[go: up one dir, main page]

JPS63153384A - Method of starting downdraft tyep cupola - Google Patents

Method of starting downdraft tyep cupola

Info

Publication number
JPS63153384A
JPS63153384A JP30258986A JP30258986A JPS63153384A JP S63153384 A JPS63153384 A JP S63153384A JP 30258986 A JP30258986 A JP 30258986A JP 30258986 A JP30258986 A JP 30258986A JP S63153384 A JPS63153384 A JP S63153384A
Authority
JP
Japan
Prior art keywords
deposit
cupola
temperature
starting
coke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30258986A
Other languages
Japanese (ja)
Inventor
尾崎 則男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP30258986A priority Critical patent/JPS63153384A/en
Publication of JPS63153384A publication Critical patent/JPS63153384A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 下向通風式キュポラの基本構造(別表1−基本炉、と略
)は、上段の火室Fの床面が1面で拳中段のコークス充
填層Pkが単純な円筒で・ さらに下段の煙道回廊Ro
の断面積をPkの断面積以上とした→3段組である。(
文献#1.#2)この基本炉の[炉蓋M2」から「初込
コークス・石灰石」を第1次投入し・ 第2次に「炉蓋
Mt」から処理物(可燃物と不燃物)を投入して「堆積
体RCJ  を造成し→ rF−PkJの各型に穿った
羽口Tから「堆積体RCJ K着火後「空気吹込み」K
よるFの「下向火炎流Jは、火の粉Cを伴い還元炎とな
って、数段の羽口Tで昇温し乍ら(C昇温限界は、炭素
の融点#3600’C:以上−文献#3・#4)Pk中
の# 75 crQ下位温度を短時間に(熱風装置なし
で30分以内)「堆積体RCJ より高温の)1629
℃とし→ 鉄材を熔融する「W炉温逆転現象:W現象、
と略」を生起させ、煙道回廊R。
Detailed Description of the Invention The basic structure of the downward draft cupola (abbreviated as Attachment 1 - Basic Furnace) is that the upper firebox F has one floor surface and the middle coke packed bed Pk is a simple cylinder. In the lower flue corridor Ro
The cross-sectional area of is set to be greater than or equal to the cross-sectional area of Pk → This is a three-column set. (
Literature #1. #2) Initial coke and limestone are first charged from the furnace lid M2 of this basic furnace, and treated materials (combustibles and non-combustibles) are secondly charged from the furnace lid Mt. After creating the deposit RCJ and igniting the deposit RCJ, air is blown through the tuyere T drilled into each type of rF-PkJ.
According to F, "The downward flame flow J becomes a reducing flame accompanied by sparks C, and the temperature rises at several stages of tuyere T (C temperature rise limit is above the melting point of carbon #3600'C: References #3 and #4) #75 crQ lower temperature in Pk in a short time (within 30 minutes without hot air equipment) 1629 (higher temperature than deposit body RCJ)
℃ → “W furnace temperature reversal phenomenon: W phenomenon, which melts iron materials.
``and abbreviation'', causing the flue corridor R.

から煙道りへ流出する。and flows out into the flue.

鼓で)1629℃の炭化物と不燃物に「水蒸気(不純物
も可)を吹込む」とブ 炭素が水性ガス化発熱反応し・
 固形物が破砕−噴火しく水蒸気吹込み噴火、と略)、
高温の水性ガス炎が主流と共にDへ流出する。
``Injecting water vapor (including impurities)'' into carbonized materials and non-combustible materials at 1629°C causes an exothermic reaction of carbon into water gasification.
Solid matter fragmentation - eruption (abbreviated as steam injection eruption),
The high temperature water gas flame flows out to D along with the main flow.

「X現象昇温の火の粉C」は、その含熱温度に相当する
酸化物を還元しく別表2−3−4.文献#3・#4)、
金属湯は「切込コークス層」中を滴下し、湯溜Brの出
湯口Hから溶滓と共に取出される。
"X-phenomenon temperature increase spark C" reduces the oxide corresponding to its exothermic temperature as shown in Attached Table 2-3-4. References #3 and #4),
The metal hot water drips into the "cut coke layer" and is taken out from the tap H of the hot water reservoir Br together with the molten slag.

而も「堆積体RCJが発煙質でも含水状態・或は「注水
−水蒸気吹込み」により→F上空間で無煙化する(ニー
公J(!コζnm、と略)基本炉は、熱風・乾燥・粉砕
中集塵(Roの作用文献#2)の各装置を省略する。
However, even if the deposit RCJ is smoke-emitting, it becomes smokeless in the space above →F by turning it into a water-containing state or by water injection and steam injection. -Each device for dust collection during crushing (Ro operation document #2) is omitted.

末法が基本炉構造に□加えたものは、第1に火室Fの床
面を2階段St  Stとした事(第1図)・第2図−
横断面透視図のPk線)の2点である。
What the final method added to the basic furnace structure is, firstly, the floor of firebox F was made into two steps St (Fig. 1) and Fig. 2-
These are the two points (line Pk in the cross-sectional perspective view).

