[go: up one dir, main page]

JPS63159646A - Fuel supply controller for internal combustion engine - Google Patents

Fuel supply controller for internal combustion engine

Info

Publication number
JPS63159646A
JPS63159646A JP30535086A JP30535086A JPS63159646A JP S63159646 A JPS63159646 A JP S63159646A JP 30535086 A JP30535086 A JP 30535086A JP 30535086 A JP30535086 A JP 30535086A JP S63159646 A JPS63159646 A JP S63159646A
Authority
JP
Japan
Prior art keywords
fuel supply
cylinder
cylinders
amount
supply amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30535086A
Other languages
Japanese (ja)
Other versions
JPH0432939B2 (en
Inventor
Shinpei Nakaniwa
伸平 中庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP30535086A priority Critical patent/JPS63159646A/en
Priority to US07/115,371 priority patent/US4883038A/en
Publication of JPS63159646A publication Critical patent/JPS63159646A/en
Publication of JPH0432939B2 publication Critical patent/JPH0432939B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To stabilize rotational speed by correctively increase or decrease fuel supply to cylinders causing changes in the rotational frequency of an engine in every predetermined stroke of each cylinder and correcting in the reverse direction the other cylinders reversely to make total fuel supply for all cylinders constant. CONSTITUTION:A calculating means B calculates a variation in the rotational speed of an engine judged by a cylinder judging means A in every predetermined stroke of each cylinder, and when the variation exceeds a predetermined one, the basic fuel supply is corrected by a first correcting means C to eliminate the variation for the cylinder causing the variation. Also, the fuel supply to the other cylinders is corrected by a second correcting means D in the opposite direction to the correcting direction of the first correcting means C with the corrected amount in the corrected cylinder being delivered and set divided by the number of the other cylinders and set. And fuel supply means for respec tive cylinders are controlled through output means F according to the basic fuel supply set by a setting means E according to the running condition or corrected fuel supply.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明は、気筒毎に燃料噴射弁等の燃料供給手段を備え
た内燃機関の燃料供給制御装置に関し、詳しくは気筒間
の燃焼状態のバラツキによる機関回転速度の変動を制御
するように気筒毎に燃料供給量を補正するようにしたも
のに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a fuel supply control device for an internal combustion engine, which is equipped with a fuel supply means such as a fuel injection valve for each cylinder. This invention relates to a system in which the fuel supply amount is corrected for each cylinder so as to control fluctuations in engine rotational speed caused by the engine speed.

〈従来の技術〉 従来の電子制御燃料噴射式の内燃機関では、燃料の噴射
量Ttを例えば次のような式によって定めるようにして
いる。
<Prior Art> In a conventional electronically controlled fuel injection type internal combustion engine, the fuel injection amount Tt is determined, for example, by the following formula.

Tt=TpXCOBFXα+Ts ここで、Tpは基本噴射量であり、次のような式で与え
られる。
Tt=TpXCOBFXα+Ts Here, Tp is the basic injection amount and is given by the following formula.

Tp=KXQ/N には定数、Qは吸入空気流量、Nは機関回転速度、であ
る。又、C0EFは各種増量補正係数であり、 C0EF−1+Ktw+Kas+Kacc +Kmrの
ような式で与えられる。Ktwは水温増量補正係数r 
Kasは始動及び始動後増量補正係数、 Kaccは加
速増量補正係数、Krarは混合比補正係数である。α
は後述する空燃比のフィードバック制御(λコントロー
ル)を行うための空燃比フィードバック補正係数である
。Tsは電圧補正骨で、電源電圧の変動にともなう噴射
量のばらつきを補正するためのものである。
Tp=KXQ/N is a constant, Q is the intake air flow rate, and N is the engine rotation speed. Further, C0EF is various increase correction coefficients, and is given by a formula such as C0EF-1+Ktw+Kas+Kacc+Kmr. Ktw is water temperature increase correction coefficient r
Kas is a starting and post-start increase correction coefficient, Kacc is an acceleration increase correction coefficient, and Krar is a mixture ratio correction coefficient. α
is an air-fuel ratio feedback correction coefficient for performing air-fuel ratio feedback control (λ control) to be described later. Ts is a voltage correction element, which is used to correct variations in the injection amount due to fluctuations in the power supply voltage.

空燃比のフィードバック制御は、機関の排気系に02セ
ンサを取付けて実際の空燃比を検出し、実際の空燃比が
理論空燃比より濃いか薄いかをスライスレベルにより判
定して実際の空燃比を理論空燃比に近付けるように燃料
の噴射量を制御するものであり、このために、前記空燃
比フィードバック補正係数αを変化させることによって
制御される。
Air-fuel ratio feedback control involves installing an 02 sensor in the engine's exhaust system to detect the actual air-fuel ratio, and determining whether the actual air-fuel ratio is richer or leaner than the stoichiometric air-fuel ratio using a slice level. The fuel injection amount is controlled so as to approach the stoichiometric air-fuel ratio, and for this purpose, it is controlled by changing the air-fuel ratio feedback correction coefficient α.

