JPS63151469A - Density irregularity correction apparatus of thermal recording apparatus - Google Patents
Density irregularity correction apparatus of thermal recording apparatusInfo
- Publication number
- JPS63151469A JPS63151469A JP29915186A JP29915186A JPS63151469A JP S63151469 A JPS63151469 A JP S63151469A JP 29915186 A JP29915186 A JP 29915186A JP 29915186 A JP29915186 A JP 29915186A JP S63151469 A JPS63151469 A JP S63151469A
- Authority
- JP
- Japan
- Prior art keywords
- density
- data
- correction
- heating resistor
- bit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/315—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
- B41J2/32—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
- B41J2/35—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads providing current or voltage to the thermal head
- B41J2/355—Control circuits for heating-element selection
- B41J2/36—Print density control
Landscapes
- Electronic Switches (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、感熱記録装置の濃度ムシ補正装置に係り、特
にラインサーマルヘッドを構成する複数個の発熱抵抗体
に個々に流す一定電流の通電時同を濃度ムラに応じて補
正する感熱記録装置の淵1αムラ補正装置に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a density irregularity correction device for a thermal recording device, and particularly to a device for correcting density irregularities in a thermal recording device, and in particular, a device for correcting density irregularities in a thermal recording device. The present invention relates to an edge 1α unevenness correction device for a thermosensitive recording device that corrects density unevenness according to density unevenness.
従来の技術
従来より、例えば複写機、ファクシミリ及びビデオプリ
ンタ等の業務用又は民生用の静止画像のハードコピー装
置として、熱転写型の感熱記録装置が使用されている。2. Description of the Related Art Conventionally, thermal transfer type thermal recording devices have been used as hard copy devices for still images for business or consumer use, such as copying machines, facsimile machines, and video printers.
この感熱記録装置は、第5図に示す如き構成とされてい
る。ここで、転写紙としてのインクフィルム1はポリエ
ステルフィルム2の表面に熱溶融性インク又は熱昇華性
インク3が例えば5〜6μmの所定厚で塗布されている
。This thermosensitive recording device has a configuration as shown in FIG. Here, the ink film 1 as a transfer paper has a polyester film 2 coated with heat-melting ink or heat-sublimable ink 3 to a predetermined thickness of, for example, 5 to 6 μm.
記録用紙4は記録面をインクフィルム1のインク3の面
に対接させて、ローラ5によりインクフィルム1と共に
矢印へ方向に送られる。ローラ5に対向してラインサー
マルヘッド6が設けられており、インクフィルム1の裏
面に当接している。The recording paper 4 is conveyed along with the ink film 1 in the direction of the arrow by the roller 5, with its recording surface facing the ink 3 surface of the ink film 1. A line thermal head 6 is provided opposite the roller 5 and is in contact with the back surface of the ink film 1.
ラインサーマルヘッド6は、セラミック基板上に図示さ
れないn(但し、nは自然数)個の発熱抵抗体R1〜R
ηが一列に形成されてなり、そのうち通電された発熱抵
抗体に対応する部分のインクフィルム1のインク3が溶
融し、記録用紙4に転写される。インクフィルム1はラ
インサーマルヘッド6を通過後、ローラ7に案内されて
記録用紙4からは離間され、さ取スプール(図示せず)
に使用済インクフィルム1aとして巻取られる。The line thermal head 6 includes n (n is a natural number) heating resistors R1 to R, which are not shown, on a ceramic substrate.
η are formed in a line, and the ink 3 of the ink film 1 in the portion corresponding to the energized heating resistor is melted and transferred onto the recording paper 4. After passing through the line thermal head 6, the ink film 1 is guided by rollers 7 and separated from the recording paper 4, and then transferred to a take-up spool (not shown).
The ink film is wound up as a used ink film 1a.
プリント済記録用紙4a上には転写されたインク3aが
残っている。図示の便宜上、転写されたインク3aは大
きな面積のものとして示されているが、実際は小さなド
ツトの集まりよりなる。The transferred ink 3a remains on the printed recording paper 4a. For convenience of illustration, the transferred ink 3a is shown as having a large area, but it actually consists of a collection of small dots.
一つのドツトは−の発熱抵抗体素子により形成され、そ
の−ドツトの大きさは発熱抵抗体素子に流される一定電
流の通電時間により決まる。そして各ドツトの大きさに
応じてプリントされた図形等の濃淡即ち階調が決まる。One dot is formed by a negative heating resistor element, and the size of the negative dot is determined by the duration of a constant current flowing through the heating resistor element. The shading, or gradation, of the printed figure is determined according to the size of each dot.
しかるに、ラインサーマルヘッド6においては、各発熱
抵抗体R1〜Rηの製造過程で生ずる抵抗体のバラツキ
やその表面形状のバラツキ及び各発熱抵抗体駆動用のド
ライブトランジスタのコレクタ・エミッタ間飽和電圧V
c E (sat)のバラツキ等に起因してその印刷結
果に温度ムラが生ずる。However, in the line thermal head 6, there are variations in the resistors and variations in their surface shapes that occur during the manufacturing process of each heating resistor R1 to Rη, and the collector-emitter saturation voltage V of the drive transistor for driving each heating resistor.
Due to variations in c E (sat), etc., temperature unevenness occurs in the printing results.
