JPS6315565B2 - - Google Patents
Info
- Publication number
- JPS6315565B2 JPS6315565B2 JP6218382A JP6218382A JPS6315565B2 JP S6315565 B2 JPS6315565 B2 JP S6315565B2 JP 6218382 A JP6218382 A JP 6218382A JP 6218382 A JP6218382 A JP 6218382A JP S6315565 B2 JPS6315565 B2 JP S6315565B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- holding device
- radial
- frame
- lens holding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229920003023 plastic Polymers 0.000 claims description 41
- 239000004033 plastic Substances 0.000 claims description 41
- 230000002093 peripheral effect Effects 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 7
- 238000000465 moulding Methods 0.000 claims description 5
- 229920003002 synthetic resin Polymers 0.000 claims description 5
- 239000000057 synthetic resin Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 6
- 230000005489 elastic deformation Effects 0.000 description 4
- 239000012778 molding material Substances 0.000 description 4
- 230000008646 thermal stress Effects 0.000 description 4
- 230000004075 alteration Effects 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/028—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lens Barrels (AREA)
Description
本発明はレンズ保持装置に関し、特にレンズ本
体を鏡枠内に収納し押え環を用いてレンズ本体を
半径方向及び軸線方向に鏡枠内に固定するレンズ
保持装置に関する。
従来、レンズ、例えばプラスチツクレンズ7を
鏡枠2内に装着する場合には、第1図aに示す如
く、鏡枠2のレンズ鏡枠胴付部4にプラスチツク
レンズ7の背面外周縁7aを当接しつつレンズ鏡
枠嵌合部5内にプラスチツクレンズ7を嵌合する
とともに鏡枠2の内周に螺設した鏡枠ネジ部3に
押え環1の外周に螺設したネジ部6を螺合しつつ
鏡枠2の内側に押え環1をネジ込み、この押え環
1の内側周縁に形成したプラスチツクレンズ7と
の当接縁1aをプラスチツクレンズ7の正面側の
外周縁7bに圧接し、当該プラスチツクレンズ7
を鏡枠2内に固定することにより構成している。
さて、かゝる構成から成るプラスチツクレンズ
7の鏡枠2に対する部組を常温にて行つた後、こ
れを高温雰囲気中に曝した場合、プラスチツクレ
ンズ7の成形素材の線膨張率が鏡枠2および押え
環1の成形素材の線膨張率よりも大きいために、
鏡枠2におけるレンズ鏡枠嵌合部5のクリアラン
スが小さくなる。
さらに、この影響を最も顕著に受けるのが第1
図aにおけるレンズと押え環との当り部8(第1
図bにて示す拡大図参照)で、当該部分は常温で
部組した時点にて既にクリアランスはゼロの状態
となつて居り、前記高温雰囲気中においてはレン
ズ7と押え環1における成形素材の線膨張率の差
が直接面形状に影響を及ぼすことになる。
すなわち、前記レンズ7と押え環1の当り部8
において、押え環1の当接縁1aが圧接するレン
ズ7の正面側の外周縁7bがへこみ、かつ押え環
1の当接縁1aにより、レンズ7がクリアランス
ゼロの状態に規制されることになる。
したがつて、温度が高温になるに従い、前記プ
ラスチツクレンズ7はラジアル方向に膨張し始め
るが、前記押え環1による規制によつて、プラス
チツクレンズ7のラジアル方向への変形は規制さ
れるために、当該レンズ7内部に熱応力が発生す
る。
そして、プラスチツクレンズ7内部に発生する
熱応力が規制を受けることのない光軸方向への変
形に集中し、プラスチツクレンズ7が光軸方向に
変形を起こすことになる。
プラスチツクレンズ7の光軸を含む軸方向の断
面を考察するに、第1図cにおける弦ABの長さ
が押え環1により規制されるため、弧ABに膨張
が集中し、その結果、曲率半径が小さくなる。
今、常温時の弧の長さをAB、常温よりもt℃
高温時の弧の長さをA′B′、プラスチツクレンズ
7の線膨張率をαとすると、
A′B′≒AB・(1+αt)
に近似する。
また、逆に、常温で部組したプラスチツクレン
ズ7と鏡枠2を低温雰囲気中に曝した場合、前述
の如く、プラスチツクレンズ7と鏡枠2と押え環
1の成形素材の線膨張係数の相違により、低温に
なるに従つて、鏡枠2および押え環1の収縮に比
し、プラスチツクレンズ7の収縮は大きく、鏡枠
2と押え環1の収縮以上に収縮しようとするが、
この場合にも押え環1の当接縁1aの圧接によつ
て固定されるプラスチツクレンズ7の正面側の外
周縁7bが規制を受ける結果、前記高温時の場合