〈発明が解決しようとする問題点〉 しかしながら、このような従来の電子制御燃料噴射式多
気筒内燃機関、とりわけ、燃料噴射弁を各気筒毎に備え
るいわゆるマルチポイントインジェクション方式の内燃
機関では、構造上或いは経時変化等により各燃料噴射弁
の燃料噴射量に相違が発生すると、気筒間での燃料の分
配が均一にならないことがある。これにより、特定の気
筒が失火を生じたり、逆に強燃焼(燃焼圧力が大き過ぎ
る)を生じたりすると機関回転が大きく変動し、機関の
安定性、殊に、アイドル安定性が悪化してサージングを
発生したりするとともに機関の出力及び燃費の悪化を招
き、又は、全開時において特定気筒からの排気特性が極
度に悪化して排気処理手段として機能する三元触媒等の
焼損を招く等の問題点を生じてしまう。
<Problems to be Solved by the Invention> However, such conventional electronically controlled fuel injection multi-cylinder internal combustion engines, particularly so-called multi-point injection internal combustion engines in which each cylinder has a fuel injection valve, have structural problems. Alternatively, if a difference occurs in the fuel injection amount of each fuel injection valve due to changes over time, etc., the distribution of fuel between the cylinders may not be uniform. As a result, if a specific cylinder misfires or, conversely, strong combustion (combustion pressure is too high) occurs, the engine speed will fluctuate greatly, and engine stability, especially idle stability, will deteriorate, leading to surging. Problems include problems such as a deterioration of the engine's output and fuel efficiency as well as a deterioration of the engine's output and fuel efficiency, or extremely deterioration of the exhaust characteristics from a specific cylinder when the engine is fully opened, leading to burnout of the three-way catalyst, etc. that functions as an exhaust treatment means. This results in a point.

本発明は、このような実状に鑑みてなされたものであり
、燃料分配特性の悪化を適確に補正し、これにより、機
関の安定性を向上させて出力及び燃費を向上させると共
に、三元触媒の焼損などを防止することを目的とする。
The present invention was made in view of the above circumstances, and it appropriately corrects the deterioration of the fuel distribution characteristics, thereby improving the stability of the engine, improving the output and fuel efficiency, and improving the ternary performance. The purpose is to prevent catalyst burnout.

〈問題点を解決するための手段〉 このため、本発明では第1図に示すように気筒毎に燃料
供給手段を備えた内燃機関の燃料供給制御装置において
、機関回転速度を検出する回転速度検出手段と、機関回
転速度を含む機関運転状態に応じて基本となる燃料供給
量を設定する基本燃料供給量設定手段と、所定行程にあ
る気筒を判別する気筒判別手段と、各気筒の所定の行程
時期毎の機関回転速度の変化量を演算する回転速度変化
量演算手段と、機関回転速度の変化量が所定以上のとき
に該変化に影響を与えた気筒に対して当該変化を無くす
方向に前記基本燃料供給量を増減補正する第1燃料供給
量補正手段と、前記第1燃料供給量補正手段によって補
正された気筒の補正分を他の気筒の数で分配して設定さ
れた補正分ずつ、当該他の気筒の燃料供給量を第1燃料
供給量補正手段による増減方向とは逆方向に増減補正す
る第2燃料供給量補正手段と、基本燃料供給量又は補正
された燃料供給量に対応する燃料供給信号を気筒判別手
段によって判別された燃料供給時期にある気筒の燃料供
給手段に出力する燃料供給信号出力手段とを備えた構成
とする。
<Means for Solving the Problems> Therefore, in the present invention, as shown in FIG. 1, in a fuel supply control device for an internal combustion engine having a fuel supply means for each cylinder, a rotation speed detection method for detecting the engine rotation speed is provided. basic fuel supply amount setting means for setting a basic fuel supply amount according to engine operating conditions including engine rotational speed; cylinder discrimination means for determining a cylinder in a predetermined stroke; and a predetermined stroke for each cylinder. a rotational speed change amount calculation means for calculating the amount of change in the engine rotational speed for each period; a first fuel supply amount correction means for increasing or decreasing the basic fuel supply amount, and a correction amount set by distributing the correction amount of the cylinder corrected by the first fuel supply amount correction means among the number of other cylinders; a second fuel supply amount correction means for increasing or decreasing the fuel supply amount of the other cylinder in a direction opposite to the increase or decrease direction by the first fuel supply amount correction means; and a second fuel supply amount correction means corresponding to the basic fuel supply amount or the corrected fuel supply amount. The fuel supply signal output means outputs the fuel supply signal to the fuel supply means of the cylinder at the fuel supply time determined by the cylinder determination means.

く作用〉 かかる構成において、基本燃料供給量設定手段により、
機関運転状態に応じて全気筒で略共通な基本燃料供給量
が設定される。
In this configuration, the basic fuel supply amount setting means:
A basic fuel supply amount that is substantially common to all cylinders is set depending on the engine operating state.

一方、回転速度検出手段によって各気筒の所定の行程時
期毎に機関回転速度が検出され、回転速度変化量演算手
段により、各回毎の機関回転速度の変化量が演算される
On the other hand, the rotational speed detection means detects the engine rotational speed at each predetermined stroke period of each cylinder, and the rotational speed change amount calculation means calculates the amount of change in the engine rotational speed each time.

そして、第1燃料供給量補正手段により回転速度変化に
影響を与えた気筒の基本燃料供給量が回転速度の変化量
に基づいて補正され、また、他の気筒は、第2燃料供給
量補正手段により全気筒の総燃料供給量が一定になるよ
うに逆方向に増減補正される。
Then, the basic fuel supply amount of the cylinder that affected the rotational speed change is corrected by the first fuel supply amount correction means based on the amount of change in the rotational speed, and the second fuel supply amount correction means The amount of fuel supplied to all cylinders is increased or decreased in the opposite direction so that the total amount of fuel supplied to all cylinders becomes constant.