上記温度ムラを補正するために、従来より第6図に示す
如き感熱記録装置の濃度ムラ補正装置が用いられている
。第6図において、記憶回路11には、上記各発熱抵抗
体の抵抗値のバラツキ等に起因する例えば8ビツトの濃
度ムラデータが各発熱抵抗体R1〜RTIのアドレスに
対応してn個予め記憶されている。In order to correct the above-mentioned temperature unevenness, a density unevenness correcting device for a thermal recording apparatus as shown in FIG. 6 has conventionally been used. In FIG. 6, n pieces of density unevenness data of, for example, 8 bits due to variations in the resistance values of the heating resistors are stored in advance in the memory circuit 11, corresponding to the addresses of the heating resistors R1 to RTI. has been done.
一方、入力端子12には転写すべき画像の各画素(各ド
ツト)の濃淡を示す例えば8ビツトの濃度データが順次
供給される。ラインメモリ13は、例えば−ライン分の
濃度データを逐次記憶する。On the other hand, to the input terminal 12, for example, 8-bit density data indicating the density of each pixel (each dot) of the image to be transferred is sequentially supplied. The line memory 13 sequentially stores, for example, density data for -lines.
アドレス発生回路14は各発熱抵抗体のアドレスに相当
するアドレス信号を発生して記憶回路11及びラインメ
モリ13に供給し、上記−の発熱抵抗体に対応する8ビ
ツトの濃度ムラデータ及び8ビツトの温度データを例え
ば発熱抵抗体R+。The address generation circuit 14 generates an address signal corresponding to the address of each heating resistor and supplies it to the storage circuit 11 and line memory 13, and generates 8-bit density unevenness data and 8-bit density unevenness data corresponding to the above-mentioned - heating resistor. Temperature data, for example, on the heating resistor R+.
R2,・・・、Rηの順で順次演算回路15へ読み出さ
せる。R2, . . . , Rη are sequentially read out to the arithmetic circuit 15 in this order.
演り回路15は、リード・オンリ・メモリ(ROM>や
データ人力機能を持ったランダム・アクセス・メモリ(
RA M )より構成され、入来する温度データに対し
て濃度ムラデータに基づいた乗粋等の所定の演pを行な
って、8ビツトの補正データを生成する。ここで、演符
回路15を補正データが予め格納されたROMテーブル
で実現した場合には、その入カ濃度データ及び温度ムラ
データをアドレス入力としてアドレス指定された−の補
正データが読み出される。この補正データは、前記濃度
ムラを補正し、かつ、実際の記録濃度と!3度データと
の関係が直線あるいは所定の曲線となるように予め設定
されたものである。The performance circuit 15 is a read-only memory (ROM) or a random access memory (ROM) with a data manual function.
RAM), and performs a predetermined operation such as multiplication on the incoming temperature data based on the density unevenness data to generate 8-bit correction data. Here, if the notation circuit 15 is realized by a ROM table in which correction data is stored in advance, the input density data and temperature unevenness data are used as address inputs, and the addressed correction data is read out. This correction data corrects the density unevenness and also corrects the actual recorded density! It is set in advance so that the relationship with the third degree data is a straight line or a predetermined curve.
ラインサーマルヘッド制御回路16は入力補正データに
基づいて転写すべき発熱抵抗体の一定電流の通電時間を
制御する。これにより、前記温度ムラのない良好な記録
が行なわれる。The line thermal head control circuit 16 controls the energization time of a constant current to the heating resistor to be transferred based on the input correction data. As a result, good recording without temperature unevenness is performed.
第7図はラインサーマルヘッド6の発熱による転写紙イ
ンク層又は感熱紙(記録用紙)発色層の温度特性図の一
例を示す。この場合、説明のために抵抗値等のバラツキ
により、2種の温度特性曲線Δ及びBを夫々有する発熱
抵抗体RA及びR。FIG. 7 shows an example of a temperature characteristic diagram of the transfer paper ink layer or the coloring layer of thermal paper (recording paper) due to heat generated by the line thermal head 6. In this case, for the sake of explanation, the heating resistors RA and R have two types of temperature characteristic curves Δ and B, respectively, due to variations in resistance values and the like.
が一つのラインサーマルヘッド内に存在するものと想定
する。また、第7図中、T rcrは背華湿Iffを示
し、発熱抵抗体RA、R日の発熱により転写紙又は感熱
紙の温度が昇華温度T refに到達するまではインク
が溶融せずに転写が行なわれない。It is assumed that there are in one line thermal head. In addition, in FIG. 7, T rcr indicates the backflow humidity Iff, and the ink does not melt until the temperature of the transfer paper or thermal paper reaches the sublimation temperature T ref due to the heat generated by the heating resistor RA and R day. No transcription occurs.
従って、特性Aにおける時間Q及び特性Bにおける時間
りは夫々非転写期間を示ず。Therefore, the time Q in characteristic A and the time in characteristic B do not indicate non-transfer periods.
この場合、通電時間aだけ通電を行なうと、昇華温度T
refを越えて実際に印刷が行なわれる転写期間は特
性Aではす、特性BではCとなる。また、濃度レベルを
変えて通電時間dだけ通電を行なうと、昇華温度T r
efを越えて実際に印刷が行なわれる転写期間は特性A
ではe、特性Bではfとなる。In this case, if the current is applied for the current application time a, the sublimation temperature T
The transfer period in which printing is actually performed beyond ref is 1 for characteristic A, and 3 for characteristic B. Furthermore, if the concentration level is changed and the current is applied for the current application time d, the sublimation temperature T r
The transfer period during which printing is actually performed beyond ef is characteristic A.
In this case, it becomes e, and in characteristic B, it becomes f.
