JPS63150474A - High productivity sea region construction system - Google Patents
High productivity sea region construction systemInfo
- Publication number
- JPS63150474A JPS63150474A JP61294981A JP29498186A JPS63150474A JP S63150474 A JPS63150474 A JP S63150474A JP 61294981 A JP61294981 A JP 61294981A JP 29498186 A JP29498186 A JP 29498186A JP S63150474 A JPS63150474 A JP S63150474A
- Authority
- JP
- Japan
- Prior art keywords
- water
- uranium
- power generation
- temperature
- discharged
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010276 construction Methods 0.000 title 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 49
- 229910052770 Uranium Inorganic materials 0.000 claims abstract description 26
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 claims abstract description 25
- 238000010248 power generation Methods 0.000 claims abstract description 19
- 238000011084 recovery Methods 0.000 claims abstract description 16
- 239000012530 fluid Substances 0.000 claims abstract description 14
- 239000013535 sea water Substances 0.000 claims description 13
- 239000002352 surface water Substances 0.000 claims description 11
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 8
- 229910052744 lithium Inorganic materials 0.000 claims description 8
- 241000251468 Actinopterygii Species 0.000 abstract description 3
- 238000005086 pumping Methods 0.000 abstract description 3
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 235000015097 nutrients Nutrition 0.000 abstract description 2
- 239000010410 layer Substances 0.000 abstract 2
- 239000002344 surface layer Substances 0.000 abstract 2
- 239000000498 cooling water Substances 0.000 abstract 1
- 238000001179 sorption measurement Methods 0.000 description 7
- 230000005611 electricity Effects 0.000 description 6
- 239000003463 adsorbent Substances 0.000 description 4
- 238000009360 aquaculture Methods 0.000 description 4
- 244000144974 aquaculture Species 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 235000008935 nutritious Nutrition 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/80—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
- Y02A40/81—Aquaculture, e.g. of fish
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/30—Energy from the sea, e.g. using wave energy or salinity gradient
Landscapes
- Farming Of Fish And Shellfish (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、魚群が低温深層水の高栄養源及び若干温度の
異った海域に集合することを利用して。[Detailed Description of the Invention] [Industrial Application Field] The present invention takes advantage of the fact that schools of fish gather in high-nutrient sources of low-temperature deep water and sea areas with slightly different temperatures.
低温深層水をボンピングすることにより海面近(に高生
産海域を造成せしめ、高水温表層水との温度差によって
発電を行い、高・低温水流?利用して、ウラン又はリテ
ユーム等の回収を行うトータル・システムに関する。A total system that creates a high-productivity area near the sea surface by pumping low-temperature deep water, generates electricity by the temperature difference with high-temperature surface water, and recovers uranium, lithium, etc. using high-temperature water flow.・Regarding the system.
前述のようなトータルシステムに関する従来技術は存在
しないので、トータルシステムを構成する個々の技術に
ついて概略説明する。Since there is no prior art related to the above-mentioned total system, individual technologies constituting the total system will be briefly explained.
(1)揚水発電システム
第2図は、電動ポンプ1と揚水池3及び水車発電機4t
−水導管2,5で連結し、電力使用の少い時期に、電動
ポンプ1を作動させて水を揚水池3にくみ上げておき、
電力の2−り需要時期に水を水車発電機4に導いて発電
を行う方式を示す。これは電気エネルギーを位置エネル
ギーとして質のよいエネルギーに貯えておき、必要な時
に取出す方式であるが、揚水するために水車発電機4で
発電したエネルギーと同等それ以上のエネルギを要し、
エネルギー利得にはなり得ない。(1) Pumped storage power generation system Figure 2 shows an electric pump 1, a pumped storage pond 3, and a 4t water turbine generator.
- Connected by water conduits 2 and 5, operate the electric pump 1 to pump water to the pumping pond 3 during periods when electricity usage is low;
A method is shown in which water is guided to the water turbine generator 4 to generate electricity during the period when electricity is in high demand. This is a method of storing electric energy as potential energy and extracting it when needed, but it requires energy equal to or greater than the energy generated by the water turbine generator 4 to pump water.
