[go: up one dir, main page]

JPS63149339A - Device for refining crude copper - Google Patents

Device for refining crude copper

Info

Publication number
JPS63149339A
JPS63149339A JP29495786A JP29495786A JPS63149339A JP S63149339 A JPS63149339 A JP S63149339A JP 29495786 A JP29495786 A JP 29495786A JP 29495786 A JP29495786 A JP 29495786A JP S63149339 A JPS63149339 A JP S63149339A
Authority
JP
Japan
Prior art keywords
copper
zone
contg
temperature oxidation
concentrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29495786A
Other languages
Japanese (ja)
Inventor
Kanji Numa
沼 莞爾
Nobuyuki Mori
信行 森
Shizuo Tatewana
立和名 静夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP29495786A priority Critical patent/JPS63149339A/en
Publication of JPS63149339A publication Critical patent/JPS63149339A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To easily produce crude copper without forming a matte by refining a copper sulfide concentrate contg. Fe in a refining device having a high-temp. oxidizing zone and a reducing zone both of which are adjacent to each other or connected by a closed runner. CONSTITUTION:The copper sulfide concentrate of CuFeS2 such as chalcopyrite is refined in the device wherein the high-temp. oxidizing zone 3 and the reducing zone 5 are separated by a partition wall 9 or connected by the closed runner. The copper sulfide concentrate is firstly burned at 1,500-1,800 deg.C in the high- temp. oxidizing zone 3 by an oxidizing gas contg. 50-70% O2 to oxidize the S in the concentrate to SO2 which is then removed. The molten Cu contg. Fe formed at this time is transferred to the reducing zone 5 through the passage under the partition wall 9 or the closed runner, and weakly reduced therein to reduce the copper oxide in the slag to Cu which is then recovered. An O2- contg. gas is then blown into the copper to oxidize the contained Fe to Fe3O4 which is separated into the slag, then the O2 in the molten copper is reduced by CO, etc., and removed, and the crude copper for the anode of electrolytic copper is refined without forming a matte from the pyrite.

Description

【発明の詳細な説明】 先ず最初に、本発明の基礎となる直接銅製錬方法におい
て説明する。第一図はその基本的原理を示すブOセス工
程図である。このプロセスを構成する主要な化学反応は
、 (II  Cu F1332 (DNA’/M完全脱硫
酸化(2溶融銅フェライト−溶銅共存相の弱還元(3)
  溶融CLI−Fe合金中1”eの酸化反応(勾 溶
融CLIの脱酸 の4つである。(1)及び(2)について分脱する:(
1)  Cu Fe 32の高温完全脱硫酸化Cu F
e S2が完全酸化脱硫されて生成する相の特徴は、溶
鋼とCuを溶解した液体酸化鉄との2相平衡がほぼ全域
を占めていることである。
DETAILED DESCRIPTION OF THE INVENTION First, a direct copper smelting method, which is the basis of the present invention, will be explained. Figure 1 is a process diagram showing the basic principle. The main chemical reactions that constitute this process are
Oxidation reaction of 1"e in molten CLI-Fe alloy (gradient) There are four deoxidation reactions of molten CLI. (1) and (2) are separated: (
1) High temperature complete desulfation of CuFe32CuF
e The characteristic of the phase generated by complete oxidative desulfurization of S2 is that a two-phase equilibrium of molten steel and liquid iron oxide containing dissolved Cu occupies almost the entire area.

酸化の反応進行度の終了点は、目標とする脱硫水準に依
存する。現在粗銅中の許容硫黄レベルとみなされている
0、05%という数値が一応の目標値として採用しつる
。本プロセスでは、この後の引続く反応ではSは除去さ
れないので、この目標値までの脱硫はこの酸化の段階で
達成しておかねばならない。
The end point of the oxidation rate depends on the target level of desulfurization. The value of 0.05%, which is currently considered the permissible sulfur level in blister copper, will be adopted as a tentative target value. In this process, since S is not removed in subsequent reactions, desulfurization to this target value must be achieved at this oxidation stage.

