋳造が
行なわれるている。このレードルの数は、通常転
炉等でのチヤージ数と対応するので、如何に多く
のチヤージ数を、一回の連続鋳造作業で鋳造する
かが重要な課題であるのに対し、第6図のよう
に、浸漬ノズルが鋳造途中で破損すると、以降の
鋳造が不可能であり、大きな操業トラブルとな
る。 本発明の経験では、5はチヤージに耐えうるよ
う設計された浸漬ノズルが、3チヤージの途中で
使用不能となつた例や、その為に2チヤージをこ
えて連続−連続鋳造が不可能であつた。かかる事
態は、最近のように湯面レベル制御が高精度化し
たことに伴ない発生したもので、従来のように湯
面レベルの制御精度が低い場合は、湯面が適当に
変化している為に、侵食性のパウダーも位置が変
化し、その結果、浸漬ノズル2に接触する位置が
均等化して、浸漬ノズルの長寿命化が達成されて
いたのである。 本発明は最近の高精度湯面レベル制御法と、従
来の低精度湯面レベル制御法のそれぞれの長所に
着目して為されたもので、高精度な湯面レベル制
御に於ても、なお従来なみの浸漬ノズルの寿命を
実現するものである。 即ち高精度化した湯面レベル制御の為に、鋳片
の品質は改善されたが、湯面が一定に保持される
為に、浸漬ノズルの湯面レベル位置が、パウダー
により集中的に侵食されることを、逆に湯面レベ
ルを変化させて防止するものである。 本発明では、調節計6で設定される目標湯面レ
ベル(従来はオペレータにより一定値にセツトさ
れる)を、第7図に示すような時間函数で上下さ
せるものである。この場合第8図に示すように、
湯面レベルのフイードバツク信号Lと、目標レベ
ルとの差を演算する回路に、更に三角波発生回路
12の出力を加えて行なうが、調節計6がマイク
ロコンピユータで構成されている場合は、容易に
この三角波発生回路12を組込むことができる。
この目標値に加算される三角波の周期Tと、振巾
Aはプログラムにより与えられ、通常は一定で良
い。 但しこの三角波の変化率V(単位時間当りの湯
面レベル変化量)を V=A/T/4=4A/T1mm/秒 ………(1) なる値とすることは、鋳片の品質確保の上で重要
である。 即ち第3,4,5図より、湯面上昇速度が2
mm/秒を超えると鋳片表面の湯しわが大きくな
り、その結果介在物が捕捉されるので、湯面上昇
速度は2mm/秒以下に抑える必要がある。一方最
新の湯面制御方法では、表2に示すように湯面上
昇速度は1mm/秒以下に制御されている。
[Table] On the other hand, it is known that mold level control not only prevents molten steel from overflowing from the mold, but also has a significant relationship with surface defects on slabs. Figure 3 shows the relationship between the fluctuation of the melt level and the wrinkling of the slab. The image shows slight hot water wrinkles,
is an extremely large hot water wrinkle. According to this, the larger the amount of hot water level fluctuation, the worse the water wrinkle gauge, and the larger the hot water level fluctuation rate (when positive), which is obtained by differentiating the amount of hot water level fluctuation, the worse the hot water wrinkle rating. There is. Further, FIG. 4 shows the relationship between the rising rate of the hot water level and the hot water wrinkle rating, and FIG. 5 similarly shows the relationship between the rising rate of the hot water level and the size of inclusions. It is thought that this is because the higher the rising speed of the melt level, the larger the melt wrinkles, and the inclusions that should float at this time are captured by the solidified shell. As mentioned above, when the level control becomes more precise, the change in the level becomes smaller and the rate of rise in the level becomes smaller, resulting in slabs with a better surface, and as a result, the size of inclusions becomes smaller. As a result, it has become possible to omit processes such as inspection for inclusions. However, increasing the precision of hot water level control has posed serious problems. This is localized erosion caused by powder from the immersion nozzle. Normally, alumina graphite is used for the immersion nozzle 2, but when the level of the molten metal in the mold is maintained constant, it is thrown onto the molten steel, and the lubricating powder between the mold and the molten steel accumulates on the surface. Locally eroded,