It cannot be an energy gain.
(2)温度差発電システム
!3図に示すように、低沸点作動流体閉サイクル回路0
1にタービン発電機02.蒸発器03%循環ポ/プ04
及びコンデンサ05を設け、低温深層水管06をコンデ
ンサ05に導いてタービン後の作動流体を冷却する。(2) Temperature difference power generation system! As shown in Figure 3, the low boiling point working fluid closed cycle circuit 0
1 to turbine generator 02. Evaporator 03% circulation pop/pu 04
A low-temperature deep water pipe 06 is guided to the condenser 05 to cool the working fluid after the turbine.
また高水温の表層水を導管07により蒸発器に連結し、
これを加熱し蒸発させる。蒸発した高温の作動流体はタ
ービン発電機02を回転して出力を得る。In addition, high temperature surface water is connected to the evaporator through conduit 07,
Heat this and evaporate it. The evaporated high-temperature working fluid rotates the turbine generator 02 to obtain output.
このような温度差1発電方式では、ボ/プ類の所内効力
が大きく1発電単価も低出力のものでは150円/KW
五となる。In such a power generation system with one temperature difference, the power generation efficiency is large and the unit cost per power generation is 150 yen/KW for a low output type.
It becomes five.
(3)ウラン・リチューム回収装置
海水よりウラン等を回収するためにウラ/・リチューム
回収筒を使用する。(3) Uranium/lithium recovery device A uranium/lithium recovery cylinder is used to recover uranium, etc. from seawater.
海水中のウラ/含有量は53ppb(3μj、i/l)
であり、100%回収を行ったとしても、 IKfの
ウランをうるには30万トンの海水を回流させる必要が
ある。設備費や回流ボ/プの動力費を考慮して経済性を
評価すると、現状ウランの価格が極めて安いことから市
場ベースに乗らない。The content in seawater is 53 ppb (3 μj, i/l)
Even if 100% recovery were performed, it would be necessary to circulate 300,000 tons of seawater to obtain IKf's uranium. If we evaluate the economic efficiency by taking into account the cost of equipment and the power cost of the recirculation tube, we will not be able to use it on a market basis because the price of uranium is currently extremely low.
(4)海流上昇装置
海底にコンクリート製のブロックや浮き付きの布製上昇
流装置を敷設することがあるが、いずれも自然海流を利
用するものであり、大量の外向流を5ることは出来ない
。(4) Ocean current lift devices Concrete blocks or cloth updraft devices with floats are sometimes laid on the seabed, but these use natural ocean currents and cannot generate large amounts of outward current. .
前述のような従来システムは、波動ポンプ、タービン発
電、海洋養殖などそれぞれ単一の目的のために車体の機
器が設置されている場合が多く。Conventional systems such as those mentioned above often have equipment installed on the vehicle for a single purpose, such as wave pumps, turbine power generation, and marine aquaculture.
轟然のことながら自然エネルギーを単一の形式で利用す
ることは、経済的に不利となり、海洋牧場、揚水発電を
除いて、殆んど実用されていない。Although it may be surprising, using natural energy in a single form is economically disadvantageous and is hardly ever put into practical use, with the exception of ocean farms and pumped storage power generation.
またウラン回収システムにおいては、ウランを回収する
吸着剤に如何に良品が開発されても、ウランIKf当り
30万トン以上の大量の海水を回流させることには変り
はないので、トータル・システム的な考え方でコストを
下げる必要がある。In addition, in the uranium recovery system, no matter how good the adsorbent that recovers uranium is developed, a large amount of seawater of more than 300,000 tons per uranium IKf will still be circulated, so the total system We need to think about reducing costs.
温度差発電及び海水中のウラン・リチューム回収システ
ムは単独では経済性が悪く採算が取れない。温度差発電
、ウラン回収、回流養殖システムなどすべて大流量の海
水を回流させる必要があるシステムを統合し、海水を回
流させるための動力を共通にした多目的のトータル・シ
ステムを採用する。Temperature difference power generation and seawater uranium/lithium recovery systems are uneconomical and unprofitable on their own. A multi-purpose total system will be adopted that integrates systems that require circulating large amounts of seawater, such as temperature difference power generation, uranium recovery, and circulating aquaculture systems, and shares the same power for circulating seawater.