と同様にプラスチツクレンズ7の収縮は押え環1
の収縮以上に収縮することができず、勢いプラス
チツクレンズ7の内部に熱応力が発生するととも
にこの熱応力がプラスチツクレンズ7の、押え環
1に規制を受けない光軸方向に集中し、プラスチ
ツクレンズ7の光軸方向に変形を与えることにな
る。
そこで、第1図dに示すプラスチツクレンズ7
の光軸を含む軸方向の断面を考察するに弦ABの
長さが押え環1で規制されているために、弧AB
に収縮が集中し、その結果、曲率半径は大きくな
る。
今、常温時の弧の長さをAB、常温よりもt℃
低温時の弧の長さをA′B′、プラスチツクレンズ
7の成形素材の線膨張係数をαとすると、
A′B′≒AB・(1−αt)
に近似する。
因て、以上のことから、プラスチツクレンズ7
を従来構成から成る鏡枠2内に押え環1によつて
装着すると、プラスチツクレンズ7は温度変化に
より、曲率半径が変化する、すなわち高温で小さ
く、低温で大きくなることが明らかであるととも
に常温時に比し、ピント位置が大きくズレたり各
種収差の悪化をきたすものであることが判る。
また、前記従来のレンズと鏡枠の構成におい
て、第1図eに示すように、レンズ保持部材23
のレンズ嵌合部26内になくとも2枚のレンズ2
1,22を嵌合するとともに両レンズ21,22
間に調芯部材24を介装することによつて、互い
に外周縁部により隣接する前記2枚のレンズ2
1,22間における摩擦抵抗を減少せしめるとと
もに両レンズ21,22間におけるレンズの芯ズ
レを防止せしめることができるように構成した合
成レンズが実開昭55−138606号公報の考案によつ
て提案されている。
しかし、当該構成の場合には2枚のレンズ2
1,22間の摩擦を減少せしめるのみで、レンズ
21,22を嵌合部26内に押え環25によつて
固定する構成は前記従来の構成に何等変化がな
く、レンズ21,22は、その外径をレンズ保持
部材23の嵌合部26または押え環25の内径に
より規制され、前記プラスチツクレンズ7と同様
に、両レンズ21,22の温度変化に伴う曲率半
径の変化を防止することができず、温度変化に対
するピント位置のズレ、収差の悪化を回避するこ
とは不可能である。
したがつて、前記従来の鏡枠に対するレンズの
装着構成において温度変化によつて発生する曲率
半径の変化を防止し、ピント位置ズレあるいは各
種収差の悪化をきたすことのないレンズ保持の構
成、またはその他の適切な対策の開発が切望され
るところであつた。
本発明の目的は、前述の欠点を克服し、組立時
において半径方向の正確な位置ぎめを行ない、温
度変化に際してプラスチツクレンズの形状を変化
することなく鏡枠内に保持するレンズ保持装置を
提供し、耐温度性の弱いプラスチツクレンズの使
用温度範囲を広くするにある。
本発明を例示とした実施例並びに図面について
説明する。
第2図a,bは本発明レンズ保持装置の第1の
実施例を示し、鏡枠31の内面に設けた鏡枠ネジ
部32にレンズ押え環33をネジ込む。鏡枠31
に半径方向内方にスラスト梁37を形成してプラ
スチツクレンズ36を押え環33との間に軸線方
向の位置ぎめを行なう。押え環33の位置は押え
環胴付部34によつて定まり、スラスト梁37の
弾性によつてレンズ36を保持する。
鏡枠31に更にラジアル梁38を形成し、ラジ
アル梁38の半径方向内面によつてレンズ36の
半径方向の位置ぎめを行なう。第2図bに示す通
り、ラジアル梁38、スラスト梁37は夫々複数
の互に離間した突出部として形成し、更に軸線方
向に互に重ならない構成とする。これによつて、
鏡枠31を形成する際にアンダーカツト等の複雑
な形状となる事がなくなる。更に、ラジアル梁3
8、スラスト梁37の剛性を所要の値に設定する
のが容易になる。
組立に際して、プラスチツクレンズ36の軸線
方向の位置は押え環胴付部34に接触した押え環
33の端面35によつて定まる。レンズ36の半
径方向の位置はラジアル梁38の半径方向内面に
よつて定まる。ラジアル梁38とレンズ36の外
周面との間は僅かな弾性によつて接触させて組立
時の半径方向の正確な位置ぎめとする。
プラスチツクレンズ36を有する鏡枠31が高
温度となつた時は、レンズ36は膨張する。第1
図に示す既知の例ではレンズ外周面が直接鏡枠内
面に接触するためレンズの変形を生じたが、本発
明によつてレンズ36の一側の外周面をラジアル
梁38によつて支持したため、レンズ36の熱膨
張はラジアル梁38の弾性変形によつて吸収さ
れ、レンズ36の変形(曲率半径の変化等)は生
ずる事がない。レンズ36の軸線方向の膨張はス
ラスト梁37の弾性変形によつて吸収される。ラ
ジアル梁38、スラスト梁37の弾性を小さくす
る必要がある時は、所要寸法のラジアル溝40、
スラスト溝39を形成する。
レンズ系を低温とした時はレンズ36は収縮す
るが、組立時のラジアル梁38、スラスト梁38
の弾性によつて収縮は吸収され、レンズ36にガ
タが生ずることはない。
通常は鏡枠31は剛性の高い弾性の小さい合成
樹脂材料製とする。スラスト梁37、ラジアル梁
38の所要弾性値が鏡枠31の材料の特性と異な
る場合には、梁37,38の材料と鏡枠31の材
料とは異なる材料として既知の二重成形法によつ
て一体成形することができる。
第3図は本発明の第2の実施例を示す。鏡枠3
1に形成する各部は第2図と同様であり同じ符号
によつて示し、詳細な説明は省略する。
第3図の場合はプラスチツクレンズ41にレン
ズ周辺平行部42を形成してスラスト梁37との
接触面を大にし、軸線方向の位置ぎめを確実にす
る。スラスト梁37を組立時に僅に弾性変化させ
てレンズ保持を確実にする。
第3図の場合はスラスト梁37に代えて第1図
に示す剛性の胴付部として軸線方向の位置ぎめと
し、押え環33は環胴付部34に接触しない構造
とすることもできる。レンズ41の平面部42の
巾は小さいため、熱膨張収縮による軸線方向の寸
法変化は著しく小さくレンズ41の曲率半径変化
は取付の弛みは無視し得る程度である。レンズ4