A hole will open and it will become unusable. FIG. 6 is a partially enlarged view of the submerged nozzle, with the eroded portion indicated by 11. Normally, in continuous casting operations, molten steel is poured from a ladle containing molten steel (not shown) into the tundish 3 shown in Fig. 1, but in order to increase productivity, the molten steel is cast continuously from multiple ladles (not shown). Continuous-continuous casting is carried out by casting into a tundish 3 and operating it. The number of ladles usually corresponds to the number of charges in a converter, etc., so the important issue is how to cast as many charges as possible in one continuous casting operation. If the immersion nozzle is damaged during casting, subsequent casting will be impossible, resulting in major operational troubles. In the experience of the present invention, 5 is an example in which a submerged nozzle designed to withstand charges becomes unusable in the middle of 3 charges, or continuous casting is impossible for more than 2 charges. Ta. This situation has arisen as a result of the recent increase in the precision of hot water level control, and when the hot water level control accuracy is low as in the past, the hot water level is changing appropriately. Therefore, the position of the erosive powder also changes, and as a result, the positions in contact with the immersion nozzle 2 are equalized, thereby achieving a longer service life of the immersion nozzle. The present invention was made by focusing on the respective advantages of the recent high-precision hot water level control method and the conventional low-precision hot water level control method. This realizes a lifespan comparable to that of conventional immersion nozzles. In other words, the quality of slabs has been improved due to highly accurate level control, but in order to maintain a constant level, the level position of the immersion nozzle is intensively eroded by powder. On the contrary, this is prevented by changing the hot water level. In the present invention, the target hot water level set by the controller 6 (conventionally, it was set to a constant value by the operator) is raised and lowered by a time function as shown in FIG. In this case, as shown in Figure 8,
This is done by adding the output of the triangular wave generating circuit 12 to the circuit that calculates the difference between the feedback signal L of the hot water level and the target level, but if the controller 6 is composed of a microcomputer, this can be easily done. A triangular wave generation circuit 12 can be incorporated.
The period T and amplitude A of the triangular wave to be added to this target value are given by a program, and usually may be constant. However, it is important to ensure the quality of the slab by setting the rate of change of this triangular wave V (the amount of change in the melt level per unit time) to a value of V=A/T/4=4A/T1mm/sec (1) It is important on In other words, from Figures 3, 4, and 5, the rate of rise in the hot water level is 2.
If it exceeds mm/sec, the hot water wrinkles on the surface of the slab will become large, and as a result, inclusions will be trapped, so it is necessary to suppress the hot water level rising speed to 2 mm/sec or less. On the other hand, in the latest hot water level control method, as shown in Table 2, the hot water level rising speed is controlled to 1 mm/sec or less.