脱硫の結果として非常に高い濃度のSO2ガスが発生す
る。この802排ガスは、S02処理工程に送られる。
Very high concentrations of SO2 gas are generated as a result of desulfurization. This 802 exhaust gas is sent to the S02 treatment process.

(2)  溶融銅フェライト−溶鋼共存相の弱還元第一
段階で過剰に酸化された液体酸化鉄−溶鋼共存融体が形
成されるので弱還元を行い、Cuが許容濃度以下のスラ
グと溶鋼との2相に分離する。
(2) Weak reduction of the molten copper ferrite-molten steel coexistence phase In the first stage, an excessively oxidized liquid iron oxide-molten steel coexistence melt is formed, so weak reduction is performed to combine the slag and molten steel in which the Cu concentration is below the allowable concentration. It separates into two phases.

第二及び三図は、本発明に従う粗銅製造装置の具体例を
示す。
Figures 2 and 3 show a specific example of the blister copper manufacturing apparatus according to the present invention.

第二図は、高温酸化ゾーンと還元ゾーンとを単一装置内
に組込んだ具体例を示す。粗銅製造装置1は、高温酸化
ゾーン3と還元ゾーン5とを具備する。高温酸化ゾーン
3は、シャフト状区画4から構成され、その頂端には銅
精鉱及び酸化ガス供給用のランスが装備される。銅精鉱
と酸化ガスとの反応により、1500〜1800℃、通
常1600℃前後の燃焼炎が生じ、銅精鉱は落下中完全
脱IiA酸化されて、溶融銅フェライト−溶銅共存相と
して下部に堆積する。このような高温酸化ゾーンを形成
するために、酸素ガスは、一般に30%以上、好ましく
は50〜70%の高酸素濃度と一般に200〜60ON
m 3 /精鉱トンの流向を持つ高い酸化ポテンシャル
のものとして供給される。副生する高濃度802を排出
する為の排出管7が設けられている。高濃度802ガス
は、S○2処理設備に送られる。
FIG. 2 shows an embodiment that incorporates a high temperature oxidation zone and a reduction zone into a single device. The blister copper manufacturing apparatus 1 includes a high temperature oxidation zone 3 and a reduction zone 5. The high temperature oxidation zone 3 consists of a shaft-like section 4, the top of which is equipped with a lance for supplying copper concentrate and oxidizing gas. The reaction between the copper concentrate and the oxidizing gas generates a combustion flame at a temperature of 1500 to 1800°C, usually around 1600°C, and the copper concentrate is completely deoxidized by IiA while falling, leaving the bottom as a molten copper ferrite-molten copper coexisting phase. accumulate. To form such a high temperature oxidation zone, the oxygen gas has a high oxygen concentration of generally 30% or more, preferably 50-70% and generally 200-60ON.
It is supplied as a high oxidation potential with a flow direction of m 3 /t of concentrate. A discharge pipe 7 is provided for discharging high concentration 802 as a by-product. The highly concentrated 802 gas is sent to the S○2 processing facility.

底部に生成する過剰酸化された酸化鉄−銅共存融体は還
元ゾーン5に移動する。
The overoxidized iron oxide-copper coexisting melt generated at the bottom moves to the reduction zone 5.

高温ゾーン3と還元ゾーン5とを分隔する為に隔壁9が
還元ゾーンの天井から融体中に突入している。
In order to separate the high temperature zone 3 and the reduction zone 5, a partition wall 9 projects into the melt from the ceiling of the reduction zone.

還元ゾーン5は、水平区画6から構成され、その適宜の
位置に、還元剤投入管12を具備している。
The reducing zone 5 is composed of a horizontal section 6, and is provided with a reducing agent inlet pipe 12 at an appropriate position.

融体は弱還元され、粗銅とスラグとに分離し、それぞれ
の注出口を通して回収される。
The melt is weakly reduced and separated into blister copper and slag, which are recovered through their respective spouts.

