[go: up one dir, main page]

JPS63161365A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JPS63161365A
JPS63161365A JP31394586A JP31394586A JPS63161365A JP S63161365 A JPS63161365 A JP S63161365A JP 31394586 A JP31394586 A JP 31394586A JP 31394586 A JP31394586 A JP 31394586A JP S63161365 A JPS63161365 A JP S63161365A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
adsorption medium
reaction vessel
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31394586A
Other languages
Japanese (ja)
Inventor
幸男 渡邊
寿夫 若林
宏治 室園
轟 恒彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31394586A priority Critical patent/JPS63161365A/en
Publication of JPS63161365A publication Critical patent/JPS63161365A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はヒートポンプ式空気調和機に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat pump type air conditioner.

従来の技術 従来のヒートポンプ式空気調和機は、例えば暖房運転で
示すと、第2図に示すように、圧縮機31、室内熱交換
器(凝縮器)32、減圧機構33、室外熱交換器(蒸発
器)34、四方弁35、゛を環状に配管接続し、冷媒を
循環させる冷凍サイクル構成が基本である。一方、近年
、吸着・脱着反応熱を利用したいわゆるケミカルヒート
ポンプの研究が進んでおり、第2図の冷凍サイクルと組
み合わせて性能向上を図る試みが成されてきている。例
えば特開昭60−16280号公報に示されているよう
に、第3図の構成がある。即ち、冷蔵庫40に放て、圧
縮機41、凝縮器42、減圧機構43、蒸発器44よシ
なる主回路の圧縮機の周囲に吸着剤45を充填した反応
容器46を置き、副回路凝縮器47、吸着媒体(吸着剤
に吸着される物質)4Bを貯めるタンク49、副回路蒸
発器50を環状に接続した構成とし、吸着剤45に吸着
媒体4Bを吸着させた時に副回路蒸発器5oにおける吸
着媒体の蒸発熱(吸熱)によって冷却し、主回路の蒸発
器44による冷却の補助をするものである。
BACKGROUND ART A conventional heat pump type air conditioner, for example in heating operation, as shown in FIG. The basic configuration is a refrigeration cycle in which an evaporator) 34, a four-way valve 35, and a four-way valve 35 are connected in an annular manner through pipes to circulate refrigerant. On the other hand, in recent years, research has been progressing on so-called chemical heat pumps that utilize the heat of adsorption/desorption reactions, and attempts have been made to improve their performance by combining them with the refrigeration cycle shown in Figure 2. For example, as shown in Japanese Unexamined Patent Publication No. 60-16280, there is a configuration shown in FIG. That is, a reaction vessel 46 filled with an adsorbent 45 is placed around a main circuit compressor including a compressor 41, a condenser 42, a pressure reduction mechanism 43, and an evaporator 44, and a subcircuit condenser is placed in a refrigerator 40. 47. A tank 49 for storing an adsorption medium (substance adsorbed by the adsorbent) 4B and a sub-circuit evaporator 50 are connected in a ring, and when the adsorption medium 4B is adsorbed to the adsorbent 45, the sub-circuit evaporator 5o It is cooled by the heat of vaporization (endotherm) of the adsorption medium, and assists the cooling by the evaporator 44 of the main circuit.

発明が解決しようとする問題点 第2図の最も一般的な構成では、除霜運転中は、室外熱
交換器に付着した霜を融解するために、例えば四方弁3
5を切り換えて行うがこの時冷媒の熱量が奪われ、室内
熱交換器の温度が低下するという問題があった。
Problems to be Solved by the Invention In the most general configuration shown in FIG. 2, during defrosting operation, for example, the four-way valve 3 is used to melt the frost attached to the outdoor heat exchanger.
5, but there was a problem in that the heat amount of the refrigerant was taken away and the temperature of the indoor heat exchanger decreased.

又近年四方弁を切り換えずにバイパス回路等を設けて暖
房を続けながら暖房運転するものも提案され、商品化さ
れているが、それでも除電時の熱源はその時発生する冷
媒熱であシ、基本的に熱源不足のため暖房能力が大きく
取れないという問題があった。
In addition, in recent years, devices have been proposed and commercialized that allow heating operation while continuing heating by installing a bypass circuit or the like without switching the four-way valve, but even then, the heat source during static electricity removal is the refrigerant heat generated at that time. However, there was a problem in that the heating capacity could not be increased due to a lack of heat sources.