低水温深層水を吸上げて温度差発電を行ない、温度差発
電の排水でウラン、リチューム回収を行ない、更にウラ
ン、リチューム回収後の排水を人工養殖に利用する。こ
のようなトータル・システムにより経済性が向上する。Low-temperature deep water is sucked up to generate temperature difference power generation, uranium and lithium are recovered from the wastewater generated by the temperature difference power generation, and the wastewater after uranium and lithium recovery is used for artificial aquaculture. Such a total system improves economic efficiency.
〔実施例]
第1図において、11は水深300〜500mで高栄養
素に豊んだ低水温深層水、12は低水温深層11の上方
の高水温表層水、13は低水温深層水11を吸上げる冷
水ポンプ、14は冷水ポンプ13の出口に設けられたコ
ンデンサー、15はコンデンサー14の出口に設けられ
たウラン回収吸着筒、16はウラン回収吸着筒の出口に
設けられた海洋牧場、17は高水温表層水を吸込む温水
ポンプ、18は流体循環路19、発電機20.循環ポン
プ21、蒸発器22を有する高臨度差発電システムであ
る。[Example] In FIG. 1, 11 is low-temperature deep water rich in nutrients at a depth of 300 to 500 m, 12 is high-temperature surface water above the low-temperature deep layer 11, and 13 is low-temperature deep water that absorbs the low-temperature deep water 11. 14 is a condenser installed at the outlet of the cold water pump 13, 15 is a uranium recovery adsorption cylinder installed at the outlet of the condenser 14, 16 is a marine farm installed at the outlet of the uranium recovery adsorption cylinder, and 17 is a high temperature A hot water pump 18 sucks surface water, a fluid circulation path 19, a generator 20. This is a high criticality differential power generation system having a circulation pump 21 and an evaporator 22.
このような装置において、冷水ポンプ13により吸上げ
られた低水温深層水11はコ/デ/サ−14で流体循環
M19の内部循環流体を冷却する。In such a device, the low temperature deep water 11 sucked up by the cold water pump 13 cools the internal circulating fluid of the fluid circulation M19 in the co/de/server 14.
同様に高水温表層水12を温水ボ/プ17により、くみ
上げ蒸発器22に於て、内部循環流体を蒸発させる。こ
の高エネルギの作動流体はタービン発を機20を通過す
る際にエネルギ変換を行い電気エネルギを発生させる。Similarly, the high temperature surface water 12 is pumped up by the hot water pump 17, and the internally circulating fluid is evaporated in the evaporator 22. When this high-energy working fluid leaves the turbine and passes through the machine 20, it undergoes energy conversion and generates electrical energy.
高水温表層水12は。The high temperature surface water 12 is.
蒸発器22で内部循環流体を加熱したあと、コンデンサ
ー14を冷却した水と一緒になって、ウラン回収吸着筒
15に導ひかれる。After the internally circulating fluid is heated in the evaporator 22, it is led to the uranium recovery adsorption column 15 together with the water that has cooled the condenser 14.
このウラン回収吸着筒15の設置場所は、水量の点から
は冷水、1水の合流管に設置することが好ましいが、温
水管には、微生物の附着、腐食が比較的多いので、維持
・管理の点では、冷水管中に設置した方がよく、温水管
に付設することは好ましくない。From the viewpoint of water volume, it is preferable to install the uranium recovery adsorption cylinder 15 in a confluence pipe of cold water and 1 water.However, as hot water pipes are relatively prone to microbial adhesion and corrosion, maintenance and management should be avoided. In this respect, it is better to install it in the cold water pipe, and it is not preferable to install it in the hot water pipe.
温水管や蒸発器等O附着物や腐食の加速を防止するには
、定期的に冷水を蒸発器や温水管に循環させることが好
ましい。In order to prevent O accretion and acceleration of corrosion of hot water pipes and evaporators, it is preferable to periodically circulate cold water through the evaporators and hot water pipes.