水平区画の下流端には還元による生成ガス、CO2、C
Oを排出するためのアップテーク13が設けられる。
At the downstream end of the horizontal section, gas produced by reduction, CO2, C
An uptake 13 is provided for discharging O.

設備の少くとも高温に曝される壁面、好ましくは全周壁
面に水冷用の冷却ジャケットが巻装される。従来炉に較
べて高温が発生する為、通常の耐火壁では損傷が激しい
ので、銅水冷構造の採用が必要である。銅水冷構造は、
その内面に融体の凝結層を形成することによりセルフコ
ートを行う。
A cooling jacket for water cooling is wrapped around at least the wall surface of the equipment that is exposed to high temperatures, preferably the entire peripheral wall surface. Since higher temperatures are generated than in conventional furnaces, ordinary fireproof walls will be severely damaged, so a copper water-cooled structure must be adopted. Copper water cooling structure
Self-coating is performed by forming a condensed layer of molten material on its inner surface.

第三図は、粗銅製造装置の別の具体例を示す。FIG. 3 shows another specific example of the blister copper manufacturing apparatus.

ここでは、第一具体例の高温ゾーンと還元ゾーンとが別
々の高温酸化炉14及び還元炉16として構成され、両
者は、密閉樋18によって連繋される。
Here, the high temperature zone and the reduction zone of the first embodiment are configured as separate high temperature oxidation furnace 14 and reduction furnace 16, and both are connected by a closed gutter 18.

高温酸化炉14の底部には、高温脱硫酸化された溶融銅
フェライト−溶銅共存融液が堆積する。
At the bottom of the high-temperature oxidation furnace 14, a high-temperature desulfated molten copper ferrite-molten copper coexistence melt is deposited.

高温酸化炉の底部に貯った上記融液はeiM18へと溢
流する。
The melt stored at the bottom of the high temperature oxidation furnace overflows into the eiM18.

その後、該融液は還元炉16に導入され、その入口で還
元剤その他の添加剤を投入され、その後スラグと溶鋼と
に分相する。
Thereafter, the melt is introduced into a reducing furnace 16, and a reducing agent and other additives are added at the entrance thereof, and then the melt is separated into slag and molten steel.

その他の点は、第一具体例と同様であるので説明を省略
する。
The other points are the same as the first specific example, so the explanation will be omitted.

発明の効果 本発明を使用しての直接銅製錬方法により次の効果が得
られる: (1)  マットは関与しない。硫黄を精鉱の酸化の段
階でほぼ完全に除去してしまうので、このあと硫黄の挙
動を考慮する必要がなくなる。P、S、転炉が不要とな
り、メタリック銅が直接連続的に1qられる。
Effects of the Invention The direct copper smelting method using the present invention provides the following effects: (1) No matte is involved. Since sulfur is almost completely removed during the oxidation of the concentrate, there is no need to consider the behavior of sulfur after this point. P, S, converter is no longer required, and 1q of metallic copper can be produced directly and continuously.

(2+802ガスの補集が集約化される。(Collection of 2+802 gases is consolidated.

(3)  プロセスの簡易化により労力が削減しうる。(3) Labor can be reduced by simplifying the process.

(4)  現状の溶錬温度をはるかに超えた高い温度で
あるため、反応速度は飛躍的に増大する。これは、設備
の縮小、生産性の向上に大いに寄与する。
(4) Since the temperature is much higher than the current smelting temperature, the reaction rate increases dramatically. This greatly contributes to downsizing equipment and improving productivity.

(5)砒素、アンチモン、ビスマス等不純物の揮発除去
が精鉱の超高温酸化時に効果的にもたらされる。
(5) Impurities such as arsenic, antimony, and bismuth can be effectively removed by volatilization during ultra-high temperature oxidation of concentrate.

(6)金、銀等貴金属は鋼中に含まれ、電解工程で回収
しうる。
(6) Precious metals such as gold and silver are contained in steel and can be recovered in the electrolytic process.

本発明は、上記方法を効率的に実施たらしめる点で意義
あるものである。
The present invention is significant in that it allows the above method to be carried out efficiently.