従来は、演算回路15にて例えば濃度ムラデータに基づ
いて補正係数を生成し、その各発熱抵抗体毎に固定の単
一の補正係数と濃度データとの乗算結果を補正データと
していた。Conventionally, the arithmetic circuit 15 generates a correction coefficient based on, for example, density unevenness data, and the correction data is the result of multiplying the density data by a single fixed correction coefficient for each heating resistor.
発明が解決しようとする問題点
しかるに、上記の従来の感熱記録装置の濃度ムラ補正装
置では、演算回路15の入力S疾データ。Problems to be Solved by the Invention However, in the above-mentioned conventional density unevenness correction device for a thermal recording device, the input signal data of the arithmetic circuit 15.
入力濃度ムラデータ及び出力補正データが全て8ビツト
で表わされているため、演算回路15としては例えば5
12kbitの大容量のROMが必要となってしまいコ
ストアップとなってしまうという問題点があった。Since the input density unevenness data and the output correction data are all expressed in 8 bits, the arithmetic circuit 15 uses, for example, 5 bits.
There was a problem in that a ROM with a large capacity of 12 kbit was required, resulting in an increase in cost.
また、前記第6図において、実際に印刷が行なわれる転
写期間はす、c(又はe、f)であるため、本来はこの
転写期間についてのみ温度ムラの補正が行なわれるべき
であるのに対して前記従来の固定の補正係数による一律
の東口では非転写期間も含む通電時間a、dに対して補
正が行なわれてしまい、補正が不正確になってしまう。In addition, in FIG. 6, since the transfer period during which printing is actually performed is S, C (or E, F), correction of temperature unevenness should originally be performed only for this transfer period. In the case of the conventional uniform east exit using a fixed correction coefficient, correction is performed for the energization times a and d including the non-transfer period, resulting in inaccurate correction.
さらに、特性A、Bは夫々あるカーブを持った曲線であ
るため、濃度レベルに応じて上記転写期間の比率がc/
b及びf/eに示す如く異なってしまい、よって、従来
のi11度レベルとは関連性を持たない単一の補正係数
による乗算では濃度ムラの補正が十分に行なわれない等
の欠点があった。Furthermore, since characteristics A and B are curves each having a certain curve, the ratio of the transfer period described above varies depending on the density level.
As shown in b and f/e, there is a drawback that density unevenness cannot be sufficiently corrected by multiplication by a single correction coefficient that has no relation to the conventional i11 degree level. .
上記の欠点を改善する方法として、非転写期間q及びh
に相当するデータを一律に温度データに加算する方法が
考えうる。すなわら、ラインサーマルヘッド印加電圧を
一定とすると、発熱の立ち上がりは同一発熱抵抗体では
その濃度データに拘らず一定となるため、上記の加算に
より濃度ムラの補正ができる。As a method to improve the above drawbacks, the non-transfer period q and h
One possible method is to uniformly add data corresponding to , to the temperature data. That is, if the voltage applied to the line thermal head is constant, the rise in heat generation will be constant for the same heating resistor regardless of its density data, so density unevenness can be corrected by the above addition.
しかし、上記の方法により通電時間が均一となっても転
写期間における発熱抵抗体RA、Reの発熱状態が異な
り、また、例えば最高温度における発熱状態は入力濃度
データに応じて変化してしまう。従って、上記の如く一
律に加算する方法で、 は十分に濃度ムラの補正が行な
われないという問題点があった。However, even if the energization time is made uniform by the above method, the heat generation states of the heating resistors RA and Re during the transfer period differ, and, for example, the heat generation state at the maximum temperature changes depending on the input density data. Therefore, there is a problem in that the uniform addition method described above does not sufficiently correct density unevenness.
そこで、本発明は′Ia度ムラデータの情報量を入力濃
度データの略1/4とし、さらに、この温度ムラデータ
により入力Q度データの示す階調レベルに対応した濃度
補正演算を行なうことにより、上記問題点を解決した感
熱記録装置の温度ムラ補正装置を提供することを目的と
する。Therefore, the present invention sets the amount of information of the 'Ia degree unevenness data to approximately 1/4 of the input density data, and further uses this temperature unevenness data to perform a density correction calculation corresponding to the gradation level indicated by the input Q degree data. It is an object of the present invention to provide a temperature unevenness correction device for a thermosensitive recording device that solves the above problems.
問題点を解決するための手段
本発明になる感熱記録装置の濃度ムラ補正装置は、淵麿
ムラデータを予め記憶する記憶手段と、濃度データに対
して濃度ムラデータに基づいた補正演算を行なって補正
データを生成する演算手段と、補正データに基づいて転
写すべき各発熱抵抗体の通電時間を制御する制御手段と
より構成される。Means for Solving the Problems The density unevenness correction device for a thermal recording device according to the present invention includes a storage means for storing Fuchimaro unevenness data in advance, and a correction calculation for the density data based on the density unevenness data. It is comprised of a calculation means for generating correction data, and a control means for controlling the energization time of each heating resistor to be transferred based on the correction data.