このようにして気筒毎に補正して設定された燃料供給時
期対応する燃料供給信号が、燃料供給信号出力手段から
気筒判別手段によって判別された気筒の燃料供給手段へ
出力され、該燃料供給手段から対応する気筒へ供給され
る。
A fuel supply signal corresponding to the fuel supply timing corrected and set for each cylinder in this way is output from the fuel supply signal output means to the fuel supply means of the cylinder discriminated by the cylinder discrimination means, and from the fuel supply means. It is supplied to the corresponding cylinder.

従って、燃料、排気エミッシヨンの悪化を抑制しつつ、
失火・強撚焼による機関回転速度の変動を防止できる。
Therefore, while suppressing deterioration of fuel and exhaust emissions,
Fluctuations in engine speed due to misfires and strong twisting can be prevented.

〈実施例〉 以下に本発明の実施例を図に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

一実施例の構成を示す第2図において、内燃機関1の吸
気通路2には上流側から吸入空気流量検出用のエアフロ
メータ3.絞り弁4.該絞り弁4の開度検出用のアイド
ルスイッチを含むスロットル開度センサ5及び各気筒毎
に燃料供給手段としての燃料噴射弁6が設けられる。ま
た、機関回転速度検出手段としてのクランク角センサ7
、冷却水温度検出用の水温センサ8及び排気通路9に排
気中酸素濃度を検出する0□センサ10が設けられる。
In FIG. 2 showing the configuration of an embodiment, an air flow meter 3 for detecting the flow rate of intake air is installed in an intake passage 2 of an internal combustion engine 1 from the upstream side. Throttle valve 4. A throttle opening sensor 5 including an idle switch for detecting the opening of the throttle valve 4 and a fuel injection valve 6 as fuel supply means are provided for each cylinder. In addition, a crank angle sensor 7 as an engine rotation speed detection means
A water temperature sensor 8 for detecting the temperature of the cooling water and a 0□ sensor 10 for detecting the oxygen concentration in the exhaust gas are provided in the exhaust passage 9.

前記エアフロメータ3からの吸入空気流量信号Q、クラ
ンク角センサ7からの各気筒の所定行程時期毎に出力さ
れる基準信号(その中、特定気筒、例えば#1気筒に対
応する信号は他と区別される気筒判別信号を兼ねる)及
び微小な単位クランク角毎に出力される単位角信号、ス
ロットル開度センサ5からの絞り弁開度信号、水温セン
サ8からの冷却水温度信号、02センサ10からの酸素
濃度信号は、マイクロコンピュータを内蔵したコントt
el−ルj−ニット11に入力され、コントロールユニ
ット11はこれら各信号に基づいて検出された機関運転
状態に応じて燃料噴射(jt(燃料供給量)を設定し、
該噴射量に相応するパルス巾をもつ噴射パルス(燃料供
給信号)を燃料噴射弁6に出力することによって燃料噴
射制御を行う。
The intake air flow rate signal Q from the air flow meter 3, the reference signal output from the crank angle sensor 7 at each predetermined stroke period of each cylinder (among them, the signal corresponding to a specific cylinder, for example, cylinder #1 is distinguished from the others) unit angle signal output for each tiny unit crank angle, throttle valve opening signal from throttle opening sensor 5, cooling water temperature signal from water temperature sensor 8, and cooling water temperature signal from 02 sensor 10. The oxygen concentration signal of
The control unit 11 sets the fuel injection (jt (fuel supply amount)) according to the engine operating state detected based on these signals.
Fuel injection control is performed by outputting an injection pulse (fuel supply signal) having a pulse width corresponding to the injection amount to the fuel injection valve 6.

ここで、燃料噴射量の設定は、機関運転状態に応じて基
本となる燃料噴射量を設定した後、各気筒の燃焼行程時
期毎に検出された機関回転速度の変化に応じて気筒毎の
燃料噴射量を増減補正するようにしている。
Here, the fuel injection amount is set by setting the basic fuel injection amount according to the engine operating state, and then setting the fuel injection amount for each cylinder according to the change in the engine speed detected at each combustion stroke timing of each cylinder. The injection amount is adjusted to increase or decrease.

以下、前記燃料噴射量制御ルーチンを第3図〜第5図に
示したフローチャートに従って説明する。
Hereinafter, the fuel injection amount control routine will be explained according to the flowcharts shown in FIGS. 3 to 5.

第3図は、クランク角センサ7からの基準信号入力毎に
行われる、燃料増減補正を行う気筒を判別するルーチン
を示す。
FIG. 3 shows a routine that is performed every time a reference signal is input from the crank angle sensor 7 and determines which cylinder is to be subjected to fuel increase/decrease correction.

ステップ(図ではSと記す)1では前回クランク角セン
サ7から基準信号を入力してから今回基準信号を入力す
るまでの時間(周期)の逆数として機関回転速度Nを検
出すると共に一時記憶する。
In step (denoted as S in the figure) 1, the engine rotational speed N is detected as the reciprocal of the time (period) from inputting the reference signal from the previous crank angle sensor 7 to inputting the reference signal this time, and temporarily stores it.

ステップ2では基準信号が特定気筒(#1気筒)の気筒
判別信号であるか否かを判定し、YESの場合は、ステ
ップ3へ進んで該特定気筒を示すデータcylDを0に
セットする。
In step 2, it is determined whether the reference signal is a cylinder discrimination signal for a specific cylinder (#1 cylinder), and if YES, the process proceeds to step 3, where data cylD indicating the specific cylinder is set to 0.