実施例 第二図の装置を模擬した簡略小型プラントにおいて直接
銅製錬方法を模擬試験した。
EXAMPLE A direct copper smelting method was tested in a simple small plant simulating the apparatus shown in Figure 2.

Cu:28%、Fe:25%、S:28%、SiO2:
8%を含む銅精鉱に対して400℃の温度にある60%
酸素濃度の酸素富化空気を37Nm3/分の割合で接触
して1700℃に至る高温燃焼生成物を生ぜしめた。副
生じた排ガスは47%S○2濃度のものであった。生成
物に適量の炭素粉を加えることにより、約98%銅分の
粗銅とFe40%そして810235%を含むスラグと
の分相体がえられた。
Cu: 28%, Fe: 25%, S: 28%, SiO2:
60% at a temperature of 400℃ for copper concentrate containing 8%
Oxygen-enriched air was contacted at a rate of 37 Nm3/min to produce high temperature combustion products up to 1700°C. The by-product exhaust gas had a concentration of 47% S○2. By adding an appropriate amount of carbon powder to the product, a phase separated product of blister copper with a copper content of about 98% and slag containing 40% Fe and 810235% was obtained.

回収した粗銅に酸素を吹込んで、Fe分を除去づること
が出来た。その後炭素粉を添加することにより脱酸精製
銅が得られた。
By blowing oxygen into the recovered blister copper, we were able to remove the Fe content. Thereafter, deoxidized purified copper was obtained by adding carbon powder.

【図面の簡単な説明】[Brief explanation of the drawing]

第一図は本発明と係る直接t!4製錬のフローシートで
あり、第二及び三図は粗m製1装置の具体例を示す。 1:粗銅製錬装置 3:高温酸化ゾーン 4:シャフト状区画 5:還元ゾーン 6:水平区画 7:排出管 9:隔壁 12:還元剤投入管 13ニアツブテーク 14:高温酸化炉 16:還元炉 18:樋 第−図 第二図
Figure 1 shows the direct t! Fig. 4 is a flow sheet for smelting, and Figures 2 and 3 show specific examples of crude smelting equipment. 1: Blister smelting equipment 3: High temperature oxidation zone 4: Shaft-shaped section 5: Reduction zone 6: Horizontal section 7: Discharge pipe 9: Partition wall 12: Reducing agent input pipe 13 Near tube take 14: High temperature oxidation furnace 16: Reduction furnace 18: Gutter - Figure 2

Claims (1)

【特許請求の範囲】 1)銅精鉱と酸素とを充分に接触させて1500〜18
00℃の高温で酸化反応せしめる高温酸化ゾーンと、生
成する融体を還元してスラグと粗銅とを生成する還元ゾ
ーンとを具備し、少くとも高温域に水冷銅壁を備える粗
銅の製錬装置。 2)高温酸化ゾーンと還元ゾーンとが単一装置のシャフ
ト状区画と水平区画として間に隔壁を介在して併設され
る特許請求の範囲第1項記載の装置。 3)高温酸化ゾーンと還元ゾーンとが高温酸化炉及び還
元炉として別々に設置され、両者が気密樋を介在して連
繋される特許請求の範囲第1項記載の装置。 4)高温酸化ゾーンの底部に樋と通じる水冷銅製受皿が
配置される特許請求の範囲第3項記載の装置。
[Claims] 1) Copper concentrate and oxygen are brought into sufficient contact to produce a
A blister copper smelting device comprising a high-temperature oxidation zone that causes an oxidation reaction at a high temperature of 00°C, and a reduction zone that reduces the generated melt to produce slag and blister copper, and is equipped with a water-cooled copper wall at least in the high-temperature region. . 2) The apparatus according to claim 1, wherein the high-temperature oxidation zone and the reduction zone are co-located as a shaft-like section and a horizontal section of a single apparatus with a partition between them. 3) The apparatus according to claim 1, wherein the high-temperature oxidation zone and the reduction zone are installed separately as a high-temperature oxidation furnace and a reduction furnace, and are connected to each other via an airtight gutter. 4) The apparatus of claim 3, wherein a water-cooled copper saucer is placed at the bottom of the high temperature oxidation zone in communication with the gutter.
JP29495786A 1986-12-12 1986-12-12 Device for refining crude copper Pending JPS63149339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29495786A JPS63149339A (en) 1986-12-12 1986-12-12 Device for refining crude copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29495786A JPS63149339A (en) 1986-12-12 1986-12-12 Device for refining crude copper

