[go: up one dir, main page]

JPS6315132B2 - - Google Patents

Info

Publication number
JPS6315132B2
JPS6315132B2 JP55116066A JP11606680A JPS6315132B2 JP S6315132 B2 JPS6315132 B2 JP S6315132B2 JP 55116066 A JP55116066 A JP 55116066A JP 11606680 A JP11606680 A JP 11606680A JP S6315132 B2 JPS6315132 B2 JP S6315132B2
Authority
JP
Japan
Prior art keywords
stretching
stretched film
producing
layer
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55116066A
Other languages
Japanese (ja)
Other versions
JPS5739928A (en
Inventor
Tadashi Inukai
Yukio Yamane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP11606680A priority Critical patent/JPS5739928A/en
Publication of JPS5739928A publication Critical patent/JPS5739928A/en
Publication of JPS6315132B2 publication Critical patent/JPS6315132B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は積層延伸フイルムの製造方法に関し、
詳細には、ポリエステル延伸フイルム本来の特徴
である光学的性質及び機械的諸性質を損なうこと
なく、層間接着力及びヒートシール性等の良好な
積層延伸フイルムを製造する方法に関するもので
ある。 近年、食品業界をはじめとする包装分野及び各
種工業分野におけるフイルムの需要は著しく増大
しており、用途もますます多様化する傾向にあ
る。それに伴なつて市販の単一フイルムでは多枝
に亘る要求に対処しきれなくなつている。そこで
性能の異なる2種以上の素材を組み合わせて複合
フイルムとし、個々のフイルムの欠点を補ないつ
つ要求特性に合致させるという工夫が払われてい
る。 ところでポリエステル延伸フイルムは光学的性
質及び機械的性質において優れているが、高融点
の為にヒートシール性が乏しく、特に包装分野で
大きな障害になつている。その為改善策について
以下に示す様な提案もなされている。即ち、ポ
リエステル延伸フイルムにイソシアネート系、エ
チレンイミン系、有機チタネート系等の接着剤を
塗布し、その上にヒートシール性を有するポリオ
レフインの未延伸フイルムを積層するドライラミ
ネート法、接着剤を塗布したポリエステル延伸
フイルム上にポリオレフイン樹脂を溶融押出し
し、ロール間で加熱圧着する押出しラミネート
法、等によりヒートシール性の改善が行なわれて
いる。しかしながらこれらの方法では、最終製品
を得るまでの工程数が多い為にコストが高く、ま
た使用する接着剤が有毒である為に取扱いが面倒
であり、更には有機溶媒による引火の危険性や公
害問題等も派生する。 本発明者等は上記の様な事情に着目し、ポリエ
ステル延伸フイルム本来の特徴である優れた光学
的性質や機械的性質等を損なうことなく、簡単な
製造工程で良好なヒートシール性及び層間接着性
を付与し得る様な積層延伸フイルムの製法を確立
すべく研究を進めてきた。本発明はかかる研究の
結果完成されたものであつて、その構成とは、ポ
リエステルフイルムの少なくとも片面にポリオレ
フイン層を有する積層フイルムを製造するに当
り、ポリエステルフイルムとポリオレフインフイ
ルムの間に、酢酸ビニルを15〜70重量%含有する
エチレン−酢酸ビニル共重合体のアセトキシル基
の70モル%以下が鹸化され、且つ該共重合体に不
飽和カルボン酸又は不飽和カルボン酸無水物を
0.05〜5重量%含有する様にグラフト変性してな
るエチレン−酢酸ビニル共重合体変性物(以下変
性EVA共重合体という)からなる接着樹脂層を
介在させて積層未延伸フイルムを製造し、次いで
このフイルムを80〜150℃で縦方向及び/又は横
方向に面積延伸比が4〜20倍となる様に延伸する
ところに要旨が存在する。 本発明では、ポリエステルフイルム及びポリオ
レフインフイルムの両者に対して接着性を有する
変性EVA共重合体を接着樹脂層とし利用し、通
常の積層法で複合フイルムとした後、所定温度及
び所定延伸比で延伸を行なう方法であり、前述の
様な接着剤を使用する方法に比べて製造工程を著
しく簡略化でき、且つ有害物使用に伴なう危険、
有機溶剤使用による引火・爆発、公害等の問題を
生じる恐れもない。しかも変性EVA共重合体は
後述する様な成分組成を有しており、ポリエステ
ルフイルム及びポリオレフインフイルムの双方に
対して優れた接着性を有しているから、最終的に
得られる複合延伸フイルムの層間接着性も極めて
高い。かくしてポリエステルフイルムの光学的性
質及び機械的諸性質と、ポリオレフインフイルム
のヒートシール性を併せて発揮することのできる
高性能の複合フイルムを安価に製造し得ることに
なつた。 本発明で用いられるポリエステルとは、2塩基
性ジカルボン酸と2価アルコールとの縮重合によ
つて得られる実質的に線状の脂肪族あるいは芳香
族ポリエステルを言い、たとえばポリエチレンテ
レフタレート、ポリエチレンテレフタレート−イ
ソフタレート共重合体、ポリエチレン2・6ナフ
タレート、ポリテトラメチレンテレフタレート、
ポリエチレンセバケートおよびこれらの2種以上
の共重合体や混合物等が挙げられ、中でもポリエ
チレンテレフタレートは最も好ましいものの1つ
である。 接着樹脂層を構成する変性EVA共重合体とし
ては下記の様なグラフト変性物が使用され、この
変性物はポリエステル及びポリオレフインの双方
に対して優れた接着性を有している。即ちベース
ポリマーである酢酸ビニルの含有量が15〜70%
(以下特記しない限り重量%を示す)、より好まし
くは20〜50%で、そのアセトキシル基の70モル%
以下、より好ましくは50モル%以下が鹸化された
部分鹸化エチレン−酢酸ビニル共重合体を用い、
これに不飽和カルボン酸又はその無水物をグラフ
ト反応によつて0.05〜5%、より好ましくは0.2
〜2%含有させた変性物は、接着性及び積層フイ
ルムの成形性等において極めて優れている。酢酸
ビニルの含有量が15%未満ではポリエステルに対
する接着性が乏しく、一方70%を越えると押出し
成形性が悪くなる。アセトキシル基の鹸化度は層
間接着性及び最終製品のガスバリヤー性と密接な
関係があり、鹸化度を高めるとガスバリヤー性は
向上するが層間接着性が低下する。従つて鹸化度
は両者の兼ね合いで決定すべきであるが、層間接
着性を重視する場合には、鹸化度を70モル%以下
にするのがよく、層間接着性が特に強く要求され
る場合は50モル%程度以下にすべきである。また
該部分鹸物のグラフト変性に用いるモノマーとし
ては、種々の不飽和カルボン酸又はその変性物、
例えばアクリル酸、メタクリル酸、マレイン酸、
桂皮酸、クロトン酸等或はそれらの無水物を単独
或は2種以上を混合して用いるが、最も好ましい
のは無水マレイン酸である。尚グラフト変性率は
0.05〜5%の範囲から選ぶべきで、0.05%未満で
は変性の効果が十分現われず、特にポリエステル
フイルムに対する接着力が不十分になる。一方5
%を越えると変性の効果はそれ以上向上せず、む
しろ押出し成形性が低下するので好ましくない。 ポリオレフインフイルムとしては、延伸後もヒ