その後、基準信号を入力した時はステップ4へ進んでデ
ータ。、lDを1カウントアツプし、例えば#2.#3
,94気筒は夫々cylDが3.1゜2にセットされ、
再度#1気筒の気筒判別信号が入力されるとcyIDは
Oにリセットされ、これによって各気筒を判別できる。
After that, when the reference signal is input, proceed to step 4 and input the data. , ID is counted up by 1, for example #2. #3
, 94 cylinders each have cylD set to 3.1°2,
When the cylinder discrimination signal for the #1 cylinder is input again, cyID is reset to O, thereby making it possible to discriminate each cylinder.

即ち、クランク角センサ7とステップ2〜4の機能が気
筒判別手段を構成する。
That is, the crank angle sensor 7 and the functions of steps 2 to 4 constitute cylinder discrimination means.

次いでステップ5では、ステップ3又はステップ4にお
いて記憶された判別気筒のデータcylD(0〜3)に
対して、燃料の増減量補正を行う場合の気筒を判別する
。点火順序が#1→#3→#4−#2の場合失火あるい
は強撚焼による回転速度の変化が検出されるのは変化後
2回基準信号を入力した時であり、これに基づいてcy
j2D=oのときはステップ6で気筒隘データnを4.
cyj!D=1のときはステップ7でn=2.cyj2
D=2のときはステップ8でn=1.cyj2D−3の
ときはステップ9でn−3にセットする。
Next, in step 5, the cylinder to which the fuel increase/decrease correction is to be performed is determined based on the data cylD (0 to 3) of the determined cylinder stored in step 3 or step 4. When the ignition order is #1 → #3 → #4-#2, a change in rotational speed due to misfire or strong twist firing is detected when the reference signal is input twice after the change, and based on this, the cy
When j2D=o, in step 6, the cylinder data n is set to 4.
cyj! When D=1, n=2 in step 7. cyj2
When D=2, n=1 in step 8. If it is cyj2D-3, set it to n-3 in step 9.

ステップ10では、ステップ1で演算した機関回転速度
Nに所定の回転Nl(例えば6 rpm)を加算した値
と、前回演算した機関回転速度Nとを比較し、前者が後
者を上回る時つまり回転速度の低下が大きいと判定した
時は、ステップ12に進んでその原因となったステップ
6〜9で判別した気筒nの燃料供給量を増量補正すべく
当該気筒nの燃料増量補正係数Knを所定量例えば本実
施例では1%加算する。
In step 10, the value obtained by adding a predetermined rotation Nl (for example, 6 rpm) to the engine rotation speed N calculated in step 1 is compared with the engine rotation speed N calculated last time, and if the former exceeds the latter, that is, the rotation speed If it is determined that the decrease is large, the process proceeds to step 12, where the fuel increase correction coefficient Kn for the cylinder n is increased by a predetermined amount in order to increase the fuel supply amount of the cylinder n determined in steps 6 to 9 that caused the decrease. For example, in this embodiment, 1% is added.

このステップエ2の機能は、第1燃料供給量補正手段に
相当する。
The function of step E2 corresponds to first fuel supply amount correction means.

次いでステップ13に進みステップ12で加算したKn
が上限値例えば5%を上回るか判定し、上回りでいない
時は、ステップ14に進み他の各気筒の燃料補正係数K
iを気筒nの補正骨1%を他の気筒の数で分配して設定
された補正骨即ち1/3%ずつ気筒nの加算とは逆に減
算する。
Next, proceed to step 13 and add Kn added in step 12.
It is determined whether or not exceeds the upper limit value, for example, 5%. If not, the process proceeds to step 14 and the fuel correction coefficient K of each other cylinder is determined.
i is subtracted from the correction bone set by dividing 1% of the correction bone of cylinder n by the number of other cylinders, that is, 1/3%, contrary to the addition of cylinder n.

したがって、金気筒の補正係数Kn、Kiの総和は補正
前と変わらず一定である。
Therefore, the sum of the correction coefficients Kn and Ki of the gold cylinder remains constant as before correction.

即ちこのステップ13の機能は第2燃料供給量補正手段
に相当する。
That is, the function of step 13 corresponds to second fuel supply amount correction means.

また、ステップ13で気筒nの燃料増量補正手段Knが
上限値5%を上回ると判定した時は、ステップ15へ進
み、Knから上限値を差し引いた値を他の気筒の数で除
算した補正骨Aを求める。
In addition, when it is determined in step 13 that the fuel increase correction means Kn of cylinder n exceeds the upper limit value 5%, the process proceeds to step 15, and the correction value obtained by dividing the value obtained by subtracting the upper limit value from Kn by the number of other cylinders is determined. Find A.

ステップ16ではKnを上限値にセットし直し、他の気
筒の補正係数Kiは、Knの増加分を気筒数3で除算し
た値、つまり1/3−Aずつ減算する。
In step 16, Kn is reset to the upper limit value, and the correction coefficients Ki for the other cylinders are subtracted by the value obtained by dividing the increase in Kn by the number of cylinders 3, that is, by 1/3-A.

この機能は、第1燃料供給量補正手段及び第2燃料供給
量補正手段に相当する。
This function corresponds to the first fuel supply amount correction means and the second fuel supply amount correction means.