作用
上記濃度ムラデータは、ラインサーマルヘッドを構成す
る複数個一列に配設された発熱抵抗体による記録濃度の
基準淵麿に対する変動成分を示すものである。上記演算
手段には、各発熱抵抗体により記録されるべき温度を示
す濃度データと記憶手段よりの濃度ムラデータとが夫々
供給されている。演募手段は、濃度ムラデータに基づい
て生成した補正係数と濃度データとの補正演σを行なっ
て、各発熱抵抗体毎に補正データを生成する。Effect: The above-mentioned density unevenness data indicates a fluctuation component of recording density with respect to a reference Fuchimaro due to a plurality of heating resistors arranged in a line constituting a line thermal head. The calculation means is supplied with density data indicating the temperature to be recorded by each heating resistor and density unevenness data from the storage means. The calculation means performs a correction calculation σ between the correction coefficient generated based on the density unevenness data and the density data, and generates correction data for each heating resistor.
しかる後、制り0手段は、上記補正データに基づいて転
写すべき各発熱抵抗体の通電時間を大々制御する。これ
により、温度ムラが補正される。Thereafter, the control zero means largely controls the energization time of each heating resistor to be transferred based on the correction data. This corrects temperature unevenness.
実施例
第1図は本発明になる感熱記録装置の淵度ムラ補正装置
の一実施例のブロック系統図を示す。同図中、第5図と
同一構成部分には同一の符号を付し、その説明を省略す
る。ここで、第1図図示ブロック系統について説明する
前にまず記憶回路21に記憶されるm1度ムラデータに
ついて第2図ど共に説明する。Embodiment FIG. 1 shows a block system diagram of an embodiment of a depth unevenness correction device for a thermal recording apparatus according to the present invention. In the figure, the same components as those in FIG. 5 are denoted by the same reference numerals, and the explanation thereof will be omitted. Here, before explaining the block system shown in FIG. 1, the m1 degree unevenness data stored in the storage circuit 21 will be explained in conjunction with FIG.
濃度ムラデータは、実際の記録動作に先立って、予め記
録結果を測定して設定される。ここで、ある記録濃度(
基準濃度)DRに相当する濃度データを感熱記録装置に
入力し、ラインサーマルヘッドに所定時間通電を行なっ
て、記録用紙に実際に記録された記録濃度の目標とする
記録濃度DRに対する各発熱抵抗体R1〜RTI毎の変
動成分が測定される。この変動成分は、濃度ムラを発生
する前記発熱抵抗体の抵抗値のバラツキ等に相当するも
のであるため、この変動成分が各発熱抵抗体毎に固有の
濃度ムラデータh(n)として記憶回路21に予め記憶
される。The density unevenness data is set by measuring the printing results in advance, prior to the actual printing operation. Here, a certain recording density (
Density data corresponding to the reference density) DR is input into the thermal recording device, the line thermal head is energized for a predetermined period of time, and each heating resistor is adjusted to the target recording density DR of the recording density actually recorded on the recording paper. Fluctuation components for each R1 to RTI are measured. This fluctuation component corresponds to the variation in the resistance value of the heating resistor that causes density unevenness, so this fluctuation component is stored in the storage circuit as density unevenness data h(n) unique to each heating resistor. 21 in advance.
ところで、一般に記録により生ずるラインサーマルへ゛
ラドの副走査方向(ライン方向)の濃度ムラは、ライン
サーマルヘッドの端部と中心部との温度分布の差を含め
ても全濃度レベル(すなわち、最大階調濃度レベル)の
約174程度である。ここで、仮りに表現できる全温度
レベルを8ビツトとし、上記の如くm度ムラを基準濃度
レベルよりの変動成分だけに着目して取り出すと、濃度
ムラデータは8ビツトの情報量の1/4になる6ビツト
の情報りで、実用上は十分に略8ビツト相当のなめらか
さを保つこてができる。従って、記憶回路21に記憶さ
れる濃度ムラデータh (n)は本実施例では6ビツト
としている。次に、演咋回路22は前記演口回路15と
同様にROMテーブル等で構成されるものであり、記憶
回路21よりの6ビツトの濃度ムラデータ、前記ライン
メモリ13よりの8ビツトの濃度データ及び入力端子2
3よりの2ビツトの色コード信号が夫々供給されて、後
述する所定の演算を行なって、8ビツトの補正データを
生成して眞記ラインサーマルヘッド制御回路16へ出力
する。By the way, the density unevenness in the sub-scanning direction (line direction) of the line thermal head that generally occurs during recording is the total density level (i.e., the maximum density level), even including the difference in temperature distribution between the edge and center of the line thermal head. It is about 174 (tonal density level). Here, if the total temperature level that can be expressed is assumed to be 8 bits, and if m degrees unevenness is extracted by focusing only on the variation component from the reference density level as described above, the density unevenness data will be 1/4 of the information amount of 8 bits. For practical purposes, 6 bits of information can be used to maintain smoothness equivalent to approximately 8 bits. Therefore, the density unevenness data h (n) stored in the storage circuit 21 is 6 bits in this embodiment. Next, the readout circuit 22 is composed of a ROM table, etc., like the readout circuit 15, and stores 6-bit density unevenness data from the storage circuit 21 and 8-bit density data from the line memory 13. and input terminal 2
The 2-bit color code signals from 3 are respectively supplied, perform predetermined calculations to be described later, generate 8-bit correction data, and output the generated 8-bit correction data to the line thermal head control circuit 16.
ここで、上記2ビツトの色コード信号は必ずしも必要で
はなく、その場合には、従来と比べて濃度ムラデータが
8ビツトから6ビツトに変更されているので、演算回路
22の必要容量は前記演算回路15の容量51’2 k
bitの174の128kbitとなる。Here, the above-mentioned 2-bit color code signal is not necessarily necessary, and in that case, since the density unevenness data has been changed from 8 bits to 6 bits compared to the conventional case, the required capacity of the arithmetic circuit 22 is Capacity of circuit 15 51'2 k
It becomes 128 kbit of 174 bits.