1の半径方向の熱膨張収縮はラジアル梁38の弾
性によつて吸収される。
第4図,第5図は本発明レンズ保持装置の第3
の実施例を示す。第3図と同じ符号によつて同様
の部分又は部品を示す。
この実施例は第2,3図のスラスト梁37に代
えて傾斜梁45を使用してプラスチツクレンズ4
1の平面部46に接触させてレンズ41の軸線方
向の位置ぎめを行なう。前の実施例と同様に傾斜
梁45は組立時に弾性変形させて軸線方向の保持
力を得る。この実施例の場合は弾性変形寸法を第
2,3図の直立のスラスト梁37よりも大とし、
レンズ保持力を大きくすることができる。スラス
ト梁38の機能は第2,3図の例と同様である。
第4図の例はスラスト梁38と傾斜梁45とを
同じ突出部として形成した例を示し、全円周又は
所要の複数の突出部として形成する。傾斜梁45
の弾性を調整するために溝47を形成することも
できる。
第5図はラジアル梁38と傾斜梁45とを別個
に鏡枠31の内面から突出させた突出部として形
成する。この場合はラジアル梁38、傾斜梁45
を夫々円周方向に見て交互に鏡枠31内面から突
出させ、軸線方向に見て互に重ならない配置す
る。
第6図は本発明レンズ保持装置の別の実施例を
示す。第2,3図と同じ符号によつて同様の部分
又は部品を示す。
第6図の例ではプラスチツクレンズ51の外周
縁にレンズ周辺テーパー部52を設け、テーパー
部52と同じテーパーとした傾斜ラジアル梁53
に押し当てゝプラスチツクレンズ51の半径方向
の位置ぎめを行なう。レンズ51の軸線方向の位
置ぎめはスラスト梁37によつて行なうことは前
述の例と同様である。
第6図に示した例では傾斜ラジアル梁53はス
ラスト梁37と一体として鏡枠31の内面から突
出させた例を示したが、前述の例と同様に別個の
突出部として形成することができる。
第3図に示す形状の鏡枠をポリカーボネート製
とし、ラジアル梁とスラスト梁の材料をABS樹
脂として二重成形法によつて一体成形した場合の
温度変化に際しての曲率半径の変化を従来の固定
方法によるレンズと比較した実験結果を下表に示
す。数字は曲率半径、rmmを示す。
The present invention relates to a lens holding device, and more particularly to a lens holding device that stores a lens body within a lens frame and uses a presser ring to fix the lens body within the lens frame in the radial and axial directions. Conventionally, when a lens, for example, a plastic lens 7, is to be mounted in a lens frame 2, the back outer peripheral edge 7a of the plastic lens 7 is placed on the lens frame body mounting portion 4 of the lens frame 2, as shown in FIG. 1a. The plastic lens 7 is fitted into the lens frame fitting part 5 while being in contact with each other, and the threaded part 6 threaded on the outer periphery of the presser ring 1 is screwed into the lens frame threaded part 3 threaded on the inner periphery of the lens frame 2. While doing so, screw the presser ring 1 into the inside of the lens frame 2, and press the contact edge 1a formed on the inner peripheral edge of the presser ring 1, which contacts the plastic lens 7, with the outer peripheral edge 7b on the front side of the plastic lens 7. plastic cleanse 7
is constructed by fixing it within the lens frame 2. Now, when the plastic lens 7 having such a configuration is assembled to the lens frame 2 at room temperature and then exposed to a high temperature atmosphere, the coefficient of linear expansion of the molding material of the plastic lens 7 will be the same as that of the lens frame 2. and is larger than the linear expansion coefficient of the molding material of the presser ring 1,
The clearance of the lens frame fitting portion 5 in the lens frame 2 is reduced. Furthermore, the first group is most affected by this effect.
Contact part 8 (first
(see the enlarged view shown in Figure b), the clearance in this part is already zero when it is assembled at room temperature, and in the high temperature atmosphere, the line between the molding material of the lens 7 and the presser ring 1 is The difference in expansion coefficient directly affects the surface shape. That is, the contact portion 8 of the lens 7 and the presser ring 1
In this case, the outer peripheral edge 7b on the front side of the lens 7, which the contact edge 1a of the presser ring 1 presses against, is depressed, and the lens 7 is regulated to a state of zero clearance by the contact edge 1a of the presser ring 1. . Therefore, as the temperature increases, the plastic lens 7 begins to expand in the radial direction, but the restraint ring 1 restricts the deformation of the plastic lens 7 in the radial direction. Thermal stress is generated inside the lens 7. Then, the thermal stress generated inside the plastic lens 7 concentrates on unregulated deformation in the optical axis direction, causing the plastic lens 7 to deform in the optical axis direction. Considering the cross section of the plastic lens 7 in the axial direction including the optical axis, since the length of the chord AB in FIG. becomes smaller. Now, the length of the arc at room temperature is AB, and it is t℃ below room temperature.
When the length of the arc at high temperature is A'B' and the linear expansion coefficient of the plastic lens 7 is α, it is approximated as A'B'≒AB・(1+αt). Conversely, when the plastic lens 7 and lens frame 2 assembled together at room temperature are exposed to a low-temperature atmosphere, the linear expansion coefficients of the plastic lens 7, the lens frame 2, and the holding ring 1 are different, as described above. Therefore, as the temperature decreases, the plastic lens 7 contracts more than the lens frame 2 and the presser ring 1, and tends to shrink more than the lens frame 2 and the presser ring 1.
In this case as well, the outer peripheral edge 7b on the front side of the plastic lens 7, which is fixed by pressure contact with the abutting edge 1a of the presser ring 1, is restricted, so that the shrinkage of the plastic lens 7 is prevented as in the case at high temperatures. Presser ring 1
As a result, thermal stress is generated inside the plastic lens 7, and this thermal stress is concentrated in the optical axis direction of the plastic lens 7, which is not restricted by the presser ring 1, causing the plastic lens 7 to shrink. 7 in the optical axis direction. Therefore, the plastic lens 7 shown in FIG.
Considering the cross section in the axial direction including the optical axis of
The contraction concentrates on the area, and as a result, the radius of curvature increases. Now, the length of the arc at room temperature is AB, and it is t℃ below room temperature.
If the length of the arc at low temperature is A'B', and the coefficient of linear expansion of the molding material of the plastic lens 7 is α, then A'B'≈AB·(1−αt) is approximated. Therefore, from the above, Plastic Cleanse 7
When the plastic lens 7 is mounted in a lens frame 2 having a conventional structure with the presser ring 1, it is obvious that the radius of curvature of the plastic lens 7 changes due to temperature changes, that is, it becomes smaller at high temperatures and becomes larger at low temperatures. In comparison, it can be seen that the focus position shifts significantly and various aberrations worsen. In addition, in the conventional lens and lens frame configuration, as shown in FIG. 1e, the lens holding member 23
At least two lenses 2 in the lens fitting part 26 of
1 and 22 and both lenses 21 and 22
By interposing the centering member 24 between them, the two lenses 2 that are adjacent to each other by their outer peripheral edges can be
A composite lens constructed to reduce the frictional resistance between lenses 1 and 22 and to prevent lens misalignment between both lenses 21 and 22 was proposed in Japanese Utility Model Application Publication No. 55-138606. ing. However, in the case of this configuration, two lenses 2
The structure in which the lenses 21 and 22 are fixed in the fitting part 26 by the presser ring 25 only reduces the friction between the lenses 21 and 22, and there is no change in the conventional structure. The outer diameter is regulated by the fitting part 26 of the lens holding member 23 or the inner diameter of the presser ring 25, and similarly to the plastic lens 7, changes in the radius of curvature due to temperature changes of both lenses 21 and 22 can be prevented. First, it is impossible to avoid a shift in focus position and worsening of aberrations due to temperature changes. Therefore, there is a need for a lens holding structure that prevents changes in the radius of curvature that occur due to temperature changes in the conventional lens mounting structure for a lens frame, and that does not cause focus position deviation or worsening of various aberrations. There was a strong need for the development of appropriate countermeasures. SUMMARY OF THE INVENTION The object of the present invention is to overcome the above-mentioned drawbacks and to provide a lens holding device which provides accurate radial positioning during assembly and which holds a plastic lens in a lens frame without changing its shape in the event of temperature changes. The aim is to widen the operating temperature range of plastic lenses, which have poor temperature resistance. Embodiments and drawings illustrating the present invention will be described. FIGS. 2a and 2b show a first embodiment of the lens holding device of the present invention, in which a lens holding ring 33 is screwed into a lens frame threaded portion 32 provided on the inner surface of a lens frame 31. FIG. Mirror frame 31
A thrust beam 37 is formed radially inward to position the plastic lens 36 between it and the retaining ring 33 in the axial direction. The position of the presser ring 33 is determined by the presser ring body attaching portion 34, and the lens 36 is held by the elasticity of the thrust beam 37. A radial beam 38 is further formed on the lens frame 31, and the lens 36 is positioned in the radial direction by the radial inner surface of the radial beam 38. As shown in FIG. 2b, the radial beam 38 and the thrust beam 37 are each formed as a plurality of protrusions spaced apart from each other, and furthermore, they are constructed so that they do not overlap each other in the axial direction. By this,
When forming the lens frame 31, there is no need to create a complicated shape such as an undercut. Furthermore, radial beam 3
8. It becomes easy to set the rigidity of the thrust beam 37 to a required value. During assembly, the axial position of the plastic lens 36 is determined by the end surface 35 of the presser ring 33 that is in contact with the presser ring barrel attachment portion 34. The radial position of lens 36 is determined by the radial inner surface of radial beam 38. The radial beam 38 and the outer circumferential surface of the lens 36 are brought into contact with each other with a slight elasticity to ensure accurate positioning in the radial direction during assembly. When the lens frame 31 having the plastic lens 36 reaches a high temperature, the lens 36 expands. 1st
In the known example shown in the figure, the outer circumferential surface of the lens directly contacts the inner surface of the lens frame, causing deformation of the lens, but according to the present invention, the outer circumferential surface of one side of the lens 36 is supported by the radial beam 38. Thermal expansion of the lens 36 is absorbed by the elastic deformation of the radial beam 38, and no deformation (change in radius of curvature, etc.) of the lens 36 occurs. The expansion of the lens 36 in the axial direction is absorbed by the elastic deformation of the thrust beam 37. When it is necessary to reduce the elasticity of the radial beam 38 and thrust beam 37, radial grooves 40 of the required dimensions,
A thrust groove 39 is formed. When the lens system is brought to a low temperature, the lens 36 contracts, but the radial beam 38 and thrust beam 38 during assembly
The shrinkage is absorbed by the elasticity of the lens 36, and no wobbling occurs in the lens 36. Usually, the lens frame 31 is made of a synthetic resin material with high rigidity and low elasticity. If the required elasticity values of the thrust beams 37 and radial beams 38 are different from the characteristics of the material of the lens frame 31, the materials of the beams 37 and 38 and the material of the lens frame 31 are made of different materials using a known double molding method. It can be integrally molded. FIG. 3 shows a second embodiment of the invention. Mirror frame 3
Each part formed in 1 is the same as that in FIG. 2 and is indicated by the same reference numeral, and detailed explanation will be omitted. In the case of FIG. 3, a peripheral parallel portion 42 is formed on the plastic lens 41 to increase the surface of contact with the thrust beam 37 and ensure positioning in the axial direction. The thrust beam 37 is slightly elastically changed during assembly to ensure lens retention. In the case of FIG. 3, the thrust beam 37 may be replaced by a rigid shank portion shown in FIG. 1 for positioning in the axial direction, and the holding ring 33 may have a structure in which it does not contact the ring shank portion 34. Since the width of the flat portion 42 of the lens 41 is small, the dimensional change in the axial direction due to thermal expansion and contraction is extremely small, and the change in the radius of curvature of the lens 41 due to the loosening of the attachment can be ignored. lens 4
Thermal expansion and contraction in the radial direction of 1 is absorbed by the elasticity of the radial beam 38. Figures 4 and 5 show the third lens holding device of the present invention.
An example is shown below. Similar parts or parts are designated by the same reference numerals as in FIG. In this embodiment, an inclined beam 45 is used in place of the thrust beam 37 shown in FIGS.
The lens 41 is positioned in the axial direction by contacting the flat portion 46 of the lens 41. As in the previous embodiment, the inclined beam 45 is elastically deformed during assembly to provide axial holding force. In the case of this embodiment, the elastic deformation dimension is made larger than that of the upright thrust beam 37 shown in FIGS.
Lens holding power can be increased. The function of the thrust beam 38 is similar to the example shown in FIGS. 2 and 3. The example in FIG. 4 shows an example in which the thrust beam 38 and the inclined beam 45 are formed as the same protrusion, and are formed as the entire circumference or a plurality of protrusions as required. Slanted beam 45
Grooves 47 can also be formed to adjust the elasticity of the material. In FIG. 5, the radial beam 38 and the inclined beam 45 are separately formed as protruding parts that protrude from the inner surface of the lens frame 31. In FIG. In this case, the radial beam 38 and the inclined beam 45
are alternately protruded from the inner surface of the lens frame 31 when viewed in the circumferential direction, and arranged so as not to overlap each other when viewed in the axial direction. FIG. 6 shows another embodiment of the lens holding device of the present invention. Similar parts or components are indicated by the same reference numerals as in FIGS. 2 and 3. In the example shown in FIG. 6, a lens peripheral tapered portion 52 is provided at the outer peripheral edge of the plastic lens 51, and an inclined radial beam 53 has the same taper as the tapered portion 52.
Position the plastic lens 51 in the radial direction by pressing it against the plastic lens 51. The positioning of the lens 51 in the axial direction is performed by the thrust beam 37, as in the previous example. In the example shown in FIG. 6, the inclined radial beam 53 is integrally formed with the thrust beam 37 and projected from the inner surface of the lens frame 31, but it can be formed as a separate protruding part as in the previous example. . When the lens frame with the shape shown in Figure 3 is made of polycarbonate, and the radial beam and thrust beam are integrally molded using ABS resin using the double molding method, changes in the radius of curvature due to temperature changes are determined by the conventional fixing method. The table below shows the experimental results compared with the lens according to Numbers indicate radius of curvature, rmm.
【表】【table】
【表】
本発明によつて、鏡枠内に半径方向に弾性変形
するラジアル梁と軸線方向に弾性変形するスラス
ト梁とを形成することによつて、温度変化によつ
て生ずるレンズ本体の形状変化を防止することが
でき、レンズの耐温度性の向上を実現することが
でき、組立時の半径方向軸線方向の位置ぎめの正
確性を害することはない。
本発明は熱膨張率の大きいプラスチツクレンズ
用として開発されたものであるが、中心肉厚の薄
いガラスレンズ等、従来の押え環によつて固定さ
れると歪み、変形を生じ易い部品の正確な保持用
として使用することが好適であり、取付が所定の
弾性保持であるため、変形を生ずることなく正確
に位置ぎめすることができる。
常温においての組立に際して、ラジアル梁スラ
スト梁、特にスラスト梁の役割の傾斜梁を所定の
弾性変形を与えて組立てることによつて、軸線方
向半径方向の位置ぎめは正確になり、組立に際し
ての間隙は不必要になる。更に、低温での収縮に
際して弛みやガタを生ずることはない。
鏡枠とラジアル梁、スラスト梁の材料を夫々別
個の材料として二重成形法によつて一体成形すれ
ば、鏡枠の剛性と各梁の弾性とを夫々所望の値と
することが可能となる。
所要に応じてラジアル梁のみを弾性変形可能と
し、軸線方向は剛性保持とすることもできる。[Table] According to the present invention, by forming a radial beam that elastically deforms in the radial direction and a thrust beam that elastically deforms in the axial direction within the lens frame, the shape of the lens body changes due to temperature changes. This makes it possible to improve the temperature resistance of the lens, without impairing the accuracy of positioning in the radial and axial directions during assembly. The present invention was developed for use with plastic lenses with a large coefficient of thermal expansion, but it can be used to accurately correct parts such as glass lenses with a thin center wall, which are prone to distortion and deformation when fixed with conventional retaining rings. It is suitable for use as a holding device, and since the mounting is performed using a predetermined elastic holding method, accurate positioning can be achieved without causing deformation. When assembled at room temperature, by assembling radial beam thrust beams, especially inclined beams that play the role of thrust beams, with a predetermined elastic deformation, the positioning in the axial and radial direction becomes accurate, and the gap during assembly is reduced. becomes unnecessary. Furthermore, there is no loosening or rattling during shrinkage at low temperatures. If the mirror frame, radial beam, and thrust beam are made of separate materials and integrally molded using a double molding method, it becomes possible to set the rigidity of the mirror frame and the elasticity of each beam to the desired values. . If necessary, only the radial beam can be made elastically deformable, and the axial direction can be kept rigid.
第1図は従来技術を示し、第1図aは鏡枠とレ
ンズとの一部の断面図、第1図bは第1図のA部
拡大図、第1図cはレンズ膨張時の曲率半径の変
化を示す図、第1図dはレンズ収縮時の曲率半径
の変化を示す図、第1図eは調芯部材を介挿した
レンズ保持装置断面図、第2図aは本発明のレン
ズ保持装置の第1の実施例による鏡枠の部分断面
図、第2図bは第2図のA視図、第3図ないし第
6図はそれぞれ本発明の他の実施例を示す部分断
面図である。
1,25,33…押え環、2,23,34…鏡
枠、3,32…内ネジ、4…胴付部、5…嵌合
部、7,21,22,36,41,51…プラス
チツクレンズ、37…スラスト梁、38…ラジア
ル梁、39,40,47…溝、45…傾斜梁、5
3…傾斜ラジアル梁。
Figure 1 shows the prior art, Figure 1a is a cross-sectional view of a part of the lens frame and lens, Figure 1b is an enlarged view of part A in Figure 1, and Figure 1c is the curvature when the lens expands. FIG. 1 d is a diagram showing changes in the radius of curvature when the lens contracts. FIG. 1 e is a sectional view of the lens holding device with an alignment member inserted. FIG. A partial sectional view of a lens frame according to a first embodiment of the lens holding device, FIG. 2b is a view from A in FIG. 2, and FIGS. 3 to 6 are partial sectional views showing other embodiments of the present invention. It is a diagram. 1, 25, 33... Holding ring, 2, 23, 34... Lens frame, 3, 32... Internal screw, 4... Trunked part, 5... Fitting part, 7, 21, 22, 36, 41, 51... Plastic Lens, 37... Thrust beam, 38... Radial beam, 39, 40, 47... Groove, 45... Inclined beam, 5
3... Inclined radial beam.
Claims (1)
定するレンズ保持装置において、 前記鏡枠の内周に沿つて半径方向に弾性変形可
能なラジアル梁および軸線方向に弾性変形可能な
スラスト梁をそれぞれ互い違いに複数個突設し、
前記レンズの一側をラジアル梁およびスラスト梁
により当接するとともに保持し、前記レンズの他
側を前記押え環により押圧するように構成したこ
とを特徴とするレンズ保持装置。 2 前記弾性変形可能な梁は、その突出端に溝を
設けて成る特許請求の範囲第1項記載のレンズ保
持装置。 3 前記鏡枠は合成樹脂製とし、前記弾性変形可
能な梁を鏡枠とは異なる合成樹脂製として二重成
形法により一体成形して成る特許請求の範囲第1
項記載のレンズ保持装置。 4 前記レンズはプラスチツクレンズから成る特
許請求の範囲第1項記載のレンズ保持装置。 5 前記レンズは弾性変形可能な梁または押え環
により支持する平面部を設けて成る特許請求の範
囲第1項記載のレンズ保持装置。 6 レンズを鏡枠内に収納し、押え環を用いて固
定するレンズ保持装置において、 前記鏡枠の内周に沿つて、半径方向に弾性変形
可能なラジアル梁およびスラスト方向に弾性変形
可能な傾斜梁を複数個突設し、前記レンズの一側
をラジアル梁および傾斜梁により当接するととも
に保持し、前記レンズの他側を前記押え環により
押圧するように構成したことを特徴とするレンズ
保持装置。 7 前記弾性変形可能な梁は、その突出端に溝を
設けて成る特許請求の範囲第6項記載のレンズ保
持装置。 8 前記ラジアル梁とスラスト梁または傾斜梁は
鏡枠の内周方向に沿つて交互に配置して成る特許
請求の範囲第6項記載のレンズ保持装置。 9 前記ラジアル梁とスラスト梁または傾斜梁は
それぞれ同一の突出部より形成して成る特許請求
の範囲第6項記載のレンズ保持装置。 10 前記鏡枠は合成樹脂製とし、前記弾性変形
可能な梁を鏡枠とは異なる合成樹脂製として二重
成形法により一体成形して成る特許請求の範囲第
6項記載のレンズ保持装置。 11 前記レンズはプラスチツクレンズから成る
特許請求の範囲第6項記載のレンズ保持装置。 12 前記レンズは弾性変形可能な梁または押え
環により支持する平面部を設けて成る特許請求の
範囲第6項記載のレンズ保持装置。[Scope of Claims] 1. A lens holding device for storing a lens in a lens frame and fixing it using a presser ring, comprising: a radial beam that is elastically deformable in the radial direction along the inner circumference of the lens frame; Multiple elastically deformable thrust beams are installed alternately,
A lens holding device characterized in that one side of the lens is abutted and held by a radial beam and a thrust beam, and the other side of the lens is pressed by the presser ring. 2. The lens holding device according to claim 1, wherein the elastically deformable beam is provided with a groove at its protruding end. 3. The lens frame is made of synthetic resin, and the elastically deformable beam is made of a synthetic resin different from that of the mirror frame, and is integrally molded by a double molding method.
Lens holding device as described in section. 4. The lens holding device according to claim 1, wherein said lens is a plastic lens. 5. The lens holding device according to claim 1, wherein the lens is provided with a flat portion supported by an elastically deformable beam or a presser ring. 6. A lens holding device that stores a lens in a lens frame and fixes it using a retainer ring, which includes a radial beam that can be elastically deformed in the radial direction and a slope that can be elastically deformed in the thrust direction along the inner circumference of the lens frame. A lens holding device comprising a plurality of projecting beams, one side of the lens is abutted and held by a radial beam and an inclined beam, and the other side of the lens is pressed by the holding ring. . 7. The lens holding device according to claim 6, wherein the elastically deformable beam is provided with a groove at its protruding end. 8. The lens holding device according to claim 6, wherein the radial beams and the thrust beams or the inclined beams are arranged alternately along the inner peripheral direction of the lens frame. 9. The lens holding device according to claim 6, wherein the radial beam and the thrust beam or the inclined beam are each formed from the same protrusion. 10. The lens holding device according to claim 6, wherein the lens frame is made of synthetic resin, and the elastically deformable beam is made of a different synthetic resin than the lens frame and is integrally molded by a double molding method. 11. The lens holding device according to claim 6, wherein said lens comprises a plastic lens. 12. The lens holding device according to claim 6, wherein the lens is provided with a flat portion supported by an elastically deformable beam or a presser ring.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6218382A JPS58178306A (en) | 1982-04-14 | 1982-04-14 | Lens holder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6218382A JPS58178306A (en) | 1982-04-14 | 1982-04-14 | Lens holder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58178306A JPS58178306A (en) | 1983-10-19 |
JPS6315565B2 true JPS6315565B2 (en) | 1988-04-05 |
Family
ID=13192759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6218382A Granted JPS58178306A (en) | 1982-04-14 | 1982-04-14 | Lens holder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58178306A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4733945A (en) * | 1986-01-15 | 1988-03-29 | The Perkin-Elmer Corporation | Precision lens mounting |
JP2560288B2 (en) * | 1986-04-23 | 1996-12-04 | 富士ゼロックス株式会社 | Optical writing device |
US5537262A (en) * | 1993-10-19 | 1996-07-16 | Asahi Kogaku Kogyo Kabushiki Kaisha | Rotational torque setting apparatus for screw mechanism |
JP2006039319A (en) * | 2004-07-28 | 2006-02-09 | Sumitomo Heavy Ind Ltd | Lens-holding mechanism and lens frame |
JP2007188010A (en) * | 2006-01-16 | 2007-07-26 | Fujinon Corp | Lens device, lens barrel and lens holding method |
-
1982
- 1982-04-14 JP JP6218382A patent/JPS58178306A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58178306A (en) | 1983-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4812015A (en) | Lens barrel | |
JPH08194145A (en) | Lens supporting device | |
JPS6345562B2 (en) | ||
US4957341A (en) | Integral type lens | |
JPS6315565B2 (en) | ||
JPH0588444B2 (en) | ||
JPS63131110A (en) | Plastic lens holding device | |
JPS6313166B2 (en) | ||
JP3383389B2 (en) | Lens holding structure | |
JPS5887504A (en) | Lens holding device | |
JPH08179179A (en) | Lens holding device, camera and optical device | |
JPS6314325B2 (en) | ||
JPS635733B2 (en) | ||
JPH064718U (en) | Optical component holding structure | |
JPS6257006B2 (en) | ||
JPS6257004B2 (en) | ||
JPS635735B2 (en) | ||
JPS6257005B2 (en) | ||
JPH0352605B2 (en) | ||
JPH0332043B2 (en) | ||
JP2021140043A (en) | Lens unit | |
JPS6211815A (en) | Lens holding device | |
JPS635734B2 (en) | ||
JPS6136962Y2 (en) | ||
JPS6211817A (en) | Lens holding device |