又暖房立ち上がり時も、これと同様のことが言え、機器
が十分に冷えているため、その熱容量が大きく、さらに
は冷媒が途中で凝縮して十分な循環量が得られない等の
理由により、温風が出るまでの時間、あるいは部屋が十
分に暖まるまでに長い時間を要していた。
The same thing can be said when heating starts up, because the equipment is sufficiently cold, its heat capacity is large, and the refrigerant condenses midway, making it impossible to obtain sufficient circulation. It took a long time for the warm air to come out or for the room to warm up sufficiently.

これらの改善には冷凍サイクル上の工夫がなされてきて
いるがまだ充分ではない。更に、ケミカルヒートポンプ
との組合せが考えられるが、第3図では冷房補助に使用
したものであり上記の暖房時の除霜特性の改善への応用
については適用できない。
Although improvements have been made to the refrigeration cycle, these improvements are still insufficient. Furthermore, a combination with a chemical heat pump is considered, but in FIG. 3, it is used to assist in cooling, and cannot be applied to the above-mentioned improvement of defrosting characteristics during heating.

問題点を解決するための手段 上記問題点を解決するために、本発明のヒートポンプ式
空気調和機は、圧縮機、室内熱交換器、減圧機構、室外
熱交換器を環状に接続して冷媒を循環させる主回路を構
成し、更に吸着媒体と反応することにより可逆的な吸熱
・発熱を示す吸着剤   ′を充填した反応容器と前記
吸着媒体を貯えるリザーブタンクとを前記吸着媒体が移
動可能に接続して副回路を構成し、前記反応容器は前記
圧縮機出口から前記室内熱交換器までの配管の一部と熱
交換可能に接続し、前記リザーブタンクを前記室内熱交
換器から前記減圧機構までの配管の一部と熱交換可能に
接続したものである。
Means for Solving the Problems In order to solve the above problems, the heat pump air conditioner of the present invention connects a compressor, an indoor heat exchanger, a pressure reduction mechanism, and an outdoor heat exchanger in a ring to supply refrigerant. A reaction vessel filled with an adsorbent that forms a main circulation circuit and exhibits reversible heat absorption and heat generation by reacting with the adsorption medium and a reserve tank that stores the adsorption medium are connected so that the adsorption medium is movable. to form a subcircuit, the reaction vessel is connected to a part of the piping from the compressor outlet to the indoor heat exchanger for heat exchange, and the reserve tank is connected from the indoor heat exchanger to the pressure reducing mechanism. It is connected to a part of the piping for heat exchange.

作  用 本発明は上記の構成によシ、例えば暖房を継続しながら
行う除霜運転中の数分間、及び始動時主回路が十分な暖
房能力を発生するまでの数分間は、反応容器内で吸着剤
と吸着媒体を反応させることによシ発生する熱を用いて
主回路の冷媒を加熱して暖房能力を補い、暖房立ち上が
シ時間を短縮し、除霜運転中の暖房能力を向上する。ま
た、吸着剤より吸着媒体を脱着させる再生時においては
反応容器を主回路にょ9加熱すると共にリザーブタンク
を主回路により冷却して再生効率を向上させ、暖房立ち
上がシ性能の向上、及び除霜特性の改善を図るものであ
る。
Effects of the present invention Due to the above-described configuration, for example, during several minutes of defrosting operation that is performed while heating continues, and for several minutes until the main circuit generates sufficient heating capacity at the time of startup, the operation is performed in the reaction vessel. The heat generated by the reaction between the adsorbent and the adsorption medium is used to heat the refrigerant in the main circuit to supplement heating capacity, shorten heating startup time, and improve heating capacity during defrosting operation. do. In addition, during regeneration to desorb the adsorption medium from the adsorbent, the reaction vessel is heated by the main circuit and the reserve tank is cooled by the main circuit to improve regeneration efficiency, improve heating start-up performance, and improve removal efficiency. This is intended to improve frost characteristics.

実施例 以下、本発明の一実施例について図面を参照しながら説
明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図において、1は圧縮機、2は室内熱交換器、3は
減圧機構、4は室外熱交換器、5は吸着剤としてシリカ
ゲル、6は反応容器、7は吸着媒体としてフレオンR1
2,8はリザーブタンク、9.10,14.15はそれ
ぞれ電磁弁、11は第一の熱交換器、12はバイパス回
路、13は第二の熱交換器、16は逆止弁、17は四方
弁である。
In Fig. 1, 1 is a compressor, 2 is an indoor heat exchanger, 3 is a pressure reduction mechanism, 4 is an outdoor heat exchanger, 5 is silica gel as an adsorbent, 6 is a reaction vessel, and 7 is Freon R1 as an adsorption medium.
2 and 8 are reserve tanks, 9.10 and 14.15 are electromagnetic valves, 11 is a first heat exchanger, 12 is a bypass circuit, 13 is a second heat exchanger, 16 is a check valve, and 17 is a It is a four-way valve.