ところで、上記色コード信号はその値により記録3原色
の各色Y(黄)1M(マゼンタ)及びC(シアン)を表
わすもので、例えばカラー画像を色順次記録する場合に
、各色のバランスを取るために各色別のゲイン調整を行
なうために用いられるものである。すなわち、上記3原
色Y、M、Cはその各色の記録順序や各発色特性の相違
等により、例えば第3図(A)に示す如く、夫々の入力
レベル(転写すべき濃度)と出力レベル(実際の記録濃
度)とが異なってしまい、良好な色再現が得られないと
いう欠点がある。そこで、演算回路22において、所定
の各色別のゲイン調整用の演算を行なって、第3図(B
)に示す如く各色の濃度データの入出力レベルが一致す
るような補正が行なわれる。By the way, the above color code signal represents each of the three recording primary colors Y (yellow), 1M (magenta), and C (cyan) depending on its value.For example, when recording a color image sequentially, it is used to balance each color. This is used to perform gain adjustment for each color. In other words, the three primary colors Y, M, and C have different input levels (densities to be transferred) and output levels (as shown in FIG. There is a drawback that good color reproduction cannot be obtained because the actual recording density differs from the actual recording density. Therefore, the arithmetic circuit 22 performs predetermined gain adjustment calculations for each color, as shown in FIG.
), correction is performed so that the input and output levels of the density data of each color match.
このように、本実施例では、容ωを増やすことなく、演
算回路22に、カラー記録におりる各色の記録濃度のり
ニアリティ補正のためのデータ変換機能を持たせられ、
さらに、各色間で異なる濃度特性も補正することができ
る。In this way, in this embodiment, the arithmetic circuit 22 is provided with a data conversion function for correcting the recording density linearity of each color in color recording without increasing the capacity ω.
Furthermore, density characteristics that differ between each color can also be corrected.
上記演算回路22は、濃度ムラデータに応じて高濃度部
に対して低レベルの補正係数の乗算(あるいは、その逆
の乗算)を行なって得た補正データを出力するものであ
り、次に、第4図と共にその詳細な説明を行なう。The arithmetic circuit 22 outputs correction data obtained by multiplying a high-density portion by a low-level correction coefficient (or vice versa) according to the density unevenness data, and then A detailed explanation will be given in conjunction with FIG.
第4図は、前記第7図を模式化した図であり。FIG. 4 is a schematic diagram of FIG. 7.
同図中、■及び■は夫々前記発熱抵抗体RA。In the figure, ■ and ■ are the heating resistors RA, respectively.
Reの温度特性曲線を示す。また、図示及び説明の便宜
上温度特性■及び■は夫々近似的に直線状の特性として
図示されているが、実際には第7図に特性A、Bに示し
たようなカーブを持っている。The temperature characteristic curve of Re is shown. Further, for convenience of illustration and explanation, temperature characteristics (1) and (2) are shown as approximately linear characteristics, but in reality they have curves as shown in characteristics A and B in FIG.
ここで、発熱抵抗体R8は、最も低い濃度にバラツキを
持つ14 tyとなる抵抗体であるとし、特性1、n共
に放熱゛(冷却)の時定数を、Ic=a。Here, it is assumed that the heating resistor R8 is a resistor having a density of 14 ty with a variation in the lowest concentration, and the time constant of heat radiation (cooling) for both characteristics 1 and n is Ic=a.
/C0(但し、aOは発熱抵抗体Rへの最高到達温度、
Coは放熱時間を夫々示す)とする。いま、通電時間を
Do、同一印加エネルギーにおける加熱時定数を夫々τ
A (=80/Do )、1日 (=bo/Do)とす
る左、発熱抵抗体RA、RBの最高到達温度a。+ b
Oは夫々(1)及び(2)式に示す如くになる。/C0 (however, aO is the maximum temperature reached by the heating resistor R,
Co indicates the heat dissipation time). Now, the energization time is Do, and the heating time constant at the same applied energy is τ.
A (=80/Do), 1 day (=bo/Do), left, maximum temperature a of heating resistors RA and RB. +b
O is as shown in equations (1) and (2), respectively.
ao = Is Do −(1
)bo = 18 Do −Q
)ところで、4華温度をY(+n記T refに相当)
とし、特性1.IIの最高温度到達時刻を夫々A+。ao = Is Do - (1
) bo = 18 Do −Q
) By the way, the four-way temperature is Y (equivalent to +n T ref)
And characteristic 1. The maximum temperature arrival time of II is A+ respectively.
BIN加熱時の昇華温度到達時刻を夫々A21B2、放
熱時の昇華温度到達時刻を夫々A3゜G3とすると、特
性1.Iにおける胃華温度を超えている時間、すなわち
、実際に記録が行なわれる時間eo 、doは夫々(3
)及び(4)式に示す如くになる。Assuming that the times at which the sublimation temperature is reached during BIN heating are A21B2, and the times at which the sublimation temperature is reached during heat dissipation are A3°G3, characteristic 1. The time during which the gastric temperature is exceeded at I, that is, the time at which recording is actually performed, eo and do are respectively (3
) and (4).
eo =(31+e2= (bo−Y)/bo x(D
o + (t)o Co ) / ao ) −Q
;)do =d+ +dz = (ao−Y)/ao
x(Do+Co) ・・・(4)
ここで、第4図中の三角形部分At A2 A3及びB
+ 82 G3の面積SA及びG8は夫々昇華湿度Yを
超えて発熱抵抗体RA、R8に印加されるエネルギーを
示し、これらの値は以下の式で与えられる。eo = (31+e2= (bo-Y)/box(D
o + (t)o Co ) / ao ) −Q
;) do = d+ + dz = (ao-Y)/ao
x(Do+Co)...(4)
Here, the triangular parts At A2 A3 and B in FIG.
