[go: up one dir, main page]

JPS63156355A - Optoelectronic integrated circuit - Google Patents

Optoelectronic integrated circuit

Info

Publication number
JPS63156355A
JPS63156355A JP61304508A JP30450886A JPS63156355A JP S63156355 A JPS63156355 A JP S63156355A JP 61304508 A JP61304508 A JP 61304508A JP 30450886 A JP30450886 A JP 30450886A JP S63156355 A JPS63156355 A JP S63156355A
Authority
JP
Japan
Prior art keywords
chip
layer
electrodes
electrode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61304508A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nobuhara
裕之 延原
Masao Makiuchi
正男 牧内
Hisashi Hamaguchi
浜口 久志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61304508A priority Critical patent/JPS63156355A/en
Publication of JPS63156355A publication Critical patent/JPS63156355A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/10Integrated devices
    • H10F39/103Integrated devices the at least one element covered by H10F30/00 having potential barriers, e.g. integrated devices comprising photodiodes or phototransistors

Landscapes

  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To make it possible to perform a very high speed operation of an optoelectronic integrated circuit (OEIC), by arranging a chip, on which photoelectrons are formed, and a chip, on which electronic elements are formed, on the same substrate, providing chip connecting electrodes, which are extened to the side surface of each chip, butting the electrodes, aud electrically connecting the electrodes. CONSTITUTION:A recess part is formed in a light receiving region of a semi-insulating InP (Si-InP) substrate 11 in a PIN photodiode chip. A p<+>-AlInAs layer 12, an n<->-InGaAs layer 13 and an n<+>-InGaAs layer 14 are sequentially formed so that the end surfaces of the layers are exposed in the recess part. The end surface of the p<+>-AlInAs layer 12 is connected to a p-type electrode (Au/Zn/Au) 16 through an opening part formed in an insulating layer (SiN) layer 15. The n<+>-InGaAs layer 14 is connected to an n-type electrode (Au/AuGe) 17. The electrodes 16 and 17 are extended to the end surface of the chip through extended electrodes (AuSn) 18 and 19. In an FET circuit chip, source and drain electrodes 25 and a gate electrode 24 are formed on an n-type region 22 on a substrate 21. The electrode, which is connected to the PIN diode, is extened to the end surface of the chip through an extended electrode 25. Since the chips can be connected in the shortest distance, the very high speed operation can be carried out.

Description

【発明の詳細な説明】 〔概要〕 光素子チップと電子素子チップを組み込んだ光・電子集
積回路(OEIC)において、チップ接続用電極をチッ
プ側面まで延長して形成し、各チップの側面電極を密着
するようにして各チップを基板上に配置することにより
チップ間接続を行い、浮遊のインダクタンスや容量を低
減した超高速、高集積の構造を提起する。
[Detailed Description of the Invention] [Summary] In an optoelectronic integrated circuit (OEIC) incorporating an optical element chip and an electronic element chip, a chip connecting electrode is formed extending to the side of the chip, and a side electrode of each chip is formed. By arranging the chips in close contact with each other on the substrate, inter-chip connections are made, creating an ultra-high-speed, highly integrated structure that reduces stray inductance and capacitance.

〔産業上の利用分野〕[Industrial application field]

本発明はハイブリッド集積技術による超高速、高集積の
0EICに関する。
The present invention relates to an ultra-high speed, highly integrated 0EIC using hybrid integration technology.

光素子と電子素子を小さなパッケージに組み込んだ0B
ICは将来の光通信用デバイス、超高速、超高集積コン
ピュータ用デバイスとして有望であり、各所で研究開発
が活発に行われている。
0B that incorporates optical elements and electronic elements into a small package
ICs are promising as future optical communication devices, ultra-high speed, ultra-highly integrated computer devices, and research and development are being actively conducted in various places.

〔従来の技術〕[Conventional technology]

光素子と電子素子の接続法は大別して2通りあり、その
1つは光素子と電子素子をモノリシックに集積する方法
(3次元ICを含む)であり、その2は別個の半導体プ
ロセスを通して作成された光素子と電子素子(VLSI
を含む)とをハイブリッドに集積する方法である。
There are two main ways to connect optical and electronic devices: one is to monolithically integrate optical and electronic devices (including three-dimensional ICs), and the other is to fabricate them through separate semiconductor processes. Optical devices and electronic devices (VLSI)
This is a method of hybrid integration of

ハイブリッド集積技術は光素子と電子素子の各々を高歩
留に作成できる点が優れている。
Hybrid integration technology has the advantage of being able to produce both optical devices and electronic devices at high yields.