第一の熱交換器11は反応容器6内にシリカゲル5と共
に収納されておシ、さらに第一の熱交換器11は四方弁
17から室内熱交換器2までの配管の途中に設けられて
いる。電磁弁14は室内熱交換器2と減圧機構3との間
に設けられ、電磁弁14と並列にバイパス回路12が設
けられている。
The first heat exchanger 11 is housed in the reaction vessel 6 together with the silica gel 5, and the first heat exchanger 11 is further provided in the middle of the piping from the four-way valve 17 to the indoor heat exchanger 2. . The solenoid valve 14 is provided between the indoor heat exchanger 2 and the pressure reducing mechanism 3, and a bypass circuit 12 is provided in parallel with the solenoid valve 14.

バイパス回路12はその途中に第二の熱交換器13を備
えておシ、この第二の熱交換器13はリザーブタンク8
内にフレオンR12;7と共に収納されている。さらに
このバイパス回路12には電磁弁15と逆止弁16が備
えられている。又、反応容器6とリザーブタンク8は、
途中にそれぞれ電磁弁9,1oを持つ二本の配管にょシ
接続されており、副回路を構成している。
The bypass circuit 12 is provided with a second heat exchanger 13 on its way, and this second heat exchanger 13 is connected to the reserve tank 8.
It is housed inside along with Freon R12;7. Furthermore, this bypass circuit 12 is equipped with a solenoid valve 15 and a check valve 16. In addition, the reaction container 6 and the reserve tank 8 are
It is connected to two pipes each having electromagnetic valves 9 and 1o in the middle, forming a subcircuit.

次に、この構成になるヒートポンプ式空気調和機の動作
を説明する。暖房運転時は電磁弁14は開き、電磁弁1
5は閉じた状態で、冷媒は、圧縮機1、四方弁17、第
一の熱交換器11、室内熱交換器2、電磁弁14、減圧
機構3、室外熱交換器4、四方弁17を順次流れ、圧縮
機1にもどる。
Next, the operation of the heat pump air conditioner having this configuration will be explained. During heating operation, the solenoid valve 14 opens, and the solenoid valve 1
5 is closed, and the refrigerant flows through the compressor 1, the four-way valve 17, the first heat exchanger 11, the indoor heat exchanger 2, the solenoid valve 14, the pressure reducing mechanism 3, the outdoor heat exchanger 4, and the four-way valve 17. It flows sequentially and returns to compressor 1.

除霜運転開始前の副回路の状態は7レオンR12;7は
リザーブタンク8に回収されており、電磁弁9.10は
閉じ、反応容器6内のシリカゲル5は乾燥した状態であ
る。図示しない除霜制御装置により着霜を検出すると、
四方弁17はそのままの状態で暖房を続けながら除霜運
転に入る。除霜運転が開始すると同時に電磁弁9,10
を開くと、リザーブタンク8のフレオンR12;7は電
磁弁10を経て反応容器6へ移動し、シリカゲル5と反
応して発熱する。フレオンR12;7の移動後、電磁弁
9,10を閉じる第一の熱交換器11はシリカゲル5に
埋没されているため、反応熱は主回路の冷媒に伝達され
、主回路の冷媒は、そのエンタルピが高くなった状態で
室内熱交換器2、電磁弁14、減圧機構3を経て室外熱
交換器4へ流れる。即ち、除霜運転中は、室外熱交換器
4に付着した霜を融解するための熱源として、シリカゲ
ル5とフレオンR12;7との反応熱を利用することに
よυ、除霜時間が短縮でき、また室内熱交換器2に流れ
る冷媒の温度も高く維持して暖房も行える。従って、よ
り良好な除霜特性かえられる。
The state of the subcircuit before the start of the defrosting operation is that 7 Leon R12; 7 is collected in the reserve tank 8, the solenoid valves 9 and 10 are closed, and the silica gel 5 in the reaction vessel 6 is in a dry state. When frost formation is detected by a defrost control device (not shown),
The four-way valve 17 enters defrosting operation while continuing heating. At the same time as the defrosting operation starts, the solenoid valves 9 and 10
When the reservoir tank 8 is opened, Freon R12;7 moves to the reaction vessel 6 via the electromagnetic valve 10, reacts with the silica gel 5, and generates heat. After Freon R12;7 moves, the first heat exchanger 11 that closes the solenoid valves 9 and 10 is buried in the silica gel 5, so the reaction heat is transferred to the refrigerant in the main circuit, and the refrigerant in the main circuit It flows to the outdoor heat exchanger 4 via the indoor heat exchanger 2, the electromagnetic valve 14, and the pressure reduction mechanism 3 in a state where the enthalpy is increased. That is, during defrosting operation, the defrosting time can be shortened by using the reaction heat between silica gel 5 and Freon R12;7 as a heat source to melt the frost attached to the outdoor heat exchanger 4. In addition, the temperature of the refrigerant flowing through the indoor heat exchanger 2 is maintained high to perform heating. Therefore, better defrosting properties can be obtained.

図示しない制御装置により除霜終了を検出すると電磁弁
10を閉じて通常の暖房運転に復帰する。
When a control device (not shown) detects the end of defrosting, the solenoid valve 10 is closed and normal heating operation is resumed.

圧縮機1の吐出ガスの温度が高温(約80°C)になる
と電磁弁9を開き、一方、電磁弁14を閉じて電磁弁1
5を開きバイパス回路12に主回路の冷媒を導き副回路
でシリカゲ/L15からフレオンR12;7が脱着する
再生過程が開始する。即ち、この再生過程は温度差を利
用するもので、リザーブタンク8の第二の熱交換器13
は主回路の冷媒によ′り30°C前後となシ、又反応容
器6内の第一の熱交換器11は主回路の高温高圧の冷媒
により70°C前後となる。このため、フレオンR12
;7はシリカゲ/L15から脱着しガスとなり電磁弁9
を経てリザーブタンク8に移動し、第二の熱交換器13
で凝縮し、リザーブタンク8に液として貯えられる。こ
の再生過程は数十分で平衡になり、再生は殆ど終了する
。一定再生時間後あるいは暖房運転終了時には電磁弁9
も閉じて、副回路休止時にはシリカゲル5とフレオンR
12;7は分離した状態を維持するようにした。
When the temperature of the discharge gas from the compressor 1 reaches a high temperature (approximately 80°C), the solenoid valve 9 is opened, while the solenoid valve 14 is closed and the solenoid valve 1 is closed.
5 is opened, the refrigerant of the main circuit is introduced into the bypass circuit 12, and a regeneration process is started in which Freon R12;7 is desorbed from Silicage/L15 in the subcircuit. That is, this regeneration process utilizes a temperature difference, and the second heat exchanger 13 of the reserve tank 8
The temperature in the first heat exchanger 11 in the reaction vessel 6 is around 70°C due to the high temperature and high pressure refrigerant in the main circuit. For this reason, Freon R12
;7 is desorbed from silikage/L15 and becomes gas, solenoid valve 9
It moves to the reserve tank 8 through the second heat exchanger 13.
It is condensed and stored as a liquid in the reserve tank 8. This regeneration process reaches equilibrium in several tens of minutes, and the regeneration is almost completed. Solenoid valve 9 after a certain regeneration time or when heating operation ends.
is closed, and when the subcircuit is stopped, silica gel 5 and Freon R are
12;7 was maintained in a separated state.

本実施例では除霜運転時に、四方弁17を暖房サイクル
のままとして説明したが、四方弁17を逆転させた冷房
サイクルの状態でも行え、もちろん暖房は継続できなく
なるが、この時の電磁弁9゜10.14.15の動作も
本実施例で説明した通りでよい。
In this embodiment, the four-way valve 17 is kept in the heating cycle during defrosting operation, but it can also be performed in the cooling cycle with the four-way valve 17 reversed, and of course heating cannot be continued, but the solenoid valve 9 at this time 10, 14, and 15 may be the same as described in this embodiment.

暖房立ち上がり時についても電磁弁10.14は開き、
電磁弁9,15は閉じた状態で行なうが、詳細について
は除’AT時と同様であるので説明を省略する。
When heating starts up, solenoid valves 10 and 14 open,
Although the electromagnetic valves 9 and 15 are closed, the details are the same as those in the AT mode, so a description thereof will be omitted.

また冷房運転は電磁弁9,10.15を閉じ、電磁弁1
4を開いておき、四方弁を切υ換えるだけで、従来通り
の冷房が行えるので、説明を省略する。
Also, for cooling operation, close solenoid valves 9 and 10.15, and close solenoid valve 1.
4 open and switching the four-way valve to perform cooling as before, so the explanation will be omitted.

上記の実施例においては、リザーブタンクと熱交換する
第二〇熱交換器を室内熱交換器と減圧機構とを結ぶ配管
に並列に設けたが、これに限定されるものではなく、直
列に設けてもよいし、又減圧機構と室外熱交換器とを結
ぶ配管に並列、あるいは直列に設けてもよく、要はリザ
ーブタンクを主回路の低温側と熱交換可能に設ければよ
い。
In the above embodiment, the No. 20 heat exchanger that exchanges heat with the reserve tank was installed in parallel with the piping connecting the indoor heat exchanger and the pressure reduction mechanism, but the invention is not limited to this, and it can be installed in series. Alternatively, the reserve tank may be provided in parallel or in series with the piping connecting the pressure reduction mechanism and the outdoor heat exchanger.In short, the reserve tank may be provided so as to be able to exchange heat with the low temperature side of the main circuit.

また反応容器と熱交換する第一の熱交換器を四方弁と室
内熱交換器とを結ぶ配管に設けたがこれに限定されるも
のではなく、圧縮機の吐出側と四方弁とを結ぶ配管に設
けてもよく、要は反応容器を主回路の高圧側と熱交換可
能に設ければよい。
In addition, the first heat exchanger for exchanging heat with the reaction vessel was installed in the piping connecting the four-way valve and the indoor heat exchanger, but the invention is not limited to this, and the piping connecting the discharge side of the compressor and the four-way valve. In other words, the reaction vessel may be provided so as to be able to exchange heat with the high pressure side of the main circuit.

また吸着剤としてシリカゲル、吸着媒体としてフレオン
R12を用いたが、この外、吸着剤としてはゼオライト
(沸石)や活性炭等、吸着媒体としてはR12以外のフ
レオンやアルコール等が適用でき、主に再生過程の再生
率が最良になる条件によって組合せを選択すれば良い。
In addition, silica gel was used as the adsorbent and Freon R12 was used as the adsorption medium, but in addition to these, zeolite (zeolite), activated carbon, etc. can be used as the adsorbent, and Freon or alcohol other than R12 can be used as the adsorption medium, and it is mainly used in the regeneration process. The combination may be selected depending on the conditions that give the best reproduction rate.

発明の効果 以上のように、本発明は発熱・吸熱を伴う可逆反応を行
う副回路を従来の冷凍サイクルに組み合わせ、主回路の
熱を効果的に利用することにより可逆反応の再生過程を
効率よく行うことが出来、除霜運転時及び暖房起動時に
主回路が充分な暖房能力を発生できない間、化学反応に
より熱を発生させその熱により暖房能力を補い、快適な
暖房を実現することが出来る。
Effects of the Invention As described above, the present invention efficiently performs the regeneration process of the reversible reaction by combining a subcircuit that performs a reversible reaction involving exothermic and endothermic heat with a conventional refrigeration cycle, and effectively utilizes the heat of the main circuit. During defrosting operation and heating start-up, when the main circuit cannot generate sufficient heating capacity, heat is generated through a chemical reaction and the heating capacity is supplemented with the heat, thereby realizing comfortable heating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す冷凍サイクル図、第2図
及び第3図はそれぞれ従来例を示す冷凍サイクル図であ
る。 1・・・・・・圧縮機、2・・・・・・室内熱交換器、
3・・・・・・減圧機構、4・・・・・・室外熱交換器
、5・・・・・・吸着剤(シリカゲA/)、6・・・・
・・反応容器、7・・・・・・吸着媒体(フレオンR1
2)、 8・・・・・・リザーブタンク、12・・・・
・・バイパス回路、17・・・・・・四方弁。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名!−
圧纏批 2− を内B交1灸轟 3− 、處圧機壜 4− 寛外焦久挟器 5− 畷着削 6− 反光S番 /3−一 オニの1&女#!界 /’7−vs;弁 第1図 区                  8囚    
                     のD& 
                城34〇−
FIG. 1 is a refrigeration cycle diagram showing an embodiment of the present invention, and FIGS. 2 and 3 are refrigeration cycle diagrams showing conventional examples, respectively. 1...Compressor, 2...Indoor heat exchanger,
3... Pressure reduction mechanism, 4... Outdoor heat exchanger, 5... Adsorbent (silicage A/), 6...
...Reaction vessel, 7...Adsorption medium (Freon R1
2), 8... Reserve tank, 12...
...Bypass circuit, 17...Four-way valve. Name of agent: Patent attorney Toshio Nakao and 1 other person! −
Pressure criticism 2- Inner B contact 1 Moxibustion roar 3-, Chest pressure machine bottle 4- Kangai Kokyu scissors 5- Nawate cutting 6- Hikari S number/3-1 Oni's 1 & female #! Kai/'7-vs; Ben No. 1 Ward 8 Prisoner
D&
Castle 340-