ートシール性を有するものがすべて使用できる
が、好ましいものとしては低密度ポリエチレン、
エチレン−酢酸ビニル共重合体、エチレン−プロ
ピレン共重合体、エチレン−ブテン−1共重合体
等の単独若しくは2種以上の混合物が例示され、
中でも低密度ポリエチレンはコスト及び性能の両
面で最適である。 次に積層法も格別制限されないが、好ましい方
法としては、別々に3種のフイルムを製膜し変
性EVA共重合体を中間層として残り2種を重ね
合わせ、加熱ロールによつて圧着する方法、予
め製膜したポリエステル未延伸フイルム上に、変
性EVA共重合体とポリオレフインとを2層ダイ
から同時に押出し、ロールによつて3者を圧着さ
せる方法(押出しラミネート法)、多層押出機
を使用し、変性EVA共重合体が中間層となる様
にして3種の樹脂を同時に押出しながら、ロール
によりフイルム状に成形する方法(共押出し法)、
等が例示されるが、層間接着性、作業性(工程
数)、その後の延伸性等を総合するとの方法が
最も好ましい。即ちの方法であれば、3種3層
或は3種5層のフラツトダイ或はサーキユラダイ
から3種の樹脂を同時に押出し、金属ロール、
水、空気等によつて直接又は間接冷却を行なう
が、引続き後述の延伸及び熱処理等を連続して行
なえるので、製造工程が一層単純化される。 次に延伸工程では3種の樹脂フイルムを均一に
延伸できる様な条件を設定する必要があり、延伸
温度は80〜150℃にしなければならない。延伸温
度が80℃未満では、均一な延伸が困難で延伸工程
で部分的な層間剥離や亀裂を起こし、一方150℃
を越えるとポリオレフインの融点を越える為にテ
ンタークリツプ等に粘着し作業性が低下する。し
かし80〜150℃、より好ましくは90〜150℃の延伸
温度であれば均一に延伸することができ、特に90
℃以上ではフイルムの残留歪が小さく、非対称型
積層フイルムを製造する場合に起こりがちなカー
ル現象も抑制される。 延伸倍率は、縦方向及び/又は横方向に1軸又
は2軸延伸したときの面積延伸比が4〜20倍にな
る様に設定すべきである。面積延伸比が4倍以下
ではポリエステルフイルムの特徴である光学的、
機械的性質が不十分になり、且つ均一に延伸しに
くくなる。一方20倍以上になると延伸工程で破断
し易くなる。1軸延伸及び2軸延伸のいずれを採
用するかは、最終製品の用途や要求特性に応じて
決定すればよいが、より優れた光学的、機械的性
質を確保するうえでは2軸延伸の方が有利であ
り、この場合同時2軸延伸及び逐次2軸延伸のい
ずれを採用してもよい。尚最終製品における各樹
脂層の厚さも用途に応じて設定すればよいが、十
分なヒートシール性を確保する為には、変性
EVA共重合体層とポリオレフイン層の厚みの合
計を10μ以上、好ましくは20μ以上にすることが
望まれる。 延伸後は必要に応じて熱処理することができる
が、熱処理温度は、延伸による光学的・機械的性
能の改善効果を阻害しない様に、延伸温度以上ポ
リエステルの融点以下の温度にすべきである。 上記の如く本発明の積層フイルムは、ポリエス
テル層とポリオレフイン層の間に変性EVA共重
合体層が介装された構造であり、各層の組み合わ
せ数は用途及び要求性能によつて適当に調整すれ
ばよいが、最も一般的なのは3種3層(ポリエス
テル/変性EVA/ポリオレフイン)及び3種5
層(ポリオレフイン/変性EVA/ポリエステ
ル/変性EVA/ポリオレフイン)である。尚本
発明で使用する各樹脂中には、必要に応じて安定
剤、充填剤、紫外線吸収剤、染料、顔料、滑剤、
帯電防止剤、難燃剤等の添加剤を配合することも
勿論可能である。 次に実験例を示す。 実験例 1 夫々20mmφのスクリユーを備えたA層、B層、
C層からなる3層押出成形機を使用し、各層に第
1表に示す樹脂を供給して同表に示す温度で溶融
し、同一口金からダイ温度285℃で同時押出しを
行ない、約500μの未延伸フイルムを製造した。
製膜状況は何れも極めて良好であつた。
The present invention relates to a method for manufacturing a laminated stretched film,
Specifically, the present invention relates to a method for producing a laminated stretched film with good interlayer adhesion and heat sealability without impairing the optical properties and mechanical properties that are the original characteristics of a polyester stretched film. In recent years, the demand for films in the packaging field, including the food industry, and various industrial fields has increased significantly, and their uses are becoming increasingly diverse. As a result, commercially available single films are no longer able to meet the demands of multiple branches. Therefore, efforts have been made to create a composite film by combining two or more types of materials with different properties to meet the required characteristics while compensating for the shortcomings of the individual films. By the way, polyester stretched film has excellent optical and mechanical properties, but due to its high melting point, it has poor heat-sealing properties, which is a major problem, especially in the packaging field. For this reason, the following suggestions have been made regarding improvement measures. That is, a dry lamination method in which an isocyanate-based, ethyleneimine-based, organic titanate-based adhesive, etc. is applied to a stretched polyester film, and an unstretched film of polyolefin having heat sealability is laminated thereon; Heat-sealability has been improved by an extrusion lamination method in which a polyolefin resin is melt-extruded onto a stretched film and then heated and pressed between rolls. However, these methods are expensive due to the large number of steps required to obtain the final