【表】 従つて湯面目標値を変化させる場合は、(1)式に
示すように、加算する三角波の周期と振巾を選択
すると湯面レベル制御自体の精度からくる湯面上
昇速度1mm/秒を加えても、合計の湯面上昇速度
は2mm/秒となる。実施例では振巾を10mm、周期
を1時間として、変化率Vを約0.01mm/秒とし
た。この場合の湯面レベルの変動状況を第9図に
示すが、湯面レベルの短周期の変動巾±5mm以内
に入つていると同時に、目標値の長周期的変化に
追従した制御が行われていることがわかる。 この結果、浸漬ノズルのパウダーの接触位置が
刻々と変化してゆく為、パウダーによる局部的な
侵食が発生せず、5チヤージの連続−連続鋳造が
可能となり、終了後のノズルの侵食状況も、第1
0図に示すように一様になつている。 次に比較例として、湯面目標値を周期的に上下
させることなく、可能な限り一定となるよう制御
した。その結果第2図に示すごとく、湯面目標値
(0レベル)に対して変動巾5mm以内で制御され、
湯面目標値に対して周期的な上下動がみられな
い。この為第6図に示すように、溶鋼注入用浸漬
ノズルが浸食部11のように局部浸食され、孔が
開いて使用不能となつた。 これは溶鋼面上の潤滑用パウダーが、ノズルの
長さ方向のほぼ同一部分に常に接触している為に
起きたものである。 又他の比較例として、湯面の目標変化率Vを1
mm/秒超の7mm/秒で周期的に上下動させた。即
ち、周期を5分、振巾を525mmで湯面を変動させ
た。 その結果湯面上昇速度は、湯面レベル制御系自
体の精度からくる上昇速度1mm/秒と合せて8
mm/秒となり、この為第3図及び第4図に示すご
とく、湯じわ評点が、B乃至Cに悪化した。 本発明では目標値の変化が自動で行なわれるの
で、オペレータは一切湯面レベルについて関与す
る必要がない。又、本発明の方法は、高精度の湯
面レベル制御に対して有効であるが、変化率Vを
十分小さくとれば、湯面変動巾の大きい従来の制
御にも適用でき、かつノズル長寿命化の効果も僅
かではあるが期待できる。 更に、本発明では目標湯面レベルの変化を三角
波としたが、これは(1)式を満足するものであれば
正弦波でも良いし、三角波も湯面の低下方向の速
度を大きくした鋸歯状でも良い。これは湯面の上
昇速度が、鋳片表面には第3,4,5図より悪影
響を与えるものの下降速度は影響ないからであ
る。 ここで湯面目標値の変化のさせ方であるが、第
7図の三角波函数をアナログ回路で発生する場合
は良いが、デジタル回路や演算で実施する場合に
は、微視的には階段状に変化することになり、変
化率も微視的には過大になつてしまうが、制御系
の応答時間を考えれば、1〜2秒間の平均的変化
率を求め、これが1mm/秒以下であれば、本発明
の意図するところとは矛盾しない。 以上述べたように、本発明の方法によれば、高
品質の鋳片が得られるばかりでなく、連続−連続
鋳造でのチヤージ数を増やすことができ、生産性
の面からも多大の効果がある。
[Table] Therefore, when changing the hot water level target value, select the period and amplitude of the triangular wave to be added, as shown in equation (1), and the hot water level rise rate of 1 mm/ Even if seconds are added, the total rising speed of the hot water level is 2 mm/second. In the example, the amplitude was 10 mm, the period was 1 hour, and the rate of change V was about 0.01 mm/sec. Figure 9 shows the fluctuations in the hot water level in this case, and it shows that the short-cycle fluctuation width of the hot water level is within ±5 mm, and at the same time, the control that follows the long-term changes in the target value is performed. You can see that As a result, since the contact position of the powder on the immersion nozzle changes every moment, local erosion by the powder does not occur, making it possible to perform 5-charge continuous casting, and the nozzle erosion status after completion can be changed. 1st
As shown in Figure 0, it is uniform. Next, as a comparative example, the target value of the hot water level was controlled to be as constant as possible without periodically raising and lowering it. As a result, as shown in Figure 2, the hot water level is controlled within a range of fluctuation of 5 mm with respect to the target value (0 level).
There is no periodic vertical movement in relation to the target value of the hot water level. For this reason, as shown in FIG. 6, the immersion nozzle for injecting molten steel was locally eroded as shown in the eroded portion 11, and holes were opened, making it unusable. This occurs because the lubricating powder on the molten steel surface is always in contact with approximately the same lengthwise portion of the nozzle. As another comparative example, the target change rate V of the hot water level is set to 1.
It was periodically moved up and down at more than 7 mm/sec. That is, the hot water level was varied with a period of 5 minutes and a swing width of 525 mm. As a result, the rising speed of the hot water level is 8 mm/sec, which comes from the accuracy of the hot water level control system itself.
mm/sec, and as a result, the hot water wrinkle rating deteriorated to B to C, as shown in FIGS. 3 and 4. In the present invention, since the target value is automatically changed, there is no need for the operator to be concerned with the level of the hot water. Furthermore, although the method of the present invention is effective for high-precision hot water level control, if the rate of change V is kept sufficiently small, it can also be applied to conventional control that has a wide range of hot water level fluctuations, and has a long nozzle life. Although the effect of oxidation is small, it can be expected. Furthermore, in the present invention, the change in the target hot water level is made into a triangular wave, but it may be a sine wave as long as it satisfies equation (1), or a sawtooth wave that increases the velocity in the direction of the drop in the hot water level. But it's okay. This is because the rising speed of the molten metal surface has a negative effect on the slab surface as shown in Figures 3, 4, and 5, but the falling speed has no effect. Regarding how to change the target value of the hot water level, it is fine if the triangular wave function shown in Fig. 7 is generated by an analog circuit, but if it is performed by a digital circuit or calculation, microscopically it will look like a step. The rate of change will be microscopically excessive, but considering the response time of the control system, find the average rate of change for 1 to 2 seconds, and even if this is 1 mm/sec or less, However, this is consistent with the intent of the present invention. As described above, according to the method of the present invention, not only can high-quality slabs be obtained, but also the number of charges in continuous-to-continuous casting can be increased, which has great effects in terms of productivity. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は連続鋳造における湯面制御の説明図、
第2図は湯面レベル制御精度の説明図、第3図は
湯面上昇速度と湯じわとの関係図、第4図は湯面
上昇速度と湯じわ評点との関係のグラフ、第5図
は湯面上昇速度と介在物の大きさの関係を表わす
図、第6図は浸漬ノズルの浸食状況の説明図、第
7図は湯面レベルと時間の関係図、第8図は三角
波発生回路のブロツク図、第9図は本発明による
湯面レベルの変動状況の説明図、第10図は本発
明実施時の浸漬ノズルの浸食の状態の説明図であ
る。 1;モールド、2;浸漬ノズル、3;タンデツ
シユ、4;鋳片、5;レベル計、6;調節計、
7;スライデイングノズル制御装置、8;スライ
デイングノズル、9;モータ、10;スライデイ
ングノズル開度計、11;浸漬ノズル浸食部、1
2;三角波発生回路。
Figure 1 is an explanatory diagram of molten metal level control in continuous casting.
Figure 2 is an explanatory diagram of hot water level control accuracy, Figure 3 is a graph of the relationship between hot water level rising rate and hot water wrinkles, Figure 4 is a graph of the relationship between hot water level rising rate and hot water wrinkle rating, Figure 5 is a diagram showing the relationship between the rising speed of the hot water level and the size of inclusions, Figure 6 is an explanatory diagram of the erosion status of the immersion nozzle, Figure 7 is a diagram showing the relationship between the hot water level and time, and Figure 8 is a diagram showing the relationship between the hot water level and time. FIG. 9 is a block diagram of the generating circuit, FIG. 9 is an explanatory diagram of the fluctuation of the hot water level according to the present invention, and FIG. 10 is an explanatory diagram of the state of erosion of the immersion nozzle when the present invention is implemented. 1; mold, 2; immersion nozzle, 3; tundish, 4; slab, 5; level meter, 6; controller,
7; Sliding nozzle control device, 8; Sliding nozzle, 9; Motor, 10; Sliding nozzle opening gauge, 11; Immersion nozzle erosion part, 1
2; Triangular wave generation circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 湯面レベル一定制御装置を備えた連鋳機によ
る鋼の連続鋳造の湯面レベル信号を目標湯面レベ
ルをセツトする調節計に導き、実測湯面レベルと
目標湯面レベルとの差を演算して、これに基づい
てノズル開度を調節するものにおいて、この調節
計にセツトされる鋳型内溶鋼の湯面目標値を周期
的に上下させ、この時の変化率V(単位時間当り
の湯面レベル変化量)を1mm/秒以下とすること
を特徴とするモールド湯面レベル制御方法。
1 The level signal of the continuous casting of steel by a continuous casting machine equipped with a constant level control device is guided to the controller that sets the target level, and the difference between the actual level and the target level is calculated. In a device that adjusts the nozzle opening degree based on this, the target value of the molten steel level in the mold, which is set in this controller, is periodically raised and lowered, and the rate of change at this time is V (molten steel per unit time). A mold surface level control method, characterized in that the amount of surface level change) is 1 mm/sec or less.
JP11983482A 1982-07-12 1982-07-12 Method for controlling level of molten metal in mold Granted JPS5910458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11983482A JPS5910458A (en) 1982-07-12 1982-07-12 Method for controlling level of molten metal in mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11983482A JPS5910458A (en) 1982-07-12 1982-07-12 Method for controlling level of molten metal in mold