この技術は大別してワイヤボンディング法とフリップチ
ップ法とがあり、後者は配線長を極めて短くでき、高速
動作が可能な点で優れている。
This technology can be broadly classified into wire bonding method and flip-chip method, and the latter is superior in that it can extremely shorten the wiring length and can operate at high speed.

しかしながら、従来のフリップチップ法は電子素子の上
に、光素子を載せるというようにチップの2段積みを必
要とし、チップの位置合わせや、放熱の問題や、デバイ
スの信頼性の点でまだ不十分である。
However, the conventional flip-chip method requires stacking two layers of chips, such as placing an optical device on top of an electronic device, and still has drawbacks in terms of chip alignment, heat dissipation, and device reliability. It is enough.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のように、従来法によるハイブリッド構造では、超
高速動作の可能な、高信頼の0BICが得られなかった
As described above, with the conventional hybrid structure, a highly reliable 0BIC capable of ultra-high-speed operation could not be obtained.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、光素子を形成したチップと電子素
子を形成したチップを同一基板上に配置してなり、 各チップは、その側面まで延長して形成されたチップ接
続用電極を有し、かつ該電極を突き合わせてお互いに電
気的に接続されている光・電子集積回路によって達成さ
れる。
The solution to the above problem is to arrange a chip on which an optical element is formed and a chip on which an electronic element is formed on the same substrate, and each chip has a chip connection electrode formed extending to its side surface. , and an opto-electronic integrated circuit in which the electrodes are butted and electrically connected to each other.

〔作用〕[Effect]

本発明によると、チップ側面の電極どうしを接触させて
接続をとるため、ワイヤボンディング法のようにワイヤ
配線による浮遊のインダクタンスや容量がなく最短距離
でチップ間接続が行えるため、超高速動作が可能となり
、また、フリップチップ法のようにチップどうしを重ね
合わせることはなく各チップはすべて表面を上向きに配
置されるため、製造プロセスが容易でデバイスの信頼性
を低下させる危険度は少なくなる。
According to the present invention, connections are made by bringing the electrodes on the sides of the chips into contact with each other, so there is no floating inductance or capacitance caused by wire wiring as in the wire bonding method, and the connections between chips can be made over the shortest distance, making ultra-high-speed operation possible. In addition, unlike the flip-chip method, chips are not stacked on top of each other, but instead all chips are placed with their surfaces facing upward, making the manufacturing process easier and reducing the risk of reducing device reliability.

〔実施例〕〔Example〕

第1図(1)、(2)は本発明の一実施例を説明する0
EICの断面図と一部斜視図である。
Figures 1 (1) and (2) illustrate one embodiment of the present invention.
FIG. 2 is a cross-sectional view and a partial perspective view of the EIC.

図は受光素子としてPINフォトダイオードと、電子素
子としてFET回路とを基板上に組み込んだハイブリッ
ド0EIGを示す。
The figure shows a hybrid 0EIG in which a PIN photodiode as a light receiving element and an FET circuit as an electronic element are incorporated on a substrate.

PINフォトダイオードのチップは、半絶縁性InP(
SI−1nP)基板11の受光領域に形成された凹部に
、各層の端面がでるようにp”−AIInAs ji1
2、n−−InGaAs層13、n”−InGaAs層
14が順次形成されている。
The chip of the PIN photodiode is made of semi-insulating InP (
SI-1nP) p''-AIInAs ji1 so that the end face of each layer appears in the recess formed in the light receiving area of the substrate 11.
2. An n--InGaAs layer 13 and an n''-InGaAs layer 14 are formed in this order.

平坦化されたチップ表面に被着された絶縁層(SiN)
層15に形成された開口部を通じてp”−AllnAs
層12の端面はp型電極(Au/Zn/Au) 16に
、n”JnGaAs層14はn型電極(Au/AuGe
) 17に接続されている。
Insulating layer (SiN) deposited on the planarized chip surface
p”-AllnAs through the opening formed in layer 15
The end surface of the layer 12 is a p-type electrode (Au/Zn/Au) 16, and the n"JnGaAs layer 14 is an n-type electrode (Au/AuGe).
) connected to 17.

各電極16.17は、それぞれ延長電極(AuSn) 
18.19により斜視図に示されるようにチップ端面ま
で延長されている。
Each electrode 16.17 is an extension electrode (AuSn).
18 and 19 extend to the end face of the chip as shown in the perspective view.

FET回路のチップは、5r−GaAs基板21のソー
ス、ドレイン、チャネル領域にSiをイオン注入して形
成されたn型領域22上にソース、ドレイン電極(Au
/AuGe) 23、ゲート電極(WSi)24が形成
されている。
The FET circuit chip has source and drain electrodes (Au
/AuGe) 23 and a gate electrode (WSi) 24 are formed.