product, are difficult to handle because the adhesive used is toxic, and furthermore pose the risk of ignition and pollution due to organic solvents. Problems will also arise. The present inventors focused on the above-mentioned circumstances, and developed a polyester stretched film with good heat sealability and interlayer adhesion through a simple manufacturing process without sacrificing its original characteristics such as excellent optical properties and mechanical properties. We have been conducting research to establish a manufacturing method for laminated stretched films that can impart properties. The present invention was completed as a result of such research, and its structure is that when producing a laminated film having a polyolefin layer on at least one side of a polyester film, vinyl acetate is placed between the polyester film and the polyolefin film. 70 mol% or less of the acetoxyl groups in the ethylene-vinyl acetate copolymer containing 15 to 70% by weight are saponified, and the copolymer is added with an unsaturated carboxylic acid or an unsaturated carboxylic acid anhydride.
A laminated unstretched film is produced by interposing an adhesive resin layer made of a modified ethylene-vinyl acetate copolymer (hereinafter referred to as modified EVA copolymer) which is graft-modified to contain 0.05 to 5% by weight, and then The gist is that this film is stretched at 80 to 150°C in the longitudinal and/or transverse directions at an area stretching ratio of 4 to 20 times. In the present invention, a modified EVA copolymer that has adhesive properties for both polyester film and polyolefin film is used as an adhesive resin layer, and after forming a composite film using a normal lamination method, it is stretched at a predetermined temperature and a predetermined stretching ratio. This method significantly simplifies the manufacturing process compared to the method using adhesives as described above, and eliminates the dangers associated with the use of hazardous substances.
There is no risk of problems such as ignition, explosion, and pollution caused by the use of organic solvents. Furthermore, the modified EVA copolymer has the composition described below and has excellent adhesion to both polyester film and polyolefin film, so that it can be used between the layers of the final composite stretched film. Adhesion is also extremely high. In this way, it has become possible to inexpensively produce a high-performance composite film that can exhibit both the optical and mechanical properties of a polyester film and the heat-sealing properties of a polyolefin film. The polyester used in the present invention refers to a substantially linear aliphatic or aromatic polyester obtained by polycondensation of dibasic dicarboxylic acid and dihydric alcohol, such as polyethylene terephthalate, polyethylene terephthalate-iso Phthalate copolymer, polyethylene 2.6 naphthalate, polytetramethylene terephthalate,
Examples include polyethylene sebacate, copolymers and mixtures of two or more thereof, and among them, polyethylene terephthalate is one of the most preferred. The following graft modified product is used as the modified EVA copolymer constituting the adhesive resin layer, and this modified product has excellent adhesion to both polyester and polyolefin. That is, the content of vinyl acetate, which is the base polymer, is 15 to 70%.