+82 The areas SA and G8 of G3 indicate the energy applied to the heating resistors RA and R8, respectively, in excess of the sublimation humidity Y, and these values are given by the following equations.
S八−(1/2)・(ao−Y)・d0= (1/2)
・(ao Y)2 ・(Do +Co)/ao
・・・■So = (1/2)
・(bo Y) ・e。S8-(1/2)・(ao-Y)・d0= (1/2)
・(ao Y)2 ・(Do +Co)/ao
...■So = (1/2)
・(bo Y) ・e.
=(1/2)・(bo−Y)2 ・(Do+(b o
Co ) / a o ) / b o −(6
)いま、基準となる発熱抵抗体Raの発熱温度に基づい
て発熱抵抗体R^の通電時間をり。からblに補正する
場合について説明する。ここで、発熱抵抗体RA、RB
による記8濶度の比は上記面積S^、Ssの比で表わさ
れるものとし、補正後の発熱抵抗体R^の通電時間がD
lのときに17られる記録温度が、発熱抵抗体Raが通
電時間Doの加熱を行なって得られる81度と同一であ
るとすれば、(5)及び(6)式より以下の関係式が成
立する。=(1/2)・(bo−Y)2・(Do+(bo
Co) / ao) / b o -(6
) Now, determine the energization time of the heating resistor R^ based on the reference heating temperature of the heating resistor Ra. A case of correcting from bl to bl will be explained. Here, heating resistors RA, RB
The ratio of the above-mentioned areas S^ and Ss shall be expressed by the ratio of the above-mentioned areas S^ and Ss, and the energization time of the heating resistor R^ after correction is D.
If the recorded temperature of 17 degrees when 1 is the same as 81 degrees obtained by heating the heating resistor Ra for the energizing time Do, then the following relational expression is established from equations (5) and (6). do.
(ao −Y) 2 ・(DI +Co )/aO=
(t)o Y) 2 ・ (Do +
(bo Co )/ao )bo・・・の
上記(7)式をDlについて整理すると、下記の如くに
なる。(ao −Y) 2 ・(DI +Co )/aO=
(t)o Y) 2 ・ (Do +
When the above equation (7) of (bo Co )/ao )bo... is rearranged with respect to Dl, it becomes as follows.
DI−(ao/bo)・(bo−Y)2 ・D。DI-(ao/bo)・(bo-Y)2 ・D.
/(ao−Y)2+((bo Y)2/(ao Y
)21)・G。/(ao-Y)2+((bo Y)2/(ao Y
)21)・G.
=(τA/τB)・(τaDo Y)2・Do/(τ
ADOY)2
+((τaDo Y)2/(τADO−Y)2−1)
・(τA Do /τc ) −(B)上記の説明では
2個の発熱抵抗体RA及びReに関する補正演篩を求め
たが、以下に上記(8)式を一般化した場合について説
明する。ここで、発熱抵抗体Rsを補正のための基準と
し、発熱抵抗体RAの代わりに前記ラインサーマルヘッ
ド6を構成する発熱抵抗体R+−Rηの夫々の通電時間
を補正するものとする。いま、各発熱抵抗体の11度デ
ータに対応した通電時間をDと置き、また各発熱抵抗体
の加熱時定数をτηと置き、さらに各発熱抵抗体毎の8
1反ムラデータh (n)及び補正係数G+ (D)
、G2 (D)を夫々以下のように定めるものとする
。=(τA/τB)・(τaDo Y)2・Do/(τ
ADOY)2 + ((τaDo Y)2/(τADO-Y)2-1)
-(τA Do /τc) −(B) In the above explanation, the correction sieve regarding the two heating resistors RA and Re was obtained, but below, a case where the above formula (8) is generalized will be explained. Here, the heat generating resistor Rs is used as a reference for correction, and the energization time of each of the heat generating resistors R+-Rη constituting the line thermal head 6 is corrected instead of the heat generating resistor RA. Now, let D be the energization time corresponding to the 11 degree data of each heating resistor, let τη be the heating time constant of each heating resistor, and furthermore, let D be the energization time corresponding to the 11 degree data of each heating resistor.
1 Anti-mura data h (n) and correction coefficient G+ (D)
, G2 (D) shall be defined as follows.
h (n) −rTllr日 −(
9)G+(D)=(τBD−Y)2/(τη−Y)2・
・・(10)
G2(D)=((τeD−Y)2 /(τnD−Y)2
−11(τAD/τC)
・・・(11)
上記(9)〜(11)式を用いて前記(8)式を一般化
して補正後の通電時間D(n)を求めると、(12)式
に示す如くになる。h (n) −rTllrday −(
9) G+(D)=(τBD-Y)2/(τη-Y)2・
...(10) G2(D)=((τeD-Y)2/(τnD-Y)2
-11(τAD/τC) (11) When the above equation (8) is generalized using the above equations (9) to (11) and the corrected energization time D(n) is obtained, (12) It becomes as shown in the formula.