ウラン回収吸着筒15として、無機又は有機の特殊な吸
着剤を使用した多相の吸着剤を内装したセルの中に海水
を導入するす=ア方式のものや、循環するループ形式の
ものがあるが、選択性、吸脱性の良いもの、吸収量の大
きい吸着剤が望ましX41゜
この他活性炭や膜法による分離吸着も考えられる。ウラ
ン回収吸着筒15の排水管中に自動供餌装置(図示せず
)を設け、自動供餌装置には海面水中に開口する吐出管
を設置する。このようにすると、飼料を含む低温水海洋
牧場16に吐出され。As the uranium recovery adsorption cylinder 15, there are two types: a type that introduces seawater into a cell equipped with a multi-phase adsorbent using a special inorganic or organic adsorbent, and a type that uses a circulating loop type. However, it is desirable to use an adsorbent with good selectivity, adsorption/desorption properties, and large absorption capacity. An automatic feeding device (not shown) is provided in the drain pipe of the uranium recovery adsorption cylinder 15, and a discharge pipe that opens into sea surface water is installed in the automatic feeding device. In this way, the low temperature water containing feed is discharged into the marine pasture 16.
海洋牧場16に人工海流が惹起される。この人口海流は
プランクトンの発生と魚類の生育を促進する。An artificial ocean current is induced in Ocean Farm 16. This artificial ocean current promotes the generation of plankton and the growth of fish.
(1)高栄養素である低水温深層水を、海面の高水温表
層水と混合させ、且つ流動拡散することが出来るので、
海洋生物の活性化、増殖に適した高生産海域を造成する
ことができる。(1) It is possible to mix low-temperature deep water, which is highly nutritious, with high-temperature surface water at the sea surface and to flow and diffuse it.
It is possible to create highly productive sea areas suitable for the activation and proliferation of marine life.
(2)同時に低水温深層水と高水温表層水の温度差を利
用してエネルギ変換を行い1発電を行うことができる。(2) At the same time, energy can be converted by utilizing the temperature difference between low-temperature deep water and high-temperature surface water to generate one power generation.
(3)温度差発電の海水回流ポンプを利用して、海水中
のウラン、リチュームの回収を行うことが出来る。(3) It is possible to recover uranium and lithium from seawater by using a seawater circulation pump that generates temperature difference electricity.
(4) このように全体システム的に効率的な養殖。(4) In this way, aquaculture is efficient in terms of the overall system.
発電、海水中の有用物質の回収ができるので。It can generate electricity and recover useful substances from seawater.
それぞれ単体の製産コストに比較して人工維持費、製産
費が節約され極めて経済的である。It is extremely economical as it saves maintenance costs and production costs compared to the production cost of each unit alone.
第1図は本発明高生産海域造成システムの実施例におけ
る概略配置図、第2図は従来の揚水発電システムの説明
図、第3図は従来の温度差発電システムの概略配置図で
ある。
11−一低水温深層水 12−高水温表層水13−冷
水ポンプ 14−コンデンサー15−ウラン回収吸
着筒
16−海洋牧場 17−温水ポンプ18−高温度
差発電システムFIG. 1 is a schematic layout diagram of an embodiment of the high-productivity sea area creation system of the present invention, FIG. 2 is an explanatory diagram of a conventional pumped storage power generation system, and FIG. 3 is a schematic layout diagram of a conventional temperature difference power generation system. 11--Low temperature deep water 12-High temperature surface water 13-Cold water pump 14-Condenser 15-Uranium recovery adsorption cylinder 16-Marine farm 17-Hot water pump 18-High temperature difference power generation system
Claims (1)
及び前記各部材を連通する循環流体路、前記コンデンサ
ーに低水温深層水を供給する冷水ポンプ、及び前記蒸発
器に高水温表層水を供給する温水ポンプを有する温度差
発電装置において、前記コンデンサーからの海水排出路
にウラン・リチューム回収装置を設けると共に、前記海
水の流出部に海洋牧場を造成するようにしたことを特徴
とする高生産海域造成システム。Circulation pumps, evaporators, turbine generators, condensers,
and a temperature difference power generation device having a circulating fluid path that communicates each of the members, a cold water pump that supplies low-temperature deep water to the condenser, and a hot water pump that supplies high-temperature surface water to the evaporator. A system for creating a high-productivity sea area, characterized in that a uranium/lithium recovery device is installed in a seawater discharge channel, and a marine pasture is created in the seawater outlet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61294981A JPS63150474A (en) | 1986-12-12 | 1986-12-12 | High productivity sea region construction system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61294981A JPS63150474A (en) | 1986-12-12 | 1986-12-12 | High productivity sea region construction system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63150474A true JPS63150474A (en) | 1988-06-23 |