(Hereinafter, the weight percentage is shown unless otherwise specified), more preferably 20 to 50%, and 70 mol% of the acetoxyl group.
Hereinafter, preferably using a partially saponified ethylene-vinyl acetate copolymer in which 50 mol% or less is saponified,
0.05 to 5%, more preferably 0.2%, of unsaturated carboxylic acid or its anhydride is added to this by a graft reaction.
The modified product containing up to 2% is extremely excellent in terms of adhesiveness and formability of laminated films. If the content of vinyl acetate is less than 15%, adhesion to polyester will be poor, while if it exceeds 70%, extrusion moldability will be poor. The degree of saponification of acetoxyl groups is closely related to interlayer adhesion and gas barrier properties of the final product; increasing the saponification degree improves gas barrier properties but lowers interlayer adhesion. Therefore, the degree of saponification should be determined based on the balance between the two, but when emphasis is placed on interlayer adhesion, it is best to set the degree of saponification to 70 mol% or less, and when particularly strong interlayer adhesion is required, It should be about 50 mol% or less. In addition, monomers used for graft modification of the partially saponified product include various unsaturated carboxylic acids or modified products thereof,
For example, acrylic acid, methacrylic acid, maleic acid,
Cinnamic acid, crotonic acid, etc. or their anhydrides may be used alone or in combination of two or more, but maleic anhydride is most preferred. The graft modification rate is
The content should be selected from the range of 0.05 to 5%; if it is less than 0.05%, the modification effect will not be sufficient, and the adhesion to polyester film in particular will be insufficient. On the other hand 5
If it exceeds %, the modification effect will not be improved any further, but rather the extrusion moldability will deteriorate, which is not preferable. Any polyolefin film that has heat-sealability even after stretching can be used, but preferred are low-density polyethylene,
Examples include ethylene-vinyl acetate copolymer, ethylene-propylene copolymer, ethylene-butene-1 copolymer, etc. alone or in a mixture of two or more,
Among them, low-density polyethylene is optimal in terms of both cost and performance. Next, the lamination method is not particularly limited, but a preferred method is a method in which three types of films are separately formed, the modified EVA copolymer is used as an intermediate layer, the remaining two types are stacked, and the layers are pressed together using heated rolls. A modified EVA copolymer and polyolefin are simultaneously extruded from a two-layer die onto a pre-formed unstretched polyester film, and the three are pressed together using a roll (extrusion lamination method), using a multilayer extruder. A method of simultaneously extruding three types of resins with the modified EVA copolymer as an intermediate layer and forming them into a film using rolls (coextrusion method);
The most preferred method is one that takes into account interlayer adhesion, workability (number of steps), subsequent stretchability, etc. In this method, three types of resins are simultaneously extruded from a flat die or circular die of three types and three layers or three types and five layers, and metal rolls,
Although direct or indirect cooling is performed using water, air, etc., stretching, heat treatment, etc., which will be described later, can be performed continuously, thereby further simplifying the manufacturing process. Next, in the stretching process, it is necessary to set conditions such that the three types of resin films can be stretched uniformly, and the stretching temperature must be 80 to 150°C. If the stretching temperature is less than 80℃, uniform stretching will be difficult and partial delamination or cracks will occur during the stretching process;
If it exceeds the melting point of the polyolefin, it will stick to tenter clips, etc., reducing workability. However, uniform stretching can be achieved at a stretching temperature of 80 to 150°C, more preferably 90 to 150°C, especially 90 to 150°C.
At temperatures above 0.degree. C., the residual strain of the film is small, and the curling phenomenon that tends to occur when manufacturing asymmetric laminated films is also suppressed. The stretching ratio should be set so that the area stretching ratio when uniaxially or biaxially stretched in the longitudinal and/or transverse directions is 4 to 20 times. When the areal stretch ratio is 4 times or less, the optical properties, which are the characteristics of polyester film,
The mechanical properties become insufficient and it becomes difficult to stretch uniformly. On the other hand, if it becomes 20 times or more, it becomes easy to break during the stretching process. Whether to use uniaxial or biaxial stretching can be decided depending on the intended use and required properties of the final product, but biaxial stretching is preferred in order to ensure better optical and mechanical properties. is advantageous, and in this case either simultaneous biaxial stretching or sequential biaxial stretching may be employed. The thickness of each resin layer in the final product can be set according to the application, but in order to ensure sufficient heat sealability, it is necessary to
It is desirable that the total thickness of the EVA copolymer layer and the polyolefin layer be 10μ or more, preferably 20μ or more. After stretching, heat treatment can be performed if necessary, but the heat treatment temperature should be higher than the stretching temperature and lower than the melting point of the polyester so as not to impede the effects of stretching on improving optical and mechanical performance. As mentioned above, the laminated film of the present invention has a structure in which a modified EVA copolymer layer is interposed between a polyester layer and a polyolefin layer, and the number of combinations of each layer can be adjusted appropriately depending on the application and required performance. However, the most common are 3 types 3 layers (polyester/modified EVA/polyolefin) and 3 types 5 layers.
layer (polyolefin/modified EVA/polyester/modified EVA/polyolefin). Each resin used in the present invention may contain stabilizers, fillers, ultraviolet absorbers, dyes, pigments, lubricants,
It is of course possible to incorporate additives such as antistatic agents and flame retardants. Next, an experimental example will be shown. Experimental example 1 A layer, B layer each equipped with a screw of 20 mmφ,
Using a three-layer extrusion molding machine consisting of layer C, the resin shown in Table 1 was supplied to each layer, melted at the temperature shown in the table, and coextruded from the same nozzle at a die temperature of 285°C. An unstretched film was produced.
The film forming conditions were all extremely good.

【表】【table】

【表】 得られた未延伸フイルムを、パンタグラフ式フ
イルムストレツチヤーを使用し第2表に示す条件
で延伸し、延伸状況及び得られた延伸フイルムの
層間接着力及びヒートシール性を調べた。結果を
第2表に一括して示す。
[Table] The obtained unstretched film was stretched using a pantograph type film stretcher under the conditions shown in Table 2, and the stretching conditions and the interlayer adhesive strength and heat sealability of the obtained stretched film were examined. The results are summarized in Table 2.

【表】 上記の結果より次の様に考案できる。 (1) 実験No.1は延伸温度が低すぎる比較例で、均
一に延伸できず、一方延伸温度が高すぎると
(実験No.11)延伸時に破断し易く且つクリツプ
への粘着が著しくて作業性が悪い。 (2) 実験No.4は延伸倍率が小さすぎる比較例で、
部分的に延伸斑ができて均一なフイルムが得ら
れない。一方延伸倍率が大きすぎると(実験No.
8)延伸工程で破断し易い。 (3) これらに対し本発明の要件を満たす実施例
(実験例No.2、3、5、6、7、9及び10)で
は、均一でしかも層間接着力及びヒートシール
性共に極めて優れている。 実験例 2 実験例1と同じ3層押出成形機を用い、A及び
C層も実験例1と同じポリエチレンテレフタレー
トと低密度ポリエチレンを使用し、B層としては
鹸化度を変えた変性EVA樹脂(酢酸ビニル含有
率及びグラフト率は実験例1と同じ)を使用し
て、実験例1と同じ厚み構成の3層フイルムを製
造した。 得られたフイルムを、延伸温度100℃、延伸倍
率MD方向に3.5倍、TD方向に3.5倍で延伸し、層
間接着力を調べた。結果を第3表に示す。
[Table] Based on the above results, the following can be devised. (1) Experiment No. 1 is a comparative example in which the stretching temperature is too low and cannot be stretched uniformly, whereas if the stretching temperature is too high (Experiment No. 11), it is easy to break during stretching and sticks to the clip significantly, making it difficult to work. Bad sex. (2) Experiment No. 4 is a comparative example where the stretching ratio is too small.
Stretching unevenness occurs in some areas and a uniform film cannot be obtained. On the other hand, if the stretching ratio is too large (Experiment No.
8) Easy to break during the stretching process. (3) In contrast, the Examples (Experimental Examples Nos. 2, 3, 5, 6, 7, 9, and 10) that meet the requirements of the present invention have uniform and extremely excellent interlayer adhesion and heat sealability. . Experimental Example 2 Using the same three-layer extrusion molding machine as in Experimental Example 1, the A and C layers also used the same polyethylene terephthalate and low density polyethylene as in Experimental Example 1, and the B layer was made of modified EVA resin (acetic acid) with a different degree of saponification. A three-layer film having the same thickness structure as in Experimental Example 1 was manufactured using the same vinyl content and graft ratio as in Experimental Example 1. The obtained film was stretched at a stretching temperature of 100° C. and a stretching ratio of 3.5 times in the MD direction and 3.5 times in the TD direction, and the interlayer adhesive strength was examined. The results are shown in Table 3.

【表】 第3表からも明らかな様に鹸化度が70モル%を
越える変性EVA樹脂を使用すると、層間接着力
が極端に低くなり、本発明の目的を達成できな
い。それに対し鹸化度が70モル%以下の樹脂を接
着樹脂として使用すると、優れた層間接着力の複
合フイルムが得られる。
[Table] As is clear from Table 3, if a modified EVA resin with a degree of saponification exceeding 70 mol % is used, the interlayer adhesive strength becomes extremely low, making it impossible to achieve the object of the present invention. On the other hand, if a resin with a saponification degree of 70 mol% or less is used as an adhesive resin, a composite film with excellent interlayer adhesive strength can be obtained.

Claims (1)

【特許請求の範囲】 1 ポリエステルフイルムの少なくとも片面にポ
リオレフイン層を有する積層延伸フイルムを製造
するに当たり、前記両層の間に、酢酸ビニルを15
〜70重量%含有するエチレン−酢酸ビニル共重合
体のアセトキシル基の70モル%以下が鹸化され、
且つ該共重合体に不飽和カルボン酸又は不飽和カ
ルボン酸無水物を0.05〜5重量%含有する様にグ
ラフト変性してなるエチレン−酢酸ビニル共重合
体変性物を接着樹脂層として介在せしめた少なく
とも3層の積層フイルムを形成し、次いで80〜
150℃で、縦方向及び/又は横方向に面積延伸比
で4〜20倍に延伸することを特徴とする積層延伸
フイルムの製造方法。 2 特許請求の範囲第1項において、不飽和カル
ボン酸又は不飽和カルボン酸無水物として無水マ
レイン酸を用いる積層延伸フイルムの製造方法。 3 特許請求の範囲第1又は2項において、ポリ
オレフインが低密度ポリエチレン、エチレン−酢
酸ビニル共重合体、エチレン−プロピレン共重合
体及びエチレン−ブテン−1共重合体よりなる群
から選択される1種以上である積層延伸フイルム
の製造方法。 4 特許請求の範囲第1〜3項のいずれかにおい
て、延伸によりエチレン−酢酸ビニル共重合体の
変性物層とポリオレフイン層の合計厚みを10μ以
上とする積層延伸フイルムの製造方法。 5 特許請求の範囲第1〜4項のいずれかにおい
て、積層を共押出しで行なう積層延伸フイルムの
製造方法。 6 特許請求の範囲第1〜5項のいずれかにおい
て、延伸を同時2軸延伸で行なう積層延伸フイル
ムの製造方法。 7 特許請求の範囲第1〜6項のいずれかにおい
て、延伸後、延伸温度以上で且つポリエステルの
融点以下の温度で熱処理を行なう積層延伸フイル
ムの製造方法。
[Claims] 1. In producing a laminated stretched film having a polyolefin layer on at least one side of a polyester film, 15% of vinyl acetate is added between the two layers.
Up to 70 mol% of the acetoxyl groups in the ethylene-vinyl acetate copolymer containing ~70% by weight are saponified,
and at least a modified ethylene-vinyl acetate copolymer obtained by graft-modifying the copolymer so as to contain 0.05 to 5% by weight of an unsaturated carboxylic acid or an unsaturated carboxylic acid anhydride as an adhesive resin layer. A three-layer laminated film is formed, and then 80~
A method for producing a laminated stretched film, which comprises stretching at 150° C. in the longitudinal direction and/or the transverse direction at an area stretching ratio of 4 to 20 times. 2. The method for producing a laminated stretched film according to claim 1, using maleic anhydride as the unsaturated carboxylic acid or unsaturated carboxylic anhydride. 3. In claim 1 or 2, the polyolefin is one type selected from the group consisting of low density polyethylene, ethylene-vinyl acetate copolymer, ethylene-propylene copolymer, and ethylene-butene-1 copolymer. The method for manufacturing a laminated stretched film as described above. 4. A method for producing a laminated stretched film according to any one of claims 1 to 3, wherein the total thickness of the modified ethylene-vinyl acetate copolymer layer and the polyolefin layer is 10 μm or more by stretching. 5. A method for producing a laminated stretched film according to any one of claims 1 to 4, in which lamination is performed by coextrusion. 6. A method for producing a laminated stretched film according to any one of claims 1 to 5, wherein stretching is performed by simultaneous biaxial stretching. 7. The method for producing a laminated stretched film according to any one of claims 1 to 6, which after stretching is heat-treated at a temperature higher than the stretching temperature and lower than the melting point of the polyester.
JP11606680A 1980-08-22 1980-08-22 Manufacture of laminated drawn film Granted JPS5739928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11606680A JPS5739928A (en) 1980-08-22 1980-08-22 Manufacture of laminated drawn film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11606680A JPS5739928A (en) 1980-08-22 1980-08-22 Manufacture of laminated drawn film

Publications (2)

Publication Number Publication Date
JPS5739928A JPS5739928A (en) 1982-03-05
JPS6315132B2 true JPS6315132B2 (en) 1988-04-04

Family

ID=14677858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11606680A Granted JPS5739928A (en) 1980-08-22 1980-08-22 Manufacture of laminated drawn film

Country Status (1)

Country Link
JP (1) JPS5739928A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4879177A (en) * 1987-11-13 1989-11-07 W. R. Grace & Co. Monoaxially oriented shrink film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335778A (en) * 1976-09-14 1978-04-03 Nippon Synthetic Chem Ind Co Ltd:The Multi-layer laminates for retort food
JPS5586722A (en) * 1978-12-23 1980-06-30 Toyobo Co Ltd Manufacturing method for composite film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335778A (en) * 1976-09-14 1978-04-03 Nippon Synthetic Chem Ind Co Ltd:The Multi-layer laminates for retort food
JPS5586722A (en) * 1978-12-23 1980-06-30 Toyobo Co Ltd Manufacturing method for composite film

Also Published As

Publication number Publication date
JPS5739928A (en) 1982-03-05

Similar Documents

Publication Publication Date Title
US5324467A (en) Process for preparation of oriented multilayer laminate film
KR960014027B1 (en) Moisture barrier film
AU674873B2 (en) Moisture barrier film
US5529834A (en) Heat sealable muliilayer film comprising evoh skin and acrylic coating and its method of preparation
JPH02171241A (en) High strength, high modulus polyolefin composite with improved solid state drawability
EP1085970B1 (en) Process of manufactering evoh/polyester bistretched film
JP4325963B2 (en) Laminated film and process for producing the same
EP0524572B1 (en) Stretched, laminated film
US4472485A (en) Stretched composite film
JPS5932293B2 (en) Stretched laminated film and its manufacturing method
JP2774956B2 (en) Heat shrinkable film
JPS5913345B2 (en) fukugou film
JPS6315132B2 (en)
JPS62268621A (en) Method for producing laminated unstretched raw film
JPH04185322A (en) Multi-layer film
JP2542296B2 (en) Resin composition
JPH10278202A (en) Multilayered stretched polyamide film and its production
JP3650454B2 (en) Manufacturing method of multilayer stretched film
JPH0813505B2 (en) Method for producing laminated stretched film
JP2699002B2 (en) Manufacturing method of laminated biaxially stretched film
JP2570820B2 (en) Laminated film for print lamination and method for producing the same
JPS63125334A (en) Gas barrier multilayer film
JP2024180224A (en) Aluminum plastic film and substrates used for aluminum plastic film
JPH0573572B2 (en)
JPH02191B2 (en)