D(n)−D−G+ (D) ・h (n)+02(
D) ・・・(12)上記通電時間
りは前記ラインメモリ13よりの各発熱抵抗体毎8ピッ
1−の濃度データにλ1応して−a的に定まる値である
。一方、加熱時定数τηは予め各発熱抵抗毎に測定され
た値であり、また、昇華温度Y、基準加熱時定数τB及
び放熱時定数τCは夫々既知の値であるため、補正係数
01(D)及びG2 (D)は各発熱抵抗体毎の濃度
データDに応じて一義的に定まる値である。D(n)-D-G+ (D) ・h (n)+02(
D) ... (12) The above-mentioned energization time is a value determined in accordance with λ1 of the concentration data of 8 pips 1- for each heating resistor from the line memory 13. On the other hand, the heating time constant τη is a value measured in advance for each heating resistor, and the sublimation temperature Y, reference heating time constant τB, and heat radiation time constant τC are each known values, so the correction coefficient 01 (D ) and G2 (D) are values uniquely determined according to the concentration data D for each heating resistor.
このように、(12)式では各発熱抵抗体毎に固定の濃
度ムラデータh (n)と、各発熱抵抗体の濃度データ
毎に変化する補正係数G+ (D)及びG2 (D
)により、補正演算を行なっている。In this way, Equation (12) uses density unevenness data h (n) that is fixed for each heating resistor, and correction coefficients G+ (D) and G2 (D
), the correction calculation is performed.
従って、従来の如く、m度ムラデータの単なる加締ある
いは乗算又は固定の補正係数による演算によるものに比
べて本実施例ではより精度の高い補正を実現することが
できる。なお、前記の如く、熱の変化は第4図に示す如
(直線的ではないために若干の補正が必要であるが、(
12)式の一般式は損われることはない。Therefore, in this embodiment, more accurate correction can be achieved than in the conventional method, which is based on simple tightening or multiplication of m-degree unevenness data, or calculation using a fixed correction coefficient. As mentioned above, the change in heat is as shown in Figure 4 (although some correction is necessary because it is not linear).
The general formula of equation 12) is not compromised.
なお、本発明は本実施例に限定されるものではなく、演
算回路22における補正演算も(12)式の一般式に必
ずしも限定されず、他の補正演算を行なうようにしても
良いことは勿論である。Note that the present invention is not limited to this embodiment, and the correction calculation in the calculation circuit 22 is not necessarily limited to the general formula (12), and it goes without saying that other correction calculations may be performed. It is.
発明の効果
上述の如く、本発明によれば、′m度ムラデータの情報
団を入力濃度データの略174としたので、両データを
アドレスとして補正演算結果を読み出す補正演算テーブ
ル用メモリの容量を削減でき、また、′Q度ムラデータ
により入力濃度データの示す階調レベルに対応した濃度
補正演算を行なったので、F15aレベルによって異な
る濃度ムラデータの補正を精度高〈実施することができ
、ざらに、ff1里な構成でラインサーマルヘッドのバ
ラツキに対する仕様を緩和でき、よって、ラインサーマ
ルヘッドの低価格化を図ることができる等の特長を有す
る。Effects of the Invention As described above, according to the present invention, since the information group of the m degree unevenness data is approximately 174 times the input density data, the capacity of the memory for the correction calculation table from which the correction calculation results are read out using both data as addresses can be reduced. In addition, since the density correction calculation corresponding to the gradation level indicated by the input density data is performed using the 'Q degree unevenness data, correction of density unevenness data that differs depending on the F15a level can be performed with high precision and even roughness can be reduced. Another advantage is that the specification for variations in the line thermal head can be relaxed with the FF1 configuration, thereby making it possible to reduce the cost of the line thermal head.
第1図は本発明装置の一実施例を示すブロック系統図、
第2図は111ムラデータを説明するための図、第3図
及び第4図は夫々本発明装置における濃度補正方法を説
明するための図、第5図は一般的な感熱記録装置の構成
を示す概略斜視図、第6図は従来装置の一例を示すブロ
ック系統図、第7図はラインサーマルヘッドの一例の温
度特性図である。
12・・・濃度データ入力端子、13・・・ラインメモ
リ、14・・・アドレス゛発生回路、16・・・ライン
サーマルヘッド制御回路、21・・・記憶回路、22・
・・演算回路、23・・・色コード信号入力端子。
特工1出願人 日本ビクター株式会社
]
第1図
第2図
アドレス
第3図
入力レベル 入
力レベルjI4 @
第5図FIG. 1 is a block diagram showing an embodiment of the device of the present invention;
Figure 2 is a diagram for explaining 111 unevenness data, Figures 3 and 4 are diagrams for explaining the density correction method in the apparatus of the present invention, and Figure 5 is a diagram for explaining the configuration of a general thermal recording apparatus. 6 is a block system diagram showing an example of a conventional device, and FIG. 7 is a temperature characteristic diagram of an example of a line thermal head. 12... Density data input terminal, 13... Line memory, 14... Address generation circuit, 16... Line thermal head control circuit, 21... Storage circuit, 22...