、この末法炉の従断面の横方向拡大で「堆積体RIRx
  R−Jは、山稜線を造成する→ 従って「R3山稜
線下端」とrRo内のR1上端」間が小距離に縮まり、
火炎の流動抵抗が小さい為め→r F −Pk上空間圧
力」も亦小さい→即ちr F −Pk上空間」の定常圧
の小さい事と・ 大容積化は、「水蒸気吹込み噴火の衝
撃圧」を緩和し→構造を容易にする。
, by lateral expansion of the secondary section of this final reactor, the "deposit body RIRx
R-J creates a mountain ridge line → Therefore, the distance between "the lower end of R3 mountain ridge line" and the upper end of R1 in rRo" is shortened,
Because the flow resistance of the flame is small, the pressure in the space above r F - Pk is also small, and the steady pressure in the space above r F - Pk is small. ” to ease → structure.

而も「水蒸気吹込み噴化」は、堆積体内部を攪拌し、山
稜線下位への搬送作用も行う。
Furthermore, "steam blowing" also stirs the inside of the deposit and transports it to the lower part of the mountain ridgeline.

この他の基本炉と同様の作用は1・・1上段のFの上階
床面SIの上空間で「Fの無煙代作ユ」シ・下階床面S
!の「堆積体R1」中で「基本炉PkのW現象」が生起
し・ さらに「W現象」が中段の「堆積体RiJ中でも
2次生起する。
The same functions as other basic furnaces are as follows: 1. 1. In the space above the upper floor surface SI of the upper F, "Smokeless substitute production of F" is performed.
! The ``W phenomenon of the basic reactor Pk'' occurs in the ``deposit body R1'' in the ``deposit body R1'', and the ``W phenomenon'' also occurs secondarily in the ``deposit body RiJ'' in the middle stage.

「R1・R3中のX現象昇温」は、火の粉C昇温中のた
め→Rs中が高温となる。
"X phenomenon temperature increase in R1 and R3" is because the temperature of the spark C is increasing → the temperature in Rs becomes high.

次に末法始動の「圧縮酸素吹込み」によるT周囲の「炭
化物昇温」は、「空気吹込み昇温」より高<(+900
〜tooo度に→別表3・文献#3)−Tから)162
9℃炭化物間距離が縮少し一昇温時間も短縮する→ 従
って末法炉は、基本炉より高温操業が容易である。
Next, the ``carbide temperature increase'' around T due to ``compressed oxygen injection'' during the starting process is higher than the ``air injection temperature increase'' (+900
~Too degree → Attachment 3/Reference #3)-T) 162
9°C The distance between carbides is reduced, and the temperature rise time is also shortened → Therefore, it is easier to operate high-temperature furnaces in advanced furnaces than in basic furnaces.

但し「圧縮酸素」は、「純酸素」にCOl・ 或はH,
0水蒸気を混入したものである(°、°高温の粉塵・錆
による「純酸素」爆発防止のため)→この混合による火
の粉C昇温は、「純酸素」と同値。
However, "compressed oxygen" is "pure oxygen" with COl, or H,
0 Water vapor is mixed (°, ° to prevent explosion of "pure oxygen" caused by high-temperature dust and rust) → The spark C temperature increase due to this mixture is the same as that of "pure oxygen."

末法は、「圧縮酸素」と「水蒸気吹込み」が→キュポラ
の送風機を省略する事;「水蒸気吹込み噴火」が「堆積
体R+ −Rx Jの攪拌と搬送装置を省略し・ 化合
物を酸化物とする鉱石類焙焼炉を省略する事など→基本
炉より利点が増加する。
The final method is that ``compressed oxygen'' and ``steam injection'' → omit the cupola blower; ``steam injection eruption'' is ``omitted the stirring and conveying device for the deposit R+ -Rx J; Omitting the ore roasting furnace → has more advantages than the basic furnace.

末法は、>2000℃還元作業を容易にし・ 「物を分
解し・ 或は>2162℃「水蒸気吹込み噴火」で「希
土類元素化合物」を変成した酸化物が、修飾酸化物の石
灰により低融点化し→更らに湯溜Br中に添加するガラ
ス化  酸イ物のアルカリ酸化物によりガラス としB
rの出湯口Hから取出す事ができる。(文献#4) (3−4)  文献 #1 日本機械学会 講演論文集 1’h  790−16  p271’2
 1 1      t’h  820  15  p
47#3 N 講演概要集 克 386−1   ps
The powder method facilitates reduction work at >2,000℃, and ``decomposes things'' or transforms ``rare earth element compounds'' by ``steam injection eruption'' at >2,162℃. Vitrification → Further vitrification by adding to the hot water tank Br.
It can be taken out from the tap H of r. (Reference #4) (3-4) Reference #1 Proceedings of the Japan Society of Mechanical Engineers 1'h 790-16 p271'2
1 1 t'h 820 15 p
47#3 N Lecture summary collection Katsu 386-1 ps
.