この場合も、全気筒の補正係数Kn、Kiの総和は補正
前の値と変わらず一定である。
In this case as well, the sum of the correction coefficients Kn and Ki for all cylinders remains constant, unchanged from the value before correction.

ステップ14又はステップ16の後はステップ17へ進
み、失火以外の気筒の補正係数Kiの中、減算の結果下
限値−5%を下回ったものがあるかを判定し、下回った
気筒があればステップ18へ進んでその気筒の補正係数
Ktを下限値−5%に固定する。
After step 14 or step 16, the process proceeds to step 17, in which it is determined whether there is a correction coefficient Ki for cylinders other than misfires that is less than the lower limit value -5% as a result of subtraction, and if there is a cylinder that is less than the lower limit value, step Proceeding to step 18, the correction coefficient Kt for that cylinder is fixed at the lower limit value -5%.

この場合、他気筒の補正は行わないので金気筒の補正係
数の総和は若干増大するが微小量である6またステップ
10の判定で前回値の回転速度が今回(IfN+N、以
下の場合はステップ11へ進み、今度は、前回値と今回
値からN、を減算した値とを比較する。
In this case, the correction coefficients for the other cylinders are not corrected, so the sum of the correction coefficients for the gold cylinder increases slightly, but it is a very small amount. Next, the previous value and the value obtained by subtracting N from the current value are compared.

比較の結果、前者が後者以上と判定された場合は回転速
度の変動中が所定回転N1以内であるため正常であると
判定し、ステップ19で金気筒の補正係数Kn、Kiを
現状に維持する。
As a result of the comparison, if it is determined that the former is greater than or equal to the latter, it is determined that the rotation speed is normal because the rotation speed is within the predetermined rotation N1 during fluctuation, and the correction coefficients Kn and Ki of the gold cylinder are maintained at the current state in step 19. .

また、ステップ11で前者が後者を下回ると判定された
場合、つまり、回転速度の上昇が大きいと判定された場
合は強燃焼(燃焼圧が大き過ぎる)と判定しステップ2
0でその原因である気筒nの補正係数Knを所定量1%
減算する。
In addition, if it is determined in step 11 that the former is lower than the latter, that is, if it is determined that the increase in rotational speed is large, strong combustion is determined (combustion pressure is too large), and step 2
0, the correction coefficient Kn of cylinder n, which is the cause, is set to 1% by a predetermined amount.
Subtract.

この機能は、第1燃料供給量補正手段に相当する。次い
でステップ21では減算の結果)(nが下限値−5%を
下回るかを判定し、下回らない場合は、ステップ22へ
進んで他の気筒の補正係数Kiを173%ずつ加算する
This function corresponds to first fuel supply amount correction means. Next, in step 21, it is determined whether the subtraction result (n) is less than the lower limit value -5%. If not, the process proceeds to step 22, where the correction coefficients Ki of the other cylinders are added by 173%.

この機能は、第2燃料供給量補正手段に相当する。This function corresponds to second fuel supply amount correction means.

これにより、失火の場合と同様、全補正係数の総和は一
定となる。
As a result, as in the case of misfire, the sum of all correction coefficients remains constant.

ステップ21の判定でKnが一5%を下回ると判定され
た場合はステップ23へ進み、Knから下限値を差し引
いた値を他の気筒数3で除算した補正骨Bを求める。
If it is determined in step 21 that Kn is less than 15%, the process proceeds to step 23, where a corrected bone B is obtained by dividing the value obtained by subtracting the lower limit value from Kn by the other number of cylinders, 3.

ステップ24では、Knを下限値にセットし直し、他の
気筒の補正係数KiはKnの減少分を気筒数3で除算し
た値つまり1/3−Bずつ加算する。
In step 24, Kn is reset to the lower limit value, and the correction coefficients Ki for the other cylinders are added in increments of 1/3-B, that is, the value obtained by dividing the decrease in Kn by the number of cylinders 3.

この機能は第1燃料供給量補正手段及び第2燃料供給量
補正手段に相当する。
This function corresponds to the first fuel supply amount correction means and the second fuel supply amount correction means.

ステップ22又はステップ24の後は、ステップ25へ
進み、強燃焼以外の気筒の補正係数Kiの中、加算の結
果上限(I!5%を上回ったものがあるかを判定し、上
回った気筒があればステップ26へ進んでその気筒の補
正係数Kiを上限値5%に固定する。
After step 22 or step 24, the process proceeds to step 25, in which it is determined whether there is any correction coefficient Ki that exceeds the upper limit (I!5%) as a result of addition among the correction coefficients Ki of cylinders other than strong combustion, and the cylinder that exceeds If so, the process advances to step 26 and the correction coefficient Ki for that cylinder is fixed at the upper limit value of 5%.

この場合も、他気筒の補正は行わないので全気筒の補正
係数の総和は若干減大するが微小量である。
In this case as well, since no correction is made for other cylinders, the sum of correction coefficients for all cylinders decreases slightly, but by a very small amount.

尚、ステップ10.11の機能は回転速度変化量演算手
段に相当する。
Note that the function of step 10.11 corresponds to rotational speed change amount calculation means.

第4図は単位時間(例えば10m5)ごとに行われる燃
料噴射量演算ルーチンを示す。
FIG. 4 shows a fuel injection amount calculation routine performed every unit time (for example, 10 m5).

図において、ステップ31はではエアフロメータ3から
吸入空気流!Q−t−読み込み、ステップ32では第3
図のステップ1で演算された機関回転速度Nを読み込む
。但し、クランク角センサ7からの単位角信号の単位時
間当りの入力回数に基づいてこれに比例する機関回転速
度Nを演算してもよい。
In the figure, step 31 is the intake air flow from the air flow meter 3! Q-t-read, in step 32 the third
Read the engine rotation speed N calculated in step 1 of the figure. However, the engine rotational speed N which is proportional to the number of inputs of the unit angle signal from the crank angle sensor 7 per unit time may be calculated based on the number of inputs per unit time.

ステップ33では燃料噴射弁6から噴射される燃料の基
本噴射量を吸入空気流量Qと機関回転速度Nとに基づい
て次式により演算する Tp=に−Q/N  (Kは定数) ステップ34では、アイドルスイッチがONであるか判
定する。即ち、本実施例ではアイドル時のみ、本発明に
かかる燃料供給量補正を行うためであるが、アイドル時
以外で行ってもよい。
In step 33, the basic injection amount of fuel injected from the fuel injection valve 6 is calculated based on the intake air flow rate Q and the engine speed N using the following formula: Tp = -Q/N (K is a constant) In step 34, , determine whether the idle switch is ON. That is, in this embodiment, the fuel supply amount correction according to the present invention is performed only when the engine is idling, but it may be performed at times other than when the engine is idling.

アイドル時以外のときはステップ35へ進んで全気筒の
補正係数に、をOにセットする。
When the engine is not idling, the process proceeds to step 35, where the correction coefficients for all cylinders are set to O.

アイドル時の場合はスイッチ36〜40において、増減
量補正を行うべき気筒を求める。
When the engine is idling, switches 36 to 40 are used to determine the cylinder to which the increase/decrease correction should be performed.

即ちスイッチ36では判別気筒のデータcylD(0〜
3)に対して、燃料の増減量補正を行う場合の気筒を判
別する。
That is, the switch 36 selects the data cylD (0~
Regarding 3), the cylinder in which the fuel increase/decrease correction is to be performed is determined.

これに基づいてcyj!D=Oのときはステップ37で
第3図のルーチンでセットされたに4のデ2−夕をに9
としてセットし、同様にステップ38〜40でcyff
D=1のときはに、、cyJD=2のときはKI。
Based on this cyj! When D=O, in step 37, the data 2 of 4 set in the routine of FIG. 3 is set to 9.
and similarly in steps 38-40 cyff
When D=1, KI. When cyJD=2.

cyj!D=3のときはに、のデータをKNとしてセッ
トする。
cyj! When D=3, the data of is set as KN.

次いでステップ41で最終的な燃料噴射11Tiを次式
によって演算する。
Next, in step 41, the final fuel injection 11Ti is calculated using the following equation.

Ti −Tp−COEF・α・ (1+KN ) +T
5ここで、C0EFは絞り弁開度や冷却水温度等に基づ
いて求められた各種補正係数、αは、排気中酸素濃度に
基づいて求められた空燃比のフィードバック補正係数で
あり、KMは#)l  (N−1〜4)気筒の前記補正
係数、Tsはバフテリ電圧による補正量である。
Ti −Tp−COEF・α・(1+KN) +T
5 Here, C0EF is various correction coefficients determined based on the throttle valve opening degree, cooling water temperature, etc., α is the feedback correction coefficient for the air-fuel ratio determined based on the oxygen concentration in the exhaust gas, and KM is # )l (N-1 to 4) The correction coefficient Ts for the cylinders is a correction amount based on the buffer voltage.

このようにして補正設定された燃料噴射量が機関運転状
態に基づいて設定された各気筒の所定のクランク角時期
に燃料噴射弁6から噴射供給される。
The thus corrected fuel injection amount is injected and supplied from the fuel injection valve 6 at a predetermined crank angle timing of each cylinder, which is set based on the engine operating state.

かかる噴射弁作動ルーチンを第5図に従って説明する。This injection valve operation routine will be explained with reference to FIG.

このルーチンはカウンタによりカウントされた値が噴射
時期と一致した時に割り込まれる。
This routine is interrupted when the value counted by the counter matches the injection timing.

ステップ51でcyj!Dの値から気筒判別を行い、ス
テップ52〜55で判別された気筒の燃料噴射弁6に燃
料噴射11Tiに相当するパルス巾をもつ噴射パルスを
出力する。ここでステップ52〜55の機能が燃料供給
信号出力手段を構成する。次いでステップ56〜59で
は、次回の演算に備えて今回使用された補正係数に1〜
に4を前回値として記憶する。
cyj in step 51! The cylinder is discriminated based on the value of D, and an injection pulse having a pulse width corresponding to the fuel injection 11Ti is output to the fuel injection valve 6 of the cylinder discriminated in steps 52 to 55. Here, the functions of steps 52 to 55 constitute fuel supply signal output means. Next, in steps 56 to 59, 1 to 5 are added to the correction coefficients used this time in preparation for the next calculation.
4 is stored as the previous value.

次にかかる制御を行ったときの作用を第6図に基づいて
説明する。
Next, the effect when such control is performed will be explained based on FIG. 6.

今、#1気筒が燃焼行程で失火を生じるとこの気筒の燃
焼圧力が低下することにより平均有効圧力Piが減少し
、これに伴って回転速度が減少する。
Now, when cylinder #1 misfires during the combustion stroke, the combustion pressure of this cylinder decreases, resulting in a decrease in the average effective pressure Pi, and accordingly, the rotational speed decreases.

この回転速度の減少は、#4気筒の基準信号入力時に検
出されその際#1気筒用の補正係数に+が増大補正され
るので、次回の燃料噴射量が増大補正され、これにより
当該気筒の燃焼圧力が上昇し平均有効圧力が回復する。
This decrease in rotational speed is detected when the reference signal for the #4 cylinder is input, and at that time, the correction coefficient for the #1 cylinder is increased by +, so the next fuel injection amount is increased, and this causes the cylinder's Combustion pressure increases and average effective pressure recovers.

また、図示の如く#2気筒で強撚焼を生じると、燃焼圧
力が上昇することにより平均有効圧力Piが上昇し、こ
れに伴って回転速度が上昇する。
Further, as shown in the figure, when strong twist firing occurs in the #2 cylinder, the average effective pressure Pi increases due to the increase in combustion pressure, and the rotational speed increases accordingly.

この場合は、回転速度の上昇が#3気筒の基準信号入力
時に検出され、#2気筒用の補正係数に2が減少補正さ
れ、これにより当該気筒の燃焼圧力が減少し、゛平均有
効圧力の上昇を抑制する。
In this case, an increase in rotational speed is detected when the reference signal for #3 cylinder is input, and the correction coefficient for #2 cylinder is reduced by 2, thereby reducing the combustion pressure in the cylinder and reducing the average effective pressure. Control the rise.

一方、失火や強撚焼によって燃料噴射量を増大又は減少
、補正された気筒以外の気筒は、全気筒の総燃料噴射量
が一定に保たれるように燃料噴射量を増大又は減少補正
されるので全体として空燃比を一定(目標空燃比)、テ
保つことができ、また、各気筒に対し、失火や強撚焼の
発生回数に応じて比例的に増減補正が行われるため常に
運転状態に対応した適正な制御が行われる。
On the other hand, for cylinders other than the cylinders whose fuel injection amount has been increased or decreased due to misfire or strong twist firing, the fuel injection amount is increased or decreased so that the total fuel injection amount of all cylinders is kept constant. Therefore, the overall air-fuel ratio can be kept constant (target air-fuel ratio), and each cylinder is adjusted proportionally according to the number of misfires or strong twist firings, so the engine is always in operating condition. Appropriate control is carried out accordingly.

尚、補正量の上限値及び下限値を設定しているので気筒
毎の空燃比のずれが大きくなり過ぎることもない。
Note that since the upper and lower limits of the correction amount are set, the air-fuel ratio difference between cylinders will not become too large.

この結果、排気エミッションの機能や燃費を悪化させる
ことなく、気筒毎の平均有効圧力を均一化できることに
よってアイドル時や定常走行時の回転並動を抑制でき、
サージングの発生を防止できると共に、三元触媒の焼損
等の発生も防止できる。
As a result, it is possible to equalize the average effective pressure for each cylinder without deteriorating the exhaust emission function or fuel efficiency, thereby suppressing rotational synchronization during idling or steady driving.
Not only can surging be prevented from occurring, but also burnout of the three-way catalyst can be prevented.

〈発明の効果〉 以上説明したように、本発明によれば各気筒の所定行程
時期間における機関回転速度の変化に応じて当該変化の
原因となる気筒に対して燃料供給量を増減補正し、かつ
他気筒に対しては、全気筒の総燃料供給量が一定となる
ように逆向きに増減補正する構成としたため、排気エミ
ッション性能や燃費を悪化させることなく、失火2強燃
焼による回転速度の変化を短時間の中に抑制してアイド
ル時や定常走行時における回転速度の安定化を図れ、サ
ージングの発生を防止でき三元触媒の焼損等も防止でき
るという効果が得られる。
<Effects of the Invention> As explained above, according to the present invention, the amount of fuel supplied to the cylinder that is the cause of the change is corrected to increase or decrease in accordance with the change in the engine rotation speed during a predetermined stroke time period of each cylinder, In addition, since the other cylinders are configured to increase or decrease in the opposite direction so that the total amount of fuel supplied to all cylinders remains constant, the rotational speed due to misfires and combustion can be reduced without deteriorating exhaust emission performance or fuel efficiency. Changes can be suppressed within a short period of time to stabilize the rotational speed during idling or steady running, preventing surging and preventing burnout of the three-way catalyst.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロック図、第2図は本発
明の一実施例の構成を示す図、第3図は同上実施例の燃
焼状態判定ルーチンを示すフローチャート、第4図は同
じく燃料噴射量演算ルーチンを示すフローチャート、第
5図は同じく燃料噴射パルス出力制御ルーチンを示すフ
ローチャート、第6図は同じく各気筒の燃焼状態を示す
タイムチャートである。
FIG. 1 is a block diagram showing the configuration of the present invention, FIG. 2 is a diagram showing the configuration of an embodiment of the present invention, FIG. 3 is a flowchart showing the combustion state determination routine of the same embodiment, and FIG. 4 is the same. FIG. 5 is a flowchart showing the fuel injection amount calculation routine, FIG. 5 is a flowchart showing the fuel injection pulse output control routine, and FIG. 6 is a time chart showing the combustion state of each cylinder.

Claims (1)

【特許請求の範囲】[Claims] 気筒毎に燃料供給手段を備えた内燃機関の燃料供給制御
装置において、機関回転速度を検出する回転速度検出手
段と、機関回転速度を含む機関運転状態に応じて基本と
なる燃料供給量を設定する基本燃料供給量設定手段と、
所定行程にある気筒を判別する気筒判別手段と、各気筒
の所定の行程時期毎の機関回転速度の変化量を演算する
回転速度変化量演算手段と、機関回転速度の変化量が所
定以上のときに該変化に影響を与えた気筒に対して当該
変化を無くす方向に燃料供給量を増減補正する第1燃料
供給量補正手段と、前記第1燃料供給量補正手段によっ
て補正された気筒の補正分を他の気筒の数で分配して設
定された補正分ずつ、当該他の気筒の燃料供給量を第1
燃料供給量補正手段による増減方向とは逆方向に増減補
正する第2燃料供給量補正手段と、基本燃料供給量又は
補正された燃料供給量に対応する燃料供給信号を気筒判
別手段によって判別された燃料供給時期にある気筒の燃
料供給手段に出力する燃料供給信号出力手段とを備えた
ことを特徴とする内燃機関の燃料供給制御装置。
In a fuel supply control device for an internal combustion engine, which includes a fuel supply means for each cylinder, a rotation speed detection means detects the engine rotation speed, and a basic fuel supply amount is set according to the engine operating state including the engine rotation speed. Basic fuel supply amount setting means;
Cylinder discrimination means for discriminating a cylinder in a predetermined stroke; rotation speed change amount calculation means for calculating the amount of change in engine rotation speed for each predetermined stroke period of each cylinder; a first fuel supply amount correction means for increasing or decreasing the fuel supply amount in a direction to eliminate the change in the cylinder that affected the change; and a correction amount of the cylinder corrected by the first fuel supply amount correction means. The fuel supply amount of the other cylinders is divided by the number of other cylinders and the fuel supply amount is adjusted by the set correction amount by the number of other cylinders.
a second fuel supply amount correcting means for increasing or decreasing the increase or decrease in the direction opposite to the increase/decrease direction by the fuel supply amount correcting means; and a fuel supply signal corresponding to the basic fuel supply amount or the corrected fuel supply amount, which is determined by the cylinder determining means. 1. A fuel supply control device for an internal combustion engine, comprising a fuel supply signal output means for outputting a fuel supply signal to a fuel supply means of a cylinder at a fuel supply time.
JP30535086A 1986-10-31 1986-12-23 Fuel supply controller for internal combustion engine Granted JPS63159646A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP30535086A JPS63159646A (en) 1986-12-23 1986-12-23 Fuel supply controller for internal combustion engine
US07/115,371 US4883038A (en) 1986-10-31 1987-11-02 Fuel supply control system for multi-cylinder internal combustion engine with feature of suppression of output fluctuation between individual engine cylinders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30535086A JPS63159646A (en) 1986-12-23 1986-12-23 Fuel supply controller for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS63159646A true JPS63159646A (en) 1988-07-02
JPH0432939B2 JPH0432939B2 (en) 1992-06-01

Family

ID=17944052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30535086A Granted JPS63159646A (en) 1986-10-31 1986-12-23 Fuel supply controller for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS63159646A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544538A (en) * 1991-08-08 1993-02-23 Mitsubishi Motors Corp Air-fuel ratio control method and device for multicylinder internal combustion engine
JP2016217196A (en) * 2015-05-15 2016-12-22 トヨタ自動車株式会社 Engine device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544538A (en) * 1991-08-08 1993-02-23 Mitsubishi Motors Corp Air-fuel ratio control method and device for multicylinder internal combustion engine
JP2016217196A (en) * 2015-05-15 2016-12-22 トヨタ自動車株式会社 Engine device

Also Published As

Publication number Publication date
JPH0432939B2 (en) 1992-06-01

Similar Documents

Publication Publication Date Title
JP2884472B2 (en) Fuel property detection device for internal combustion engine
JP3498817B2 (en) Exhaust system failure diagnosis device for internal combustion engine
JPH0833127B2 (en) Air-fuel ratio control device for internal combustion engine
JPS62162919A (en) Detector for suction air quantity of engine
JPH06330741A (en) Air fuel ratio controller of lean burn engine
KR100406897B1 (en) Controller for multicylinder engine
JP3186250B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0914022A (en) Air-fuel ratio control device for internal combustion engine
JPS63159646A (en) Fuel supply controller for internal combustion engine
JP2916804B2 (en) Air-fuel ratio control device for internal combustion engine
JP2737482B2 (en) Degradation diagnosis device for catalytic converter device in internal combustion engine
US4646699A (en) Method for controlling air/fuel ratio of fuel supply for an internal combustion engine
JP2696444B2 (en) Fuel supply control device for internal combustion engine
JPH07269407A (en) Engine misfire detecting device
JP3765416B2 (en) Air-fuel ratio control device for internal combustion engine
JPH076437B2 (en) Fuel supply control device for internal combustion engine
JP4186350B2 (en) Combustion state detection device for internal combustion engine
JPS60125739A (en) Air-fuel ratio controlling apparatus for internal- combustion engine
JPS63113133A (en) Fuel supply control device of internal combustion engine
JP2916805B2 (en) Air-fuel ratio control device for internal combustion engine
JP2750777B2 (en) Electronic control fuel supply device for internal combustion engine
JP2592327B2 (en) Fuel supply control device for internal combustion engine
JPH0833133B2 (en) Air-fuel ratio control device for internal combustion engine
JPH06101564A (en) Device for detecting output fluctuation of internal combustion engine
JPH0893527A (en) Electronically controlled fuel injection system