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、室内側熱交換器、減圧機構、室外側熱交換器を
環状に接続して冷媒を循環させる主回路を構成し、更に
、吸着媒体と反応することにより可逆的な吸熱・発熱を
示す吸着剤を充填した反応容器と前記吸着媒体を貯える
リザーブタンクとを前記吸着媒体が移動可能に接続して
副回路を構成し、前記反応容器は前記圧縮機出口から前
記室内熱交換器までの配管の一部と熱交換可能に接続し
、前記リザーブタンクを前記室内熱交換器から前記減圧
機構入口までの配管の一部と熱交換可能に接続したヒー
トポンプ式空気調和機。
The compressor, indoor heat exchanger, pressure reduction mechanism, and outdoor heat exchanger are connected in a ring to form a main circuit that circulates the refrigerant, and also exhibits reversible heat absorption and heat generation by reacting with the adsorption medium. A subcircuit is configured by connecting a reaction vessel filled with an adsorbent and a reserve tank storing the adsorption medium so that the adsorption medium can move, and the reaction vessel is connected to a pipe from the outlet of the compressor to the indoor heat exchanger. A heat pump type air conditioner, wherein the reserve tank is connected to a part of piping from the indoor heat exchanger to the inlet of the pressure reduction mechanism so as to be heat exchangeable.
JP31394586A 1986-12-24 1986-12-24 Heat pump type air conditioner Pending JPS63161365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31394586A JPS63161365A (en) 1986-12-24 1986-12-24 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31394586A JPS63161365A (en) 1986-12-24 1986-12-24 Heat pump type air conditioner

Publications (1)

Publication Number Publication Date
JPS63161365A true JPS63161365A (en) 1988-07-05

Family

ID=18047392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31394586A Pending JPS63161365A (en) 1986-12-24 1986-12-24 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS63161365A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110262A (en) * 1988-10-20 1990-04-23 Matsushita Electric Ind Co Ltd Reversible cold heat generator
JP2012500379A (en) * 2008-08-26 2012-01-05 チン,クン−ス Heat pump system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110262A (en) * 1988-10-20 1990-04-23 Matsushita Electric Ind Co Ltd Reversible cold heat generator
JP2012500379A (en) * 2008-08-26 2012-01-05 チン,クン−ス Heat pump system

Similar Documents

Publication Publication Date Title
US5046319A (en) Regenerative adsorbent heat pump
KR100214255B1 (en) Dual temperature heat pump apparatus and system
JPH02230068A (en) Absorption freezer and its operating method
HK1000473B (en) Dual temperature heat pump apparatus
JPH11316061A (en) Air conditioning system and its operation method
JPH10508682A (en) Thermal compression device
JP3358460B2 (en) Chemical storage air intake cooling system
JPS63161365A (en) Heat pump type air conditioner
JP2009121740A (en) Adsorption type heat pump and its operation control method
JP2004293905A (en) Adsorption type refrigerator and its operation method
JP4269392B2 (en) Refrigeration equipment
US5347815A (en) Regenerative adsorbent heat pump
JP2004251557A (en) Refrigeration system using carbon dioxide as refrigerant
JPS63226570A (en) Heat pump type air conditioner
JPH109709A (en) Heat-driven metal hydride adsorption refrigerator
JPH06272989A (en) Refrigerator
JPS63161369A (en) Heat pump type air conditioner
JP2004263976A (en) Heat pump device and method of operating heat pump device
JPS63143468A (en) Heat pump type air conditioner
JPH01107063A (en) Heat pump type air conditioner
JPS63161371A (en) Heat pump type air conditioner
JP4301386B2 (en) Gas absorption / release device and method of operating the device
JPH09170846A (en) Vehicle-mounted chemical heat pump
JPS63161372A (en) Heat pump type air conditioner
JPH0749893B2 (en) Heat pump air conditioner