Publications (2)

Publication Number Publication Date
JPS5910458A JPS5910458A (en) 1984-01-19
JPS6316218B2 true JPS6316218B2 (en) 1988-04-07

Family

ID=14771406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11983482A Granted JPS5910458A (en) 1982-07-12 1982-07-12 Method for controlling level of molten metal in mold

Country Status (1)

Country Link
JP (1) JPS5910458A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185674A (en) * 2006-01-12 2007-07-26 Jfe Steel Kk Method for manufacturing continuously cast slab

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913560A (en) * 1982-07-13 1984-01-24 Kawasaki Steel Corp Method for controlling weight of molten steel in continuous casting tundish

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185674A (en) * 2006-01-12 2007-07-26 Jfe Steel Kk Method for manufacturing continuously cast slab

Also Published As

Publication number Publication date
JPS5910458A (en) 1984-01-19

Similar Documents

Publication Publication Date Title
KR100752693B1 (en) High speed continuous casting machine and its operation method
US3941281A (en) Control device for regulating teeming rate
JPH0985407A (en) Method for controlling molten steel level in mold in continuous caster
JPS6316218B2 (en)
US7789123B2 (en) Sequence casting process for producing a high-purity cast metal strand
JPH01154850A (en) Method for controlling plate thickness in twin roll type continuous casting machine
JPS5946705B2 (en) Method for controlling molten metal level in continuous casting mold
JPH06102251B2 (en) Control method of molten metal flow rate in thin plate casting
JPH0747199B2 (en) Continuous casting method and its mold
US5090603A (en) Metal pouring system
JPS6045026B2 (en) Mold content steel level control method
KR102312118B1 (en) Apparatus for continuous casting process of steel material by controlling width-directional soft reduction and method of continuous casting using the same
JPS6056580B2 (en) Automatic injection method of molten metal using rotary nozzle between ladle and tundish in continuous casting
KR20010057450A (en) Method For Manufacturing Strip Using Strip Caster
JPH01118343A (en) Method for controlling molten metal flow in strip casting
JPH11114658A (en) Continuous casting method for different steel grades
JPH0341884Y2 (en)
JPH0377024B2 (en)
JPS62252650A (en) Straight flow control method in continuous molten steel casting mold
JP2695455B2 (en) Method of pouring molten metal into continuous casting mold
JPS62252649A (en) Divagating flow control method in mold for molten steel continuous casting
JPH0671398A (en) Method for controlling molten steel surface level in mold in continuous casting machine
JP2863485B2 (en) Control method of molten steel level in mold in continuous casting
JP2000317592A (en) A method for producing continuous cast slabs with high cleanliness in the ladle changing section
JPH08117938A (en) Molten Steel Injection Method in Continuous Casting of Thin Slabs