Family
ID=17814806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61294981A Pending JPS63150474A (en) | 1986-12-12 | 1986-12-12 | High productivity sea region construction system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63150474A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7201613B2 (en) | 2003-03-18 | 2007-04-10 | Shin-Etsu Polymer Co., Ltd. | Pressure contact holding-type connector |
WO2021168482A1 (en) * | 2020-02-19 | 2021-08-26 | Saudi Arabian Oil Company | Onshore equipped ocean thermal and hydraulic energy conversion system and method |
-
1986
- 1986-12-12 JP JP61294981A patent/JPS63150474A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7201613B2 (en) | 2003-03-18 | 2007-04-10 | Shin-Etsu Polymer Co., Ltd. | Pressure contact holding-type connector |
WO2021168482A1 (en) * | 2020-02-19 | 2021-08-26 | Saudi Arabian Oil Company | Onshore equipped ocean thermal and hydraulic energy conversion system and method |
US11111906B1 (en) | 2020-02-19 | 2021-09-07 | Saudi Arabian Oil Company | Onshore equipped ocean thermal and hydraulic energy conversion system and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4311012A (en) | Method and apparatus for transferring cold seawater upward from the lower depths of the ocean to improve the efficiency of ocean thermal energy conversion systems | |
CN101544411B (en) | Solar-energy sea water desalination and salt production device | |
CN105152252A (en) | Zero-consumption seawater desalination facility based on comprehensive utilization of solar energy | |
CN106630359A (en) | Clean energy seawater desalination and salt making system | |
CN113321257A (en) | Sea water desalination method based on wave energy power generation and solar heat collection | |
CN109867313A (en) | A kind of steam-electric power seawater desalination system | |
CN103011473B (en) | Device and method for solar seawater desalination and concentrated seawater resource extraction | |
CN106917728A (en) | Using geothermal energy and the clean electric power generation change system and method for solar energy | |
Elazab et al. | A review of hybrid humidification and dehumidification desalination systems | |
JP2010041979A (en) | Heat retention system of aquaculture pond for eel | |
CN204356100U (en) | Solar energy sea water desalination apparatus | |
CN203360202U (en) | Tower type concentrating solar photo-thermal energy storage and power generation system for sea water desalination, salt manufacturing and mudflat aquaculture | |
Mehrabian-Nejad et al. | Application of PV and solar energy in water desalination system | |
CN203959869U (en) | A kind of island water-electricity cogeneration system | |
CN103896350B (en) | An island seawater desalination system and method | |
WO2015070714A1 (en) | Floating-platform focusing solar energy comprehensive utilization system and method | |
JPS63150474A (en) | High productivity sea region construction system | |
CN203187426U (en) | Small-sized seawater desalting device utilizing industrial waste heat | |
JPS63252586A (en) | High productivity sea area creating system | |
CN104591447B (en) | A kind of solar light-heat power-generation processes sewage device and its method | |
JPS63160534A (en) | High productivity sea area creation system | |
CN211367035U (en) | Solar energy desalination water system based on carbon composite hollow fiber membrane | |
CN115010227A (en) | Electrodialysis system with photovoltaic waste heat coupled with magnetocaloric enhancement | |
Shahid et al. | A Review of Membrane-Based Desalination Systems Powered by Renewable Energy Sources. Water 2023, 15, 534 | |
CN203529968U (en) | Solar wind-power combination seawater desalination device |