PINフォトダイオードに接続する電極は、延長電極(
AuSn)25等によりチップ端面まで延長されている
The electrode connected to the PIN photodiode is an extension electrode (
AuSn) 25 or the like to the end surface of the chip.

0EICは、上記のPINフォトダイオードのチップと
PE7回路のチップを、各延長電極が突き合わされるよ
うに絶縁性の基板1の上に配置して形成される。
The 0EIC is formed by arranging the above-mentioned PIN photodiode chip and PE7 circuit chip on an insulating substrate 1 so that their respective extension electrodes are butted against each other.

第2図は本発明の他の実施例を説明する半導体レーザチ
ップの斜視図である。
FIG. 2 is a perspective view of a semiconductor laser chip illustrating another embodiment of the present invention.

図は第1図のハイブリッド0BICにおいて、受光素子
の代わりに発光素子用いる場合の、発光素子として半導
体レーザチップを示す。
The figure shows a semiconductor laser chip as a light emitting element when a light emitting element is used instead of a light receiving element in the hybrid 0BIC of FIG. 1.

半導体レーザチップは、5l−GaAs基板31に形成
された凹部に、各層の端面がでるようにp”−GaAs
バッファ層32、p−AlGaAsクラッド層33、多
層量子井戸構造(MQW)発光層34、n−AlGaA
sクラッド層35、n”−GaAsキャップN36が順
次形成されている。
The semiconductor laser chip is made of p''-GaAs so that the end surfaces of each layer are exposed in the recesses formed in the 5l-GaAs substrate 31.
Buffer layer 32, p-AlGaAs cladding layer 33, multilayer quantum well structure (MQW) light emitting layer 34, n-AlGaA
An s-cladding layer 35 and an n''-GaAs cap N36 are formed in this order.

37.38はZnn拡散現型領域、横方向の光を閉じ込
める無秩序化領域を形成する。
37 and 38 form a Znn diffusion state region, a disordered region that confines light in the lateral direction.

平坦化されたチップ表面に被着された絶縁N39に形成
された開口部を通じて、n”−GaAsキャップ層36
はp型電極(Au/AuGe) 40に、p”−GaA
sバソファ層32の端面はn型電極(Au/Zn/Au
) 41に接続されている。
An n''-GaAs cap layer 36 is applied through an opening formed in an insulating layer 39 deposited on the planarized chip surface.
is a p-type electrode (Au/AuGe) 40, p''-GaA
The end surface of the s-basso layer 32 is an n-type electrode (Au/Zn/Au
) Connected to 41.

各電極40.41は、それぞれ延長電極(AuSn)4
2.43により図示のようにチップ端面まで延長され、
FET回路と接続できるようになっている。
Each electrode 40.41 is an extension electrode (AuSn) 4
2.43 extends to the chip end face as shown in the figure,
It can be connected to the FET circuit.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によるハイブリッド構
造では、超高速動作の可能な、高信頼の0EICが得ら
れる。
As described above in detail, the hybrid structure according to the present invention provides a highly reliable 0EIC capable of ultra-high-speed operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(1)、(2)は本発明の一実施例を説明する0
EICの断面図と一部斜視図、 第2図は本発明の他の実施例を説明する半導体レーザチ
ップの斜視図である。 図において、 1は基板、 11は5I−InP基板、 12はp”−AllnAs層、 13はn−InGaAs層、 14はn”−InGaAs層、 15は絶8i層でSiN層、 16はn型電極(Au/Zn/Au)、17はn型電極
(Au/AuGe)、 18.19は延長電極(AuSn)、 21は5l−GaAs基板、 22はソース、ドレイン、チャネル領域でn型領域、 23はソース、ドレイン電極(Au/AuGe)、24
はゲート重視(匈5i)2. 25は延長電極(八uSn)、 31は5r−GaAs  基十反、 32はp”−GaAsハソファ層、 33はp−AlGaAsクラッド層、 34はMQW発光層、 35はn−AlGaAsクラッド層、 36はn”−GaAsキャップ層、 37.38はZn拡散領域で無秩序化領域、39は絶縁
層、 40はn型電極(Au/AuGe)、 41はn型電極(Au/Zn/Au)、42.43延長
電極(AuSn) 蕗1図 笥2(2)
Figures 1 (1) and (2) illustrate one embodiment of the present invention.
A cross-sectional view and a partial perspective view of an EIC, and FIG. 2 is a perspective view of a semiconductor laser chip illustrating another embodiment of the present invention. In the figure, 1 is a substrate, 11 is a 5I-InP substrate, 12 is a p''-AllnAs layer, 13 is an n-InGaAs layer, 14 is an n''-InGaAs layer, 15 is an 8i layer and is a SiN layer, 16 is an n-type Electrodes (Au/Zn/Au), 17 is an n-type electrode (Au/AuGe), 18.19 is an extension electrode (AuSn), 21 is a 5l-GaAs substrate, 22 is a source, drain, and channel region; 23 are source and drain electrodes (Au/AuGe), 24
is gate-oriented (Xiong 5i) 2. 25 is an extension electrode (8uSn), 31 is a 5r-GaAs group, 32 is a p''-GaAs haphazard layer, 33 is a p-AlGaAs cladding layer, 34 is an MQW light emitting layer, 35 is an n-AlGaAs cladding layer, 36 is an n''-GaAs cap layer, 37.38 is a Zn diffusion region and disordered region, 39 is an insulating layer, 40 is an n-type electrode (Au/AuGe), 41 is an n-type electrode (Au/Zn/Au), 42 .43 Extension electrode (AuSn) Fuki 1 Figure 2 (2)

Claims (1)

【特許請求の範囲】  光素子を形成したチップと電子素子を形成したチップ
を同一基板上に配置してなり、 各チップは、その側面まで延長して形成されたチップ接
続用電極を有し、かつ該電極を突き合わせてお互いに電
気的に接続されている ことを特徴とする光・電子集積回路。
[Claims] A chip formed with an optical element and a chip formed with an electronic element are arranged on the same substrate, each chip having a chip connection electrode extending to its side surface, An optical/electronic integrated circuit characterized in that the electrodes are butted against each other and electrically connected to each other.
JP61304508A 1986-12-19 1986-12-19 Optoelectronic integrated circuit Pending JPS63156355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61304508A JPS63156355A (en) 1986-12-19 1986-12-19 Optoelectronic integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61304508A JPS63156355A (en) 1986-12-19 1986-12-19 Optoelectronic integrated circuit

Publications (1)

Publication Number Publication Date
JPS63156355A true JPS63156355A (en) 1988-06-29

Family

ID=17933881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61304508A Pending JPS63156355A (en) 1986-12-19 1986-12-19 Optoelectronic integrated circuit

Country Status (1)

Country Link
JP (1) JPS63156355A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0371380A2 (en) * 1988-11-29 1990-06-06 Siemens Aktiengesellschaft Photodiode-FET combination with an enhanced layer structure
US6338973B1 (en) * 1997-08-18 2002-01-15 Texas Instruments Incorporated Semiconductor device and method of fabrication
JP2006019526A (en) * 2004-07-01 2006-01-19 Ibiden Co Ltd Optical element, package substrate, and device for optical communication

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0371380A2 (en) * 1988-11-29 1990-06-06 Siemens Aktiengesellschaft Photodiode-FET combination with an enhanced layer structure
US6338973B1 (en) * 1997-08-18 2002-01-15 Texas Instruments Incorporated Semiconductor device and method of fabrication
JP2006019526A (en) * 2004-07-01 2006-01-19 Ibiden Co Ltd Optical element, package substrate, and device for optical communication

Similar Documents

Publication Publication Date Title
US20210265331A1 (en) Direct-bonded optoelectronic interconnect for high-density integrated photonics
US10168474B2 (en) Method of manufacturing optical input/output device
US20170261708A1 (en) Compact optical transceiver by hybrid multichip integration
US20230344518A1 (en) Optically-enhanced multichip packaging
CN110574176A (en) electro-optic device with III-V gain material and integrated heat spreader
KR20060129526A (en) Flip-chip LED Device without Submount
US20190123231A1 (en) Optoelectronic integrated semiconductor module and method for manufacturing same
JPH09199795A (en) Semiconductor light receiving emitting device
US5357121A (en) Optoelectronic integrated circuit
CN114930550A (en) Packaging of micro light emitting diodes for chip-to-chip communication
KR102059968B1 (en) Optical interconnection between semiconductor chips using mid-infrared
US20250004197A1 (en) Directly bonded optical components
CN100355014C (en) Topside active optical device apparatus and method
JPS6223163A (en) Hybrid optical ic device
JPS63156355A (en) Optoelectronic integrated circuit
US20230197695A1 (en) Led array for in-plane optical interconnects
JP2021174917A (en) Wiring board and module
JPS63232368A (en) Hybrid optoelectronic integrated circuit
US20240213382A1 (en) Optoelectronic system comprising a transducer and a waveguide
US20240118491A1 (en) Photonic semiconductor device, photonic semiconductor package using the same and manufacturing method thereof
US20240103218A1 (en) Optical Device and Method of Manufacture
JP4054958B2 (en) Light emitting device, optical module, display device, optical transmission device
US20240411096A1 (en) Optoelectronic package structure
JPH02299259A (en) Semiconductor device
US20240219630A1 (en) Chip package and manufacturing method thereof