JPS63155728A - Plasma processor - Google Patents
Plasma processorInfo
- Publication number
- JPS63155728A JPS63155728A JP30302686A JP30302686A JPS63155728A JP S63155728 A JPS63155728 A JP S63155728A JP 30302686 A JP30302686 A JP 30302686A JP 30302686 A JP30302686 A JP 30302686A JP S63155728 A JPS63155728 A JP S63155728A
- Authority
- JP
- Japan
- Prior art keywords
- microwave
- plasma
- high frequency
- sample
- frequency power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 abstract description 6
- 230000008569 process Effects 0.000 abstract description 6
- 238000005530 etching Methods 0.000 abstract description 4
- 238000004140 cleaning Methods 0.000 abstract description 3
- 238000000151 deposition Methods 0.000 abstract description 3
- 230000005684 electric field Effects 0.000 abstract description 2
- 150000002500 ions Chemical class 0.000 description 15
- 230000000694 effects Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 238000005513 bias potential Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Drying Of Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、エツチング、堆積、クリーニング。[Detailed description of the invention] [Industrial application field] The present invention includes etching, deposition, and cleaning.
スパッタリング等のプラズマ処理装置に関する。It relates to plasma processing equipment such as sputtering.
プラズマ処理技術は、処理ガスをプラズマ化して、その
プラズマ中に含まれるイオンや活性ラジカルにより被処
理物の加工、清浄化、堆積等の処理を行うものである。Plasma processing technology converts processing gas into plasma, and uses ions and active radicals contained in the plasma to process, clean, deposit, and the like on a processed object.
従来、この種のプラズマ処理装置で用いられるプラズマ
は、100KHz〜数百M Hzの高周波電力を真空容
器内の電極あるいは被処理物保持台に供給したり、ある
いは例えば2.45GHzのマイクロ波電力を空調共振
器を兼ねる真空容器内に導波管によって供給したりして
放電させることにより発生させていた。Conventionally, the plasma used in this type of plasma processing apparatus is produced by supplying high-frequency power of 100 KHz to several hundred MHz to electrodes or a workpiece holding table in a vacuum container, or by supplying microwave power of, for example, 2.45 GHz. It was generated by supplying it through a waveguide into a vacuum container that also served as an air conditioning resonator and causing a discharge.
1、.0OKHz〜数百M Hzの高周波(以後、この
範囲の高周波を特に高周波と呼びマイクロ波と区別する
)電力による放電、即ち高周波放電による場合は、簡単
な構造でプラズマを発生させることができ、数100e
V以下のエネルギーを持ったイオンによる加工が可能で
あるが、イオン化効率が悪(、電離度は10−6程度で
あり、また1O−3torr以下の真空度で安定なプラ
ズマ発生が困難となる欠点がある。1. A high frequency of 0 kHz to several hundred MHz (hereinafter, high frequencies in this range will be particularly referred to as high frequencies to be distinguished from microwaves).When electric discharge is used, that is, high frequency discharge, plasma can be generated with a simple structure, and plasma can be generated with a simple structure. 100e
Processing using ions with energy below V is possible, but the ionization efficiency is poor (the degree of ionization is around 10-6, and stable plasma generation is difficult at a vacuum level below 1O-3 torr). There is.
これに対してマイクロ波電力を用いる場合は、1O−3
torr以下の低圧化でも高密度プラズマの発生が可能
で、10〜30eV程度の低エネルギーイオンによる処
理が可能であるが、反面、例えば10〜500eVのよ
うな広いエネルギー範囲のイオンによる処理はできず、
又高エネルギーのイオンによる処理もできないという欠
点がある。On the other hand, when using microwave power, 1O-3
High-density plasma can be generated even at low pressures below torr, and processing with low-energy ions of about 10 to 30 eV is possible, but on the other hand, processing with ions in a wide energy range of 10 to 500 eV is not possible. ,
Another drawback is that it cannot be treated with high-energy ions.