... Arithmetic circuit, 23... Color code signal input terminal. Special Engineering 1 Applicant: Victor Company of Japan] Figure 1 Figure 2 Address Figure 3 Input Level Input Level jI4 @ Figure 5
Claims (3)
設された発熱抵抗体による記録濃度の基準濃度に対する
変動成分を示す濃度ムラデータを各発熱抵抗体に夫々対
応して予め記憶する記憶手段と、各発熱抵抗体により記
録されるべき濃度を示す濃度データと該記憶手段よりの
該濃度ムラデータとが夫々供給され、該濃度ムラデータ
に基づいて生成した補正係数と該濃度データとの補正演
算を行なって、各発熱抵抗体毎に補正データを生成する
演算手段と、該演算手段よりの該補正データに基づいて
転写すべき各発熱抵抗体の通電時間を夫々制御する制御
手段とよりなることを特徴とする感熱記録装置の濃度ム
ラ補正装置。(1) A storage means for storing density unevenness data in advance corresponding to each heating resistor, which indicates a fluctuation component of recording density with respect to a reference density due to a plurality of heating resistors arranged in a line constituting the line thermal head; , density data indicating the density to be recorded by each heating resistor and the density unevenness data from the storage means are respectively supplied, and a correction calculation is performed between the correction coefficient generated based on the density unevenness data and the density data. and a control means for controlling the energization time of each heating resistor to be transferred based on the correction data from the calculating means. A density unevenness correction device for a thermal recording device, characterized by:
該濃度データに対してm(但し、mはlより小なる自然
数)ビットの該濃度ムラデータに基づく補正演算を行な
つて、lビットの該補正データを生成することを特徴と
する特許請求の範囲第1項記載の感熱記録装置の濃度ム
ラ補正装置。(2) The calculation means performs a correction calculation based on the density unevenness data of m (however, m is a natural number smaller than l) bits on the density data of l (where l is a natural number) bits. , 1 bits of the correction data is generated. 2. The density unevenness correction device for a thermal recording device according to claim 1, wherein the correction data is of 1 bit.
度データのレベル毎に異なる補正係数を生成し、該補正
係数と該濃度データとの演算を行なつて、該発熱抵抗体
毎にその記録濃度レベルに対応した補正データを生成す
ることを特徴とする特許請求の範囲第1項記載の感熱記
録装置の濃度ムラ補正装置。(3) The calculating means generates a different correction coefficient for each level of the density data based on the density unevenness data, and calculates the correction coefficient and the density data for each heating resistor. A density unevenness correction device for a thermal recording device according to claim 1, wherein correction data corresponding to the recording density level is generated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61299151A JPH0775892B2 (en) | 1986-12-16 | 1986-12-16 | Density unevenness correction device for thermal recording device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61299151A JPH0775892B2 (en) | 1986-12-16 | 1986-12-16 | Density unevenness correction device for thermal recording device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63151469A true JPS63151469A (en) | 1988-06-24 |
JPH0775892B2 JPH0775892B2 (en) | 1995-08-16 |
Family
ID=17868784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61299151A Expired - Lifetime JPH0775892B2 (en) | 1986-12-16 | 1986-12-16 | Density unevenness correction device for thermal recording device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0775892B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5153605A (en) * | 1989-12-27 | 1992-10-06 | Victor Company Of Japan, Ltd. | System of controlling energization to thermal head in thermal printer |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6013571A (en) * | 1983-07-04 | 1985-01-24 | Sony Corp | Printer |
JPS618365A (en) * | 1984-06-22 | 1986-01-16 | Fuji Xerox Co Ltd | Transfer type thermal recorder |
JPS61118269A (en) * | 1984-11-14 | 1986-06-05 | Sony Corp | Thermal printer |
-
1986
- 1986-12-16 JP JP61299151A patent/JPH0775892B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6013571A (en) * | 1983-07-04 | 1985-01-24 | Sony Corp | Printer |
JPS618365A (en) * | 1984-06-22 | 1986-01-16 | Fuji Xerox Co Ltd | Transfer type thermal recorder |
JPS61118269A (en) * | 1984-11-14 | 1986-06-05 | Sony Corp | Thermal printer |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5153605A (en) * | 1989-12-27 | 1992-10-06 | Victor Company Of Japan, Ltd. | System of controlling energization to thermal head in thermal printer |
Also Published As
Publication number | Publication date |
---|---|
JPH0775892B2 (en) | 1995-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920010609B1 (en) | Halftone printer | |
US4774528A (en) | Thermal recording apparatus capable of gradation recording | |
JPS62256575A (en) | Thermosensitive recorder | |
GB2243265A (en) | Thermal recording apparatus | |
JPS61208366A (en) | Thermal transfer gradation controller | |
JPS63151469A (en) | Density irregularity correction apparatus of thermal recording apparatus | |
JPH048561A (en) | Driving method for thermal head | |
JP3202285B2 (en) | Thermal recording apparatus and thermal recording method | |
JPS59202768A (en) | Heat-sensing transfer printer | |
JPH04201268A (en) | Heat-sensitive recording device | |
JP2530170B2 (en) | Thermal transfer gradation control device | |
JP3016110B2 (en) | Control method of thermal head | |
JPS61224773A (en) | Thermal transfer tone wedge control device | |
JPH01146769A (en) | Method and device for halftone recording | |
JPS6031361A (en) | Half tone recording system by thermal recording | |
JPS572774A (en) | Recording system for gradation image | |
JPS62271764A (en) | Thermal transfer gradation controller | |
JPS63212562A (en) | Heat sensitive type printer | |
JP2840393B2 (en) | Driving method of thermal head in thermal transfer recording device | |
JP3151317B2 (en) | Image recording device | |
JPS61287769A (en) | Thermal transfer gradation controller | |
JPH01216860A (en) | Thermosensitive recording apparatus | |
JPH01226362A (en) | Thermal head driving apparatus | |
JPH0315565A (en) | Thermal transfer recorder | |
JPS63199658A (en) | Thermosensible recorder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |