[go: up one dir, main page]

JPS63150610A - Measuring method for sectional shape - Google Patents

Measuring method for sectional shape

Info

Publication number
JPS63150610A
JPS63150610A JP29763786A JP29763786A JPS63150610A JP S63150610 A JPS63150610 A JP S63150610A JP 29763786 A JP29763786 A JP 29763786A JP 29763786 A JP29763786 A JP 29763786A JP S63150610 A JPS63150610 A JP S63150610A
Authority
JP
Japan
Prior art keywords
cross
measuring
sectional shape
measure
dimension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29763786A
Other languages
Japanese (ja)
Inventor
Toshiharu Arimatsu
有松 年治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Engineering Ltd
Original Assignee
Teijin Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Engineering Ltd filed Critical Teijin Engineering Ltd
Priority to JP29763786A priority Critical patent/JPS63150610A/en
Publication of JPS63150610A publication Critical patent/JPS63150610A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the sectional size of an object without contacting by providing two size measuring means which are each constituted by arranging a light source and an image sensor opposite each other in a radial direction about the object and measure the image side of the section of the object. CONSTITUTION:When the sectional size of the object M with the rectangular section specified by plural vertexes P1-P4 is measured, light sources A'-D' and image sensor cameras A-D are arranged opposite each other about the object M in radial directions. Then the cameras B and C of two size measuring means which constitute one vertex measuring instruments for measuring vertexes P1 and P3 are installed almost axially symmetrically about a straight line V and the cameras A and D of the other vertex measuring instrument which measure vertexes P2 and P4 are installed centrally axially symmetrically about the position of the light source D'. Consequently, the coordinates of the vertexes P1 and P3 are found through the cameras B and C and the coordinates of the vertexes P2 and P4 are found through the cameras A and D; and the lengths of diagonals P1P3 and P2P4 are measured from the coordinates of the vertexes P1 and P3, and P2 and P4 to calculate the sectional shape size of the object M.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は鉄鋼産業などで生産される矩形等複数の頂点で
特定される断面を持つ鋼等Aなどの断面形状の寸法を測
定する断面形状の測定方法に関し、特に生産プロセスラ
インに於いて非接触に測定するに好適な断面形状の測定
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial field of application The present invention relates to a cross-section for measuring the dimensions of a cross-sectional shape such as steel A having a cross-section specified by a plurality of vertices such as a rectangle produced in the steel industry etc. The present invention relates to a method for measuring a shape, and particularly to a method for measuring a cross-sectional shape suitable for non-contact measurement in a production process line.

(0)  背碩及び従来技術 鋼材の断面の寸法計測方法としては、特開昭50−92
759号公報、特開昭61−258105号公報等に開
示の通り、丸鋼を対象物とし、レーザを光源とした平行
光を対象物に照則して、その遮光中を一次元イメージセ
ンサーで計測する方法が知られているが、矩形等の断面
にはそのまま適用できない。その上この方法には対象物
とそのパス変動を含めた十分な巾の平行光と受光のため
の大きなレンズが2組必要となるが、100馴以上の直
径の大型レンズが高価であり、更に平行光の光軸合せの
機構が必要なための装置の製作費用が高くなり、口径の
大きなものには適用できない。
(0) As a method for measuring the dimensions of the cross section of backstripes and conventional steel materials,
As disclosed in Publication No. 759, Japanese Patent Application Laid-open No. 61-258105, etc., a round steel is used as an object, parallel light from a laser light source is aimed at the object, and a one-dimensional image sensor is used to capture the light while the light is blocked. Although measurement methods are known, they cannot be applied directly to cross sections such as rectangles. Furthermore, this method requires two sets of large lenses for receiving parallel light and light with a sufficient width to accommodate the object and its path variations, but large lenses with a diameter of 100 mm or more are expensive, and Since a mechanism for aligning the optical axis of parallel light is required, the manufacturing cost of the device increases, and it cannot be applied to large diameter devices.

従って、上Jの従来の寸法測定方法は、線材等の比較的
小さいもので、丸断面を持つ物に対して主に適用されて
いる。
Therefore, the conventional dimension measuring method described above is mainly applied to relatively small objects such as wire rods and objects having a round cross section.

(ハ) 発明の目的 本発明はかかる現状に鑑みなされたもので、矩形、H形
等複数の頂点で特定される断面形状を有する対象物の断
面寸法が非接触でiul+定できる断面形状の測定方法
を目的とするものである。
(c) Purpose of the Invention The present invention has been made in view of the current situation, and is a method for measuring the cross-sectional shape of an object having a cross-sectional shape specified by a plurality of vertices, such as a rectangle or an H-shape, in which the cross-sectional dimensions of an object can be determined without contact. The method is intended as a method.

(ニ)発明の構成1作用 上jホの目的は以下の本発明により達成される。(d) Structure 1 of the invention The above objects are achieved by the present invention as follows.

すなわち、本発明は、複数の頂点によって特定される断
面形状を有する対象物の断面寸法を測定するに際し、対
象物を中にしてその半径方向に光源とイメージセンサ−
とを対向配冒して対象物断面の射影寸法を測定するよう
になした2組の寸法測定手段からなり、該2組の寸法測
定手段を対象物断面の同じ頂点が射影の端点となると共
にその先軸が対象物の軸に垂直な面で2次元座標系を構
成するように配置して、該頂点の座標を測定するように
なした頂点測定装置により前記断面寸法の特定に必要な
頂点の全てを測定し、断面寸法を測定することを特徴と
する断面形状の測定方法である。
That is, when measuring the cross-sectional dimension of an object having a cross-sectional shape specified by a plurality of vertices, the present invention provides a light source and an image sensor in the radial direction of the object.
The two sets of dimension measuring means are arranged oppositely to each other to measure the projected dimensions of the cross section of the object. A vertex measuring device is arranged so that the tip axis is perpendicular to the axis of the object to form a two-dimensional coordinate system, and the coordinates of the vertex are measured. This method of measuring cross-sectional shape is characterized by measuring everything and measuring cross-sectional dimensions.

本発明は、断面形状の測定においてその頂点に看目し、
この頂点を前述の特開昭50−92759号公報。
The present invention focuses on the apex in measuring the cross-sectional shape,
This apex is described in the above-mentioned Japanese Patent Application Laid-Open No. 50-92759.

特開昭61−258105号公報等で公知で且つ市販の
イメージセンサカメラがそのまま利用できる技術的に確
立した寸法測定手段を利用し、これにより2次元座標系
を構成してその座標を測定し、必要な断面寸法を求める
ようになしているので、本発明によれば確立した技術に
より従来測定困難であった矩形2台形、)−1形、T形
刃広範な断面形状の安定した測定ができると共に、大口
径の鋼材等大きな断面の測定もできるのである。
Using a technically established dimension measuring means known in Japanese Patent Application Laid-Open No. 61-258105 and the like and which can be used as is with a commercially available image sensor camera, a two-dimensional coordinate system is constructed and its coordinates are measured; Since the required cross-sectional dimensions are determined, the present invention enables stable measurement of a wide range of cross-sectional shapes such as rectangular, 2-trapezoidal, )-1, and T-shaped blades, which were previously difficult to measure, using established technology. At the same time, it is also possible to measure large cross sections such as large diameter steel materials.

上)ボの本発明においては各頂点m11定装置及びそれ
を構成する寸法測定手段の各々は対象物の軸に垂直な平
面上にあれば良く、光源の干渉の排除の面からは別の平
面上にあることが好ましく、データ処理面、測定精度面
からは全てが同一平面上に位置することが好ましい。状
況に応じて適宜選択される。又その2次元座標系の原点
も必ずしも一致させる必要はないが、同様にデータ処理
、精度面から同一平面上の同一点とすることが好ましい
Above) In the present invention, each vertex m11 determining device and each of the dimension measuring means constituting it need only be on a plane perpendicular to the axis of the object, and from the viewpoint of eliminating interference of the light source, it is sufficient to place it on a different plane. It is preferable that they are located on the same plane, and from the viewpoint of data processing and measurement accuracy, it is preferable that they are all located on the same plane. Appropriate selection is made depending on the situation. Further, the origin of the two-dimensional coordinate system does not necessarily need to be the same, but it is preferable to make it the same point on the same plane from the viewpoint of data processing and accuracy.

そして、この原点近傍に対象物の中心軸が位置するよう
にすることが好ましい。
Preferably, the central axis of the object is located near this origin.

又本発明では複数の光源で測定対象物を照q・1するの
で、光源としては散乱光源が好ましい。散乱光源を用い
ることにより口径の小さい受光レンズの使用が可能とな
り、システム構成上し大きな利点がある。
Furthermore, in the present invention, since the object to be measured is illuminated by a plurality of light sources, a scattered light source is preferable as the light source. By using a scattered light source, it is possible to use a light receiving lens with a small diameter, which is a great advantage in terms of system configuration.

以下本発明の詳細を矩形断面の測定例に早いて説明する
。第1図は上記実施例の構成の説明図。
The details of the present invention will be explained below using an example of measuring a rectangular cross section. FIG. 1 is an explanatory diagram of the configuration of the above embodiment.

第2図はその頂点測定の原理の説明図である。FIG. 2 is an explanatory diagram of the principle of apex measurement.

図のA、B、C,Dはそれぞれ1次元イメージセンサ−
カメラで、本例では市販品具体的には余人エンジニアリ
ング■製のチルスキトン(商品名)を用いた。A′〜D
′は該カメラA、B、C,Dと夫々寸法aIす定手段を
構成する散乱光源で、本例では高周波点灯蛍光灯を用い
た。Mは、測定対象物で本例では頂点P1〜P4で特定
される矩形断面PI P2 P3 PJの鋼材で、7字
形の溝付目−うで構成されるパスライン(図示省酪)上
を移送されている。ここで各対角の頂点P1とP4とを
結ぶ直線をH1頂点P2とP3を結ぶ直線をとし、Hと
■の交点すなわら断面中心を○とする。
A, B, C, and D in the figure are one-dimensional image sensors, respectively.
In this example, a commercially available camera, specifically Chiruskiton (trade name) manufactured by Yojin Engineering ■, was used. A'~D
' is a scattered light source that constitutes a means for determining the dimensions aI of the cameras A, B, C, and D, and in this example, a high-frequency lighting fluorescent lamp is used. M is the object to be measured, which in this example is a steel material with a rectangular cross section PI P2 P3 PJ specified by vertices P1 to P4, and is transported on a pass line (not shown) consisting of a figure-7 grooved eye. has been done. Here, let the straight line connecting the vertices P1 and P4 of each diagonal be the straight line connecting the H1 vertices P2 and P3, and let the intersection of H and ■, that is, the center of the cross section, be ○.

対象物は、前記の通り生産ラインに布設されたV字形の
溝付ローラガイドで案内されるが、上下。
The object is guided by a V-shaped grooved roller guide installed on the production line as described above, but the object is guided vertically by a V-shaped grooved roller guide.

左右の変動とねじれを伴う。そこで、較正のための基準
ピースを仮設した時の状態に於いて、前述の2直線V、
Hとその交点0を定義する。
with side-to-side fluctuations and twisting. Therefore, in the state when the reference piece for calibration is temporarily installed, the two straight lines V,
Define H and its intersection 0.

頂点P+ 、P3を測定づる頂点測定装置を構成する2
つの寸法測定手段のカメラBとCは、共に頂点P+ 、
P3を両端とした射影が測定できるように直線V・に対
しほぼ線対称の位置で、その光軸が対象物の軸に垂直な
同一平面上にあり、交差角αで断面中心Oで交叉するよ
うに設置する。従って、カメラB、Cからは、それぞれ
の散乱光源B’ 、C’ による背面照明の作用で、頂
点P1とP3との対角線で遮光された陰影像が見え、頂
点P2とPJは隠れてしまい、カメラB、Cでは頂点P
+ 、P3を両端とした射影が検出される。角度αは、
対象物Mがねじれた時でも、カメラB。
2 constituting a vertex measuring device that measures vertex P+, P3
Cameras B and C of the two dimension measuring means are both at the vertex P+,
The position is approximately symmetrical to the straight line V, so that the projection with P3 as both ends can be measured, and its optical axis lies on the same plane perpendicular to the axis of the object, and intersects at the cross-sectional center O at an intersection angle α. Set it up like this. Therefore, from the cameras B and C, due to the effect of back illumination from the respective scattered light sources B' and C', a shaded image blocked by the diagonal lines of the vertices P1 and P3 can be seen, and the vertices P2 and PJ are hidden. Vertex P for cameras B and C
+, a projection with P3 at both ends is detected. The angle α is
Camera B even when object M is twisted.

Cの両方に対し、頂点P2.P4が必ず隠れ、頂点P1
とP3とを結ぶ対角線のみの陰影像が見えることが、必
要であり、実用上α=30°程度が好ましい。
For both vertices P2. P4 is always hidden, vertex P1
It is necessary that a shadow image of only the diagonal line connecting P3 and P3 can be seen, and in practical terms, it is preferable that α=30°.

残る頂点P2 、PJを測定するもう一つの頂点測定装
置のカメラAとDは直線Hに対し、前述の頂点P+ 、
P3測定用のカメラB、Cと同様に設置すれば良いが、
生産プロセスの諸制約からD′の位置と点対称のDの位
置し、その他は前述の頂点P+ 、P3の頂点測定装置
と同じように設置した。この場合、光軸の交差角は(1
80−β)となる。
Cameras A and D of another vertex measuring device that measure the remaining vertices P2 and PJ measure the aforementioned vertices P+ and PJ with respect to the straight line H.
It can be installed in the same way as cameras B and C for P3 measurement, but
Due to the constraints of the production process, the position of D was point-symmetrical to the position of D', and the other points were installed in the same manner as the apex measuring apparatus for the apexes P+ and P3 described above. In this case, the intersection angle of the optical axes is (1
80-β).

そして、カメラA、B、C,Dの出力信号を図示省略し
たマイコン等よりなるデータ処理装置で処理して頂点P
+ 、P2 、P3 、PJの座標を測定する。
Then, the output signals of the cameras A, B, C, and D are processed by a data processing device including a microcomputer (not shown), and the apex P
+, P2, P3, and PJ coordinates are measured.

以下、第2図により、光軸が交差角αで交差する頂aP
+、P2の頂点測定装置での任意の位置の頂点Pの座標
を求めるアルゴリズムを説明する。
Hereinafter, according to Fig. 2, the apex aP where the optical axes intersect at the intersection angle α
An algorithm for determining the coordinates of a vertex P at an arbitrary position using the vertex measuring device of +, P2 will be explained.

原点0.前述の直線H及び■で決定される座標系に於い
て任意の頂点Pの座標を極座標で(r。
Origin 0. In the coordinate system determined by the straight lines H and ■ mentioned above, the coordinates of any vertex P are expressed in polar coordinates (r.

θ)とする。θ).

原点Oに対し、2台のカメラB、Cの焦点を合せた時、
カメラC,8の受光レンズKm、Knの対物距離と結像
距離とをそれぞれ(am、 bm) 。
When two cameras B and C are focused on the origin O,
The objective distance and imaging distance of the light receiving lenses Km and Kn of cameras C and 8 are (am, bm), respectively.

(an、 bn)とする。(an, bn).

頂点Pの結像はカメラC,Bの1次元イメージセンサ−
1m、In上で原点0からの変位量で求めることができ
、それぞれΔpm、△pnは図より次の式で与えられる 八Pm =−bm/ [am−r cos  (1/2
α+θ)]xr sin  (1/2α十〇)・・・■
ΔPn =bn/ Can−r cos  (1/2α
−θ)]xr sin  (1/2α−θ) ・・・■
■、■の連立方程式から頂点Pの座標(r、θ)を求め
ることができる。
The image of vertex P is formed by one-dimensional image sensors of cameras C and B.
It can be determined by the displacement amount from the origin 0 on 1 m, In, and Δpm and Δpn are given by the following formula from the figure, respectively.
α+θ)]xr sin (1/2α10)...■
ΔPn = bn/ Can-r cos (1/2α
-θ)]xr sin (1/2α-θ)...■
The coordinates (r, θ) of the vertex P can be found from the simultaneous equations (1) and (2).

従って、第1図に於いて、上記のアルゴリズムを適用す
ることによりカメラB、Cから点PI。
Therefore, in FIG. 1, point PI is obtained from cameras B and C by applying the above algorithm.

P3、カメラA、Dから点P2.P4の座標が求まり、
この座標により常法により矩形断面の形状寸法を算出し
、測定する。本例では断面形状を対角線PI P3 、
P2 PJの長さで管理することとし、頂点P+ 、P
3及びP2 、P3の座標よりビタゴラスの定理に基い
て対角線PI P3 。
P3, camera A, D to point P2. The coordinates of P4 are found,
Using these coordinates, the shape and dimensions of the rectangular cross section are calculated and measured using a conventional method. In this example, the cross-sectional shape is diagonal PI P3,
P2 shall be managed by the length of PJ, and the vertices P+, P
3 and from the coordinates of P2 and P3, the diagonal line PI P3 is obtained based on Vitagoras' theorem.

P2 PJの長さを測定するようにした。これらのプロ
グラムのフローは常法通りであり説明省略する。
P2 The length of PJ was measured. The flow of these programs is the same as usual, and the explanation will be omitted.

尚、カメラB、CとカメラA、Dと、それぞれで極座標
系の関係は、原点Oが共通であるから、直線■とHとの
交差角から相互の関係を補正すれば良い。
Incidentally, since the origin O is common to the polar coordinate systems of cameras B and C and cameras A and D, the mutual relationship can be corrected based on the intersection angle of straight line 2 and H.

通常、矩形断面の長尺物の場合、前述の2本の対角線の
寸法が正確に求まれば、品質管理の目的には充分のこと
が多く、前述の2直線V、Hの交差角は90’″で近似
させている。
Normally, in the case of a long object with a rectangular cross section, it is often sufficient for quality control purposes if the dimensions of the two diagonal lines mentioned above are accurately determined, and the intersection angle of the two straight lines V and H mentioned above is 90 ''' is approximated.

なお、上述の本発明方払では2台のカメラの光軸交差角
αを正確に決める必要があるが、この較正作業は第3図
の如き較正装置を用いて容易に行える。ボールド11は
ベース台ト13に回転自在に設けられた回転円板1」4
の中心軸に位置しボール)−12は回転円板H4上に取
り付けられている。本較正装置を測定領域に基準ピース
として仮設し、ポールH1に対して光軸と焦点合せを各
カメラについて行なったのら回転円板を回転させポール
H1゜ボール+12の陰影が重なる11点の回転角を各
カメラに対して読み取ることにより、交差角αが1ノJ
定される。
In the method of the present invention described above, it is necessary to accurately determine the intersecting angle α of the optical axes of the two cameras, but this calibration work can be easily performed using a calibration apparatus as shown in FIG. Bold 11 is a rotary disk 1''4 rotatably provided on a base plate 13.
The ball )-12 is mounted on the rotating disk H4. Temporarily install this calibration device as a reference piece in the measurement area, and after focusing each camera on the optical axis with respect to pole H1, rotate the rotating disk to rotate the 11 points where the shadows of pole H1° and ball + 12 overlap. By reading the angle for each camera, the intersection angle α is 1 no J
determined.

以上説明したように本発明では、断面を特定する頂点の
座標を求めることにより断面管理に必用な寸法を測定す
るようにしている訳であるから、断面形状が台形1口形
、H形でも適用可能であり応用範囲が広く、且つ断面が
大きくても容易に適用できる。その上光学的な非接触測
定であるので高速で移送される鋼材等の生産プロ廿スで
のオンラインiTI’l定にb適用できる。このように
本発明は産業上大きな寄与をなすらのである。
As explained above, the present invention measures the dimensions necessary for cross-section management by determining the coordinates of the vertices that specify the cross-section, so it can be applied even if the cross-section is trapezoidal, single-mouth, or H-shaped. It has a wide range of applications and can be easily applied even if the cross section is large. Moreover, since it is an optical non-contact measurement, it can be applied to on-line ITI determination in production processes such as steel materials that are transferred at high speed. In this way, the present invention makes a significant contribution to industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の構成を示ず説明図、第2図はその頂点
測定方法を示す説明図、第3図は実施例の較正H置の斜
視図である。 A、B、C,D:イメージセンサカメラA’ 、B’ 
、C’ D’  :光源  M:対象珈P+ 、P2 
、P3 、P4 :頂点第1図
FIG. 1 is an explanatory diagram that does not show the configuration of the embodiment, FIG. 2 is an explanatory diagram showing a vertex measuring method thereof, and FIG. 3 is a perspective view of the calibration H position of the embodiment. A, B, C, D: Image sensor cameras A', B'
, C'D': Light source M: Target P+, P2
, P3, P4: Vertex Fig. 1

Claims (1)

【特許請求の範囲】 1、複数の頂点によつて特定される断面形状を有する対
象物の断面寸法を測定するに際し、対象物を中にしてそ
の半径方向に光源とイメージセンサーとを対向配置して
対象物断面の射影寸法を測定するようになした2組の寸
法測定手段からなり、該2組の寸法測定手段を対象物断
面の同じ頂点が射影の端点となると共にその光軸が対象
物の軸に垂直な面で2次元座標系を構成するように配置
して、該頂点の座標を測定するようになした頂点測定装
置により前記断面寸法の特定に必要な頂点の全てを測定
し、断面寸法を測定することを特徴とする断面形状の測
定方法。 2、前記断面形状が矩形であり、前記頂点測定装置はそ
の寸法測定手段を対角の頂点が同時に測定できるように
したもので、各対角に対して設けられている特許請求の
範囲第1項記載の断面形状の測定方法。 3、前記寸法測定手段の全ての光源が対象物を境にして
その一方の側にあり、その全てのイメージセンサーが他
方の側にある特許請求の範囲第1項若しくは第2項記載
の断面形状の測定方法。 4、前記頂点測定装置の全てはその二次元座標系が対象
物に垂直な同一平面上にあり、その原点が同一である特
許請求の範囲第1項〜第3項記載のいずれかの断面形状
の測定方法。 5、前記光源が散乱光源である特許請求の範囲第1項〜
第4項記載のいずれかの断面形状の測定方法。
[Claims] 1. When measuring the cross-sectional dimension of an object having a cross-sectional shape specified by a plurality of vertices, a light source and an image sensor are placed facing each other in the radial direction of the object. It consists of two sets of dimension measuring means configured to measure the projected dimensions of a cross section of an object, and the two sets of dimension measuring means are arranged such that the same apex of the cross section of the object becomes the projection end point and the optical axis of the two sets of dimension measuring means measures the projected dimension of the cross section of the object. Measure all the vertices necessary for specifying the cross-sectional dimension using a vertex measuring device arranged to form a two-dimensional coordinate system with planes perpendicular to the axis of the vertices, and measuring the coordinates of the vertices; A method for measuring cross-sectional shape, characterized by measuring cross-sectional dimensions. 2. The cross-sectional shape is rectangular, and the apex measuring device has dimension measuring means that can simultaneously measure diagonal vertices, and the first aspect of the present invention is Method for measuring cross-sectional shape as described in section. 3. The cross-sectional shape according to claim 1 or 2, wherein all the light sources of the dimension measuring means are on one side of the object, and all the image sensors are on the other side. How to measure. 4. The cross-sectional shape of any one of claims 1 to 3, wherein all of the vertex measuring devices have two-dimensional coordinate systems on the same plane perpendicular to the object and have the same origin. How to measure. 5. Claims 1 to 5, wherein the light source is a scattered light source.
The method for measuring a cross-sectional shape according to any one of item 4.
JP29763786A 1986-12-16 1986-12-16 Measuring method for sectional shape Pending JPS63150610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29763786A JPS63150610A (en) 1986-12-16 1986-12-16 Measuring method for sectional shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29763786A JPS63150610A (en) 1986-12-16 1986-12-16 Measuring method for sectional shape

Publications (1)

Publication Number Publication Date
JPS63150610A true JPS63150610A (en) 1988-06-23

Family

ID=17849155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29763786A Pending JPS63150610A (en) 1986-12-16 1986-12-16 Measuring method for sectional shape

Country Status (1)

Country Link
JP (1) JPS63150610A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5072121A (en) * 1990-11-15 1991-12-10 Siemens Gammasonics Inc. Body contour determining apparatus for a rotating gamma camera
US5376796A (en) * 1992-11-25 1994-12-27 Adac Laboratories, Inc. Proximity detector for body contouring system of a medical camera

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5072121A (en) * 1990-11-15 1991-12-10 Siemens Gammasonics Inc. Body contour determining apparatus for a rotating gamma camera
US5376796A (en) * 1992-11-25 1994-12-27 Adac Laboratories, Inc. Proximity detector for body contouring system of a medical camera

Similar Documents

Publication Publication Date Title
JPH1096611A (en) Shape measuring device
US6912055B2 (en) Spherical form measuring and analyzing method
JPS63150610A (en) Measuring method for sectional shape
JPH05164519A (en) Measuring instrument for three-dimensional shape of structure surrounding railroad track
JPH1089957A (en) Three-dimensional measuring method for structure member
JPH08145636A (en) Shape measurement method using outer diameter measuring machine
Chursin et al. Enlargement of measuring zone in laser gauges without sacrificing measurement accuracy
JPS60142204A (en) Dimension measuring method of object
JPH0565020B2 (en)
JPS63191010A (en) Method of measuring surface roughness
JP2570813B2 (en) Arc surface deformation inspection method
JPH0271107A (en) Apparatus for measuring profile and wall thickness of end part of steel pipe
JP3239682B2 (en) Segment position measurement method
JP2528383Y2 (en) Mobile robot position identification device
JP2948773B2 (en) Ring beam divergence angle continuously variable device
JP2005195399A (en) Polarization-plane optical main axis determination method of polarization-plane-holding optical fiber and optical fiber fusion connection device
JPS63122907A (en) Outer diameter measuring device
JPS61151407A (en) Non-contacting diameter gauge
Carvalho et al. Optical measurement of tube bending
JPH04278410A (en) Measuring apparatus of bent amount of material with circular cross section
JPH03251708A (en) Shape measuring apparatus for parabolic antenna surface
JPS6276407A (en) Attitude detecting device for excavator
JPH041509A (en) Noncontact three-dimensional coordinate measuring method
JPS62235519A (en) Highly accurate measurement of distance
Shoji et al. 3D profile measurement using a cylindrical lens and a CCD