近年、イオンのエネルギー強度を自由に設定できるプラ
ズマ処理装置の要望が高くなり、従って本発明の課題は
、前述の従来技術の欠点を除去してプラズマ密度および
イオンのエネルギー強度の制御性を向上し、且つ処理プ
ロセスの柔軟性も向上させることのできるプラズマ処理
装置を提供することにある。In recent years, there has been an increasing demand for a plasma processing apparatus that can freely set the energy intensity of ions. Therefore, it is an object of the present invention to improve the controllability of the plasma density and the energy intensity of ions by eliminating the drawbacks of the prior art described above. It is an object of the present invention to provide a plasma processing apparatus that can improve the flexibility of the processing process.
〔発明の目的〕
本発・明は上述従来例の欠点を除去すると同時にプラズ
マ処理プロセスの多様化が実現可能なプラズマ処理装置
を提供することにある。[Object of the Invention] It is an object of the present invention to provide a plasma processing apparatus which can eliminate the drawbacks of the above-mentioned conventional examples and at the same time can realize diversification of plasma processing processes.
第1図〜第4図に本発明のい(つかの実施例を示し、1
は処理ガス導入口、2はアノード電極、3はマイクロ波
供給アンテナ、4はプラズマ室、5はマイクロ波供給用
同軸管、6はマイクロ波整合器、7はマイクロ波発生器
、8は磁場発生用空心コイル、9は空心コイル励磁用電
源、10はプラズマ発生用容器、11は被処理試料、1
2は試料保持台、13は排気系、14は高周波電源であ
る。試料保持台12は試料交換時には不図示の駆動機構
により不図示の試料交換位置に移動する。1 to 4 show some embodiments of the present invention.
is a processing gas inlet, 2 is an anode electrode, 3 is a microwave supply antenna, 4 is a plasma chamber, 5 is a coaxial tube for microwave supply, 6 is a microwave matching device, 7 is a microwave generator, 8 is a magnetic field generator 9 is a power supply for excitation of the air-core coil; 10 is a container for plasma generation; 11 is a sample to be processed;
2 is a sample holding stand, 13 is an exhaust system, and 14 is a high frequency power source. At the time of sample exchange, the sample holding table 12 is moved to a sample exchange position (not shown) by a drive mechanism (not shown).
まず第1図に示した第1の実施例について説明する。上
記構成において資料を処理するのに適したガスを処理カ
ス導入口より供給し、排気系13によってプラズマ発生
用容器10の圧力をプラズマ発生に適した]0 ’to
rr〜10−’torrに設定する。First, the first embodiment shown in FIG. 1 will be described. In the above configuration, a gas suitable for processing the material is supplied from the processing waste inlet, and the pressure in the plasma generation container 10 is adjusted to a value suitable for plasma generation by the exhaust system 13.
Set to rr~10-'torr.
マイクロ波発生器7で通常2’、’45 G Hzのマ
イクロ波を発生させ導波管等によってマイクロ波整合器
6に供給し、マイクロ波アンテナ3からの反射波が最小
となるように調整する。マイクロ波発生器7はマイクロ
波アンテナが直流的にグランド(接地)状態になるよう
なマイクロ波電力を発生する。A microwave generator 7 normally generates microwaves of 2' or 45 GHz, which are supplied to a microwave matching device 6 through a waveguide or the like, and adjusted so that the reflected waves from the microwave antenna 3 are minimized. . The microwave generator 7 generates microwave power such that the microwave antenna is grounded (grounded) in terms of direct current.
マイクロ波は同軸管5によってマイクロ波アンテナ3に
供給される。第3図にアンテナと同軸管の例を示す。第
3図(a)と(b)はそれぞれ異なる角度から見た外観
図である。ただしここで3はマイクロ波、31はスリッ
ト、5は同軸管、51は同軸管の中心にある導体を保持
する絶縁体である。ここに示したアンテナはスロット型
のもので通称リジターノコイルと呼ばれている。スリッ
ト31の長さLはマイクロ波の波長をλとすると、λ/
2の整数倍に選ぶ。例えば2 、45 G Hzの場合
1/2λとすると、スリットの長さは6cmとなり、こ
のアンテナはTEonモードのキャビティ(共鳴器)と
見なせる。絶縁体51は中心導体51を保持するのみな
らず真空シールも兼ねることができる。尚ここでは同軸
管を示したが導波管でも同様の効果が得られる。重゛に
このプラズマ発生用容器10の周囲には、空心コイル8
が設置されており、プラズマ室4に磁場を発生すること
ができる。磁場の強さはプラズマ室中の電子がマイクロ
波と電子ザイクロトロン共鳴が起こる様な値(例えば2
.45GHzのマイクロ波では磁束密度が875Gau
ssである)にする。このようにすることによって効率
よくプラズマが発生し、低圧力(10−3torr以下
)でも高密度のプラズマが発生できる。Microwaves are supplied to the microwave antenna 3 through a coaxial tube 5. Figure 3 shows an example of an antenna and coaxial tube. FIGS. 3(a) and 3(b) are external views viewed from different angles. However, here, 3 is a microwave, 31 is a slit, 5 is a coaxial tube, and 51 is an insulator that holds the conductor at the center of the coaxial tube. The antenna shown here is a slot type antenna, commonly called a rigitano coil. The length L of the slit 31 is λ/, where λ is the wavelength of the microwave.
Choose an integer multiple of 2. For example, in the case of 2.45 GHz, assuming 1/2λ, the slit length is 6 cm, and this antenna can be regarded as a TEon mode cavity (resonator). The insulator 51 not only holds the center conductor 51 but also serves as a vacuum seal. Although a coaxial tube is shown here, the same effect can be obtained with a waveguide. An air-core coil 8 is placed heavily around the plasma generation container 10.
is installed, and can generate a magnetic field in the plasma chamber 4. The strength of the magnetic field is such that electrons in the plasma chamber undergo electron cyclotron resonance with microwaves (for example, 2
.. The magnetic flux density for 45GHz microwave is 875Gau.
ss). By doing so, plasma can be generated efficiently, and high-density plasma can be generated even at low pressure (10 -3 torr or less).
プラズマ室4に発生したプラズマは試料台12に置かれ
た試料11に作用し、エツチング、堆積、クリーニング
等の処理が行うことができる。The plasma generated in the plasma chamber 4 acts on the sample 11 placed on the sample stage 12, allowing processing such as etching, deposition, and cleaning to be performed.
一方アノード2は試料台12と対向しマイクロ波の電場
が弱い所、たとえばアンテナのスリットの端からλ/2
の整数倍の所に設置し、プラズマ発生用容器10と同電
位になる様接地する。試料台12には高周波電源14か
ら100 K Hz〜数百M Hzの高周波電力が供給
される。実際的には周波数は100 K Hz〜500
KH2又は13 、56 M Hzを選ぶことが多い。On the other hand, the anode 2 faces the sample stage 12 and is placed in a place where the microwave electric field is weak, for example, λ/2 from the end of the antenna slit.
It is installed at a location that is an integral multiple of , and grounded so that it has the same potential as the plasma generation container 10. High frequency power of 100 KHz to several hundred MHz is supplied to the sample stage 12 from a high frequency power supply 14 . In practice, the frequency is 100 KHz to 500
KH2 or 13,56 MHz is often selected.
尚、マイクロ波が高周波電源14の方に漏れる場合は試
料台]2と高周波電源14の間にマイクロ波を明止する
装置、例えば単向管を入れても良い。If the microwave leaks toward the high-frequency power source 14, a device for blocking the microwave, such as a unidirectional tube, may be inserted between the sample stage 2 and the high-frequency power source 14.
対向電極のまわりにアンテナを配し、閉空間に近い空間
を作っているので、この空間内の処理ガスにマイクロ波
と高周波の双方を効率よく加える事ができ、イオン化効
率が良くなっている。又、元高周波をかけた方の電極が
他方の電極より小さく、プラズマにこの電極配置で高周
波を加えると高周波をかけた方の電極即ち試料保持台1
2に載せられた試料11に数十〜数百■の負のバイアス
電位が発生し、この電位によってプラズマ中のイオンが
加速され試料11に衝突し試料処理作用を促進する。こ
の電位は供給する高周波電力に依存するので高周波電力
を調整することによってイオンのエネルギーを制御する
ことができる。また高周波電力の周波数が低い場合(数
百KHz以下)イオンが高周波電力によって試料側が負
の電位になった時マイクロ波電力を加えなければ、高周
波放電のみでプラズマを発生させてプラズマ処理ができ
る。Since the antenna is placed around the counter electrode to create a space that is close to a closed space, both microwaves and high frequency waves can be efficiently applied to the processing gas within this space, improving ionization efficiency. In addition, the electrode to which high frequency was originally applied is smaller than the other electrode, and when high frequency is applied to the plasma with this electrode arrangement, the electrode to which high frequency was applied, that is, the sample holder 1
A negative bias potential of several tens to hundreds of square meters is generated on the sample 11 placed on the sample 2, and ions in the plasma are accelerated by this potential and collide with the sample 11 to promote the sample processing action. Since this potential depends on the high frequency power supplied, the energy of the ions can be controlled by adjusting the high frequency power. Furthermore, when the frequency of the high-frequency power is low (several hundred kHz or less), when the sample side becomes a negative potential due to the high-frequency power of the ions, and no microwave power is applied, plasma can be generated by high-frequency discharge alone and plasma processing can be performed.
逆もまた同じでマイクロ波放電のみでプラズマ処理がて
きる。The reverse is also the same; plasma treatment can be achieved using only microwave discharge.
更に高周波電力とマイクロ波電力を適当に選ぶことによ
って処理の多様化が可能になる。例えばいるが、処理時
間がかかるという欠点がある。高エネルギーのイオンに
よる処理では、エネルギーの高い分衝突時の処理作用も
大きく処理時間は(なってしまう。本実施例の装置では
、両電力の使用により高密度プラズマ発生可能かつ広い
エネルギー範囲のイオンによる処理が可能で、かつ、処
理速度をより大きくしたい時には、オペレータからの指
令によりコントローラ100が高周波電源14をコント
ロールして高周波電力を大きくして高エネルギーイオン
を増加させ、試料によりダメージをJうえない処理が必
要な時には、コントローラ100が高周波電源14をコ
ントロールして高周波電力を小さくし、又マイクロ波発
生器7をコントロールしてマイクロ波電力を大きくさせ
て低エネルギーイオンを増加させる、という様に所望の
処理状態に応じて発生イオンのエネルギー状態を調節可
能である。Furthermore, by appropriately selecting high frequency power and microwave power, it becomes possible to diversify the processing. For example, it has the disadvantage that it takes a long processing time. In processing using high-energy ions, the processing effect at the time of collision is large due to the high energy, and the processing time is reduced.In the apparatus of this embodiment, by using both electric powers, it is possible to generate high-density plasma and to generate ions with a wide energy range. When processing is possible and the processing speed is desired to be increased, the controller 100 controls the high-frequency power supply 14 in response to a command from the operator to increase the high-frequency power and increase the number of high-energy ions, causing more damage to the sample. When processing is required, the controller 100 controls the high frequency power source 14 to reduce the high frequency power, and also controls the microwave generator 7 to increase the microwave power to increase the number of low energy ions. The energy state of the generated ions can be adjusted depending on the desired processing conditions.
コントローラ]00は高周波電源14.マイクロ波発生
器7の発生電力を個別に調節可能である。Controller] 00 is a high frequency power supply 14. The power generated by the microwave generator 7 can be adjusted individually.
次に第2図に第二の実施例を示す。第一の実施例との違
いはアノード電極2に高周波電源14を接続し、試料保
持台】2をプラズマ発生用容器10に接地した点であり
、他の部分は第一の実施例とまったく同じである。この
場合も高周波電力とマイクロ波電力を適当に調整するこ
とによって複合的な処理が行える。Next, FIG. 2 shows a second embodiment. The difference from the first embodiment is that a high frequency power source 14 is connected to the anode electrode 2, and the sample holding table 2 is grounded to the plasma generation container 10, and the other parts are exactly the same as the first embodiment. It is. In this case as well, complex processing can be performed by appropriately adjusting the high frequency power and the microwave power.
尚、プラズマ室4は電極等がプラズマでエツチングされ
ることによって発生する汚染を防ぐためSiO2等で覆
うこともできる。Incidentally, the plasma chamber 4 may be covered with SiO2 or the like to prevent contamination caused by etching of electrodes and the like by plasma.
以上説明したように、本発明によって処理プロセスを多
様化にすることが可能になった。As explained above, the present invention makes it possible to diversify treatment processes.
第1図は本発明の第一の実施例の断面図、第2図は第二
の実施例の断面図、第3図はスリット型マイクロ波アン
テナの図、第4図は第三の実施例の断面図である。
図中2はアノード電極、3はマイクロ波アンテナ、10
はプラズマ発生用容器、】1は試料、12は試料保持台
である。Fig. 1 is a sectional view of the first embodiment of the present invention, Fig. 2 is a sectional view of the second embodiment, Fig. 3 is a diagram of a slit-type microwave antenna, and Fig. 4 is a third embodiment. FIG. In the figure, 2 is an anode electrode, 3 is a microwave antenna, and 10
1 is a plasma generation container, 1 is a sample, and 12 is a sample holding stand.
Claims (3)
支持された被処理物に対向するよう設けられた電極と、
前記電極と支持手段とのいずれか1方のみに第1の高周
波を供給するための第1高周波供給手段と、前記支持手
段に支持された被処理手段の周辺に前記第1の高周波よ
りも高い第2の高周波を供給する為の第2高周波供給手
段とを有する事を特徴とするプラズマ処理装置。(1) a support means for supporting a workpiece; an electrode provided to face the workpiece supported by the support means;
a first high frequency supply means for supplying a first high frequency to only one of the electrode and the support means; A plasma processing apparatus comprising a second high frequency supply means for supplying a second high frequency.
電極との間の空間を包囲するよう設けられた第2の高周
波供給用のアンテナを有する事を特徴とする特許請求の
範囲第1項記載のプラズマ処理装置。(2) The second high frequency supply means has a second high frequency supply antenna provided so as to surround the space between the support means and the electrode. The plasma processing apparatus described in Section 1.
する特許請求の範囲第1項記載のプラズマ処理装置。(3) The plasma processing apparatus according to claim 1, wherein the second high frequency wave is a microwave.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30302686A JPS63155728A (en) | 1986-12-19 | 1986-12-19 | Plasma processor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30302686A JPS63155728A (en) | 1986-12-19 | 1986-12-19 | Plasma processor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63155728A true JPS63155728A (en) | 1988-06-28 |
Family
ID=17916037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30302686A Pending JPS63155728A (en) | 1986-12-19 | 1986-12-19 | Plasma processor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63155728A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03124024A (en) * | 1989-10-06 | 1991-05-27 | Sharp Corp | Manufacture of semiconductor device |
JPH06112166A (en) * | 1992-09-08 | 1994-04-22 | Applied Materials Inc | Plasma reactor using electromagnetic RF coupling and method thereof |
JPH06163462A (en) * | 1992-11-20 | 1994-06-10 | Hitachi Ltd | Plasma treatment device |
US5556501A (en) * | 1989-10-03 | 1996-09-17 | Applied Materials, Inc. | Silicon scavenger in an inductively coupled RF plasma reactor |
US5888414A (en) * | 1991-06-27 | 1999-03-30 | Applied Materials, Inc. | Plasma reactor and processes using RF inductive coupling and scavenger temperature control |
US6068784A (en) * | 1989-10-03 | 2000-05-30 | Applied Materials, Inc. | Process used in an RF coupled plasma reactor |
US6251792B1 (en) | 1990-07-31 | 2001-06-26 | Applied Materials, Inc. | Plasma etch processes |
US6401652B1 (en) | 2000-05-04 | 2002-06-11 | Applied Materials, Inc. | Plasma reactor inductive coil antenna with flat surface facing the plasma |
US6440866B1 (en) | 1991-06-27 | 2002-08-27 | Applied Materials, Inc. | Plasma reactor with heated source of a polymer-hardening precursor material |
US6444137B1 (en) | 1990-07-31 | 2002-09-03 | Applied Materials, Inc. | Method for processing substrates using gaseous silicon scavenger |
US6444085B1 (en) | 1991-06-27 | 2002-09-03 | Applied Materials Inc. | Inductively coupled RF plasma reactor having an antenna adjacent a window electrode |
US6488807B1 (en) | 1991-06-27 | 2002-12-03 | Applied Materials, Inc. | Magnetic confinement in a plasma reactor having an RF bias electrode |
US6518195B1 (en) | 1991-06-27 | 2003-02-11 | Applied Materials, Inc. | Plasma reactor using inductive RF coupling, and processes |
-
1986
- 1986-12-19 JP JP30302686A patent/JPS63155728A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5556501A (en) * | 1989-10-03 | 1996-09-17 | Applied Materials, Inc. | Silicon scavenger in an inductively coupled RF plasma reactor |
US6068784A (en) * | 1989-10-03 | 2000-05-30 | Applied Materials, Inc. | Process used in an RF coupled plasma reactor |
JPH03124024A (en) * | 1989-10-06 | 1991-05-27 | Sharp Corp | Manufacture of semiconductor device |
US6251792B1 (en) | 1990-07-31 | 2001-06-26 | Applied Materials, Inc. | Plasma etch processes |
US6444137B1 (en) | 1990-07-31 | 2002-09-03 | Applied Materials, Inc. | Method for processing substrates using gaseous silicon scavenger |
US5888414A (en) * | 1991-06-27 | 1999-03-30 | Applied Materials, Inc. | Plasma reactor and processes using RF inductive coupling and scavenger temperature control |
US6440866B1 (en) | 1991-06-27 | 2002-08-27 | Applied Materials, Inc. | Plasma reactor with heated source of a polymer-hardening precursor material |
US6444085B1 (en) | 1991-06-27 | 2002-09-03 | Applied Materials Inc. | Inductively coupled RF plasma reactor having an antenna adjacent a window electrode |
US6488807B1 (en) | 1991-06-27 | 2002-12-03 | Applied Materials, Inc. | Magnetic confinement in a plasma reactor having an RF bias electrode |
US6518195B1 (en) | 1991-06-27 | 2003-02-11 | Applied Materials, Inc. | Plasma reactor using inductive RF coupling, and processes |
JPH06112166A (en) * | 1992-09-08 | 1994-04-22 | Applied Materials Inc | Plasma reactor using electromagnetic RF coupling and method thereof |
JPH06163462A (en) * | 1992-11-20 | 1994-06-10 | Hitachi Ltd | Plasma treatment device |
US6401652B1 (en) | 2000-05-04 | 2002-06-11 | Applied Materials, Inc. | Plasma reactor inductive coil antenna with flat surface facing the plasma |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920002864B1 (en) | Apparatus for treating matrial by using plasma | |
US6783629B2 (en) | Plasma treatment apparatus with improved uniformity of treatment and method for improving uniformity of plasma treatment | |
EP0271341B1 (en) | Method and apparatus for ion etching | |
JP3224529B2 (en) | Plasma processing system | |
JPH06283470A (en) | Plasma processing device | |
JPH06224155A (en) | Rf-ecr plasma etching apparatus | |
EP0721514B1 (en) | Magnetically enhanced multiple capacitive plasma generation apparatus and related method | |
JPH10270430A (en) | Plasma treating device | |
JPS63155728A (en) | Plasma processor | |
JP2000156370A (en) | Method of plasma processing | |
US20040119006A1 (en) | Neutral particle beam processing apparatus | |
JPH0718433A (en) | Icp sputtering device | |
JPS61213377A (en) | Method and apparatus for plasma deposition | |
US4946537A (en) | Plasma reactor | |
JPH01184921A (en) | Plasma processor useful for etching, ashing, film formation and the like | |
JPH0774115A (en) | Plasma treatment system | |
JP2003077904A (en) | Plasma processing apparatus and plasma processing method | |
JP2005079416A (en) | Plasma processing equipment | |
JP4384295B2 (en) | Plasma processing equipment | |
JPH0687440B2 (en) | Microwave plasma generation method | |
JPH06120169A (en) | Plasma generator | |
JP2920852B2 (en) | Microwave plasma device | |
JPH0221296B2 (en) | ||
JP3379506B2 (en) | Plasma processing method and apparatus | |
JPS62291922A (en) | Plasma processor |