#4 〃 講演論文集 隘 864−4   p61第
1図は1末法炉の従断面。
#4 〃 Collection of Lectures, Volume 864-4, p. 61 Figure 1 shows the secondary section of the single-stage reactor.

第2図は、第1図のFの床面S+  5t−Pkの横断
面俯視図。
FIG. 2 is a cross-sectional overhead view of the floor surface S+ 5t-Pk of F in FIG.

Claims (1)

【特許請求の範囲】 上段の火室Fの床面を¥2階段面S_1−S_2¥とし
・その先端に中段の¥断面が長円の筒¥:¥コークス充
填層Pk¥を・さらに下段の¥煙道回廊Ro¥(出湯口
Hを穿った湯溜Brつき)と組立てた→下向通風式キュ
ポラの「初込コークス堆積体R_3−R_4」を、「P
k直上の炉蓋M_3−M_4」の第1次投入物(コーク
スと石灰石)で「Pk−Ro」内に重力流動造成し;次
に処理物(含炭素物と不燃物)を「F直上の炉蓋M_1
−M_2」の第2次投入で「段面S_1−S_2」上に
「山稜堆積体R_1−R_2」を造成して→操業に入る
。 始動は、「堆積体R_1−R_2−R_3−R_4」の
可燃物を「F−Pk−Ro」の各壁に穿った羽口Tから
着火後「圧縮酸素」をTから吹込み、T周囲の炭火物の
>1629℃昇温時に→改めて1部のTの「圧縮酸素」
を「水蒸気の単独吹込み」に切替えて、操業する事を特
徴とする:下向通風式キュポラの始動法。
[Scope of Claims] The floor surface of the upper firebox F is a two-step surface S_1-S_2, and at the tip thereof, a middle cylinder with an oval cross section: a coke-filled bed Pk is placed. ¥ Flue corridor Ro ¥ (with a hot water reservoir Br drilled through the outlet H)
Gravity flow is created in "Pk-Ro" with the primary input materials (coke and limestone) from "furnace lid M_3-M_4" directly above k; Hearth M_1
-M_2'' is used for the second time to create the ``mountain ridge deposit R_1-R_2'' on the ``step surface S_1-S_2'' and then start operation. To start, after igniting the combustibles in the "deposit R_1-R_2-R_3-R_4" through the tuyeres T drilled into each wall of "F-Pk-Ro", "compressed oxygen" is blown from the T, and the surrounding area of the T is ignited. When the temperature of charcoal is raised to >1629℃ → 1 part T of "compressed oxygen"
A method for starting a downward draft cupola.
JP30258986A 1986-12-18 1986-12-18 Method of starting downdraft tyep cupola Pending JPS63153384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30258986A JPS63153384A (en) 1986-12-18 1986-12-18 Method of starting downdraft tyep cupola

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30258986A JPS63153384A (en) 1986-12-18 1986-12-18 Method of starting downdraft tyep cupola

Publications (1)

Publication Number Publication Date
JPS63153384A true JPS63153384A (en) 1988-06-25

Family

ID=17910794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30258986A Pending JPS63153384A (en) 1986-12-18 1986-12-18 Method of starting downdraft tyep cupola

Country Status (1)

Country Link
JP (1) JPS63153384A (en)

Similar Documents

Publication Publication Date Title
NZ509787A (en) Device for on-line explosive deslagging of furnace with coolant surrounding explosive charge and device freely positonable without preconfiguration of furnace
JPS5212201A (en) Method for controlling burning of fuel gas in coke furnace
JP3136319B2 (en) Method for removing carbon contained in fly ash
JPH0153719B2 (en)
TR26856A (en) Operation of vertical shaft furnaces.
JPS63153384A (en) Method of starting downdraft tyep cupola
JPS629652B2 (en)
CA2061147C (en) Method of starting a plant for the production of pig iron or steel pre-material as well as arrangement for carrying out the method
JPS5830487B2 (en) Incineration method for chromium-containing sludge
JP2001227713A (en) Melting furnace for refuse
JPS5770187A (en) Gasifying method for coal by fixed bed furnace
JPS52126603A (en) Improved gas cupola
JPS5457416A (en) Melting and reducing method for iron oxide
JP3075504B2 (en) Waste melting furnace and its operation method
JP2003065677A (en) Melting device
JPS60122809A (en) Low nox combustion device burning fine coal powder
JPS5589612A (en) Conbustion sustaining gas blowing-in method at melting type pyrolytic furnace for waste
US726115A (en) Method of the combustion of fuel.
JPS6041510Y2 (en) Downward ventilation type water-cooled cupola
JPS56127111A (en) Combustion furnace with heat storage unit
JP2627232B2 (en) Blast furnace operation method
US2229974A (en) Method of producing mineral wool
JPH0723503B2 (en) Hot metal manufacturing method
SU1629716A1 (en) Cupola furnace
JPS61276910A (en) Method for manufacturing reduced iron