Publications (1)

Publication Number Publication Date
JPS63149339A true JPS63149339A (en) 1988-06-22

Family

ID=17814480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29495786A Pending JPS63149339A (en) 1986-12-12 1986-12-12 Device for refining crude copper

Country Status (1)

Country Link
JP (1) JPS63149339A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002544391A (en) * 1999-05-14 2002-12-24 オウトクンプ オサケイティオ ユルキネン Method for reducing nonferrous metal components of slag generated during production of nonferrous metals in floating blast furnace
ES2387147A1 (en) * 2012-07-25 2012-09-14 La Farga Lacambra Sa Installation for the casting of a copper metal casting or similar (Machine-translation by Google Translate, not legally binding)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5074519A (en) * 1973-11-05 1975-06-19
JPS60218435A (en) * 1984-04-13 1985-11-01 Nippon Mining Co Ltd Continuous smelting method and furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5074519A (en) * 1973-11-05 1975-06-19
JPS60218435A (en) * 1984-04-13 1985-11-01 Nippon Mining Co Ltd Continuous smelting method and furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002544391A (en) * 1999-05-14 2002-12-24 オウトクンプ オサケイティオ ユルキネン Method for reducing nonferrous metal components of slag generated during production of nonferrous metals in floating blast furnace
JP4811812B2 (en) * 1999-05-14 2011-11-09 オウトテック オサケイティオ ユルキネン Method for reducing non-ferrous metal components of slag produced during production of non-ferrous metals in a floating blast furnace
ES2387147A1 (en) * 2012-07-25 2012-09-14 La Farga Lacambra Sa Installation for the casting of a copper metal casting or similar (Machine-translation by Google Translate, not legally binding)

Similar Documents

Publication Publication Date Title
US4504309A (en) Process and apparatus for continuous converting of copper and non-ferrous mattes
US4470845A (en) Continuous process for copper smelting and converting in a single furnace by oxygen injection
EP0648849A1 (en) Copper refining furnace
US3542352A (en) Apparatus for the continuous smelting and converting of copper concentrates to metallic copper
US3437475A (en) Process for the continuous smelting and converting of copper concentrates to metallic copper
ES2747812T3 (en) A method of converting copper-containing material
US4414022A (en) Method and apparatus for smelting sulfidic ore concentrates
JPS5493623A (en) Smelting method for nonferrous metal
NO126806B (en)
JPS63149339A (en) Device for refining crude copper
EA007445B1 (en) METHOD OF OBTAINING BLACK COPPER
US1896807A (en) Process for the recovery of platimum and its bymetals from mattes
ATE15502T1 (en) PROCESSES FOR RECOVERING THE METAL CONTENT FROM COMPLEX SULFIDIC RAW MATERIALS.
FI69106C (en) FRAMSTAELLNING AV BLY UR SULFIDISKA BLYRAOMATERIAL
US3304169A (en) Method of deoxidizing metals
Sehnalek et al. Continuous converting of copper mattes
US5131944A (en) Method and apparatus for treating zinc concentrates
US3460817A (en) Furnace for continuous treatment of sulphide copper ores
JPS63149338A (en) Method for refining copper
US4421552A (en) Dead roast-oxide flash reduction process for copper concentrates
US723500A (en) Treating copper ores and ores of copper and nickel.
JPH0233779B2 (en)
JP2001335856A (en) Continuous copper smelting furnace and method of continuously smelting copper
AU2008337224B2 (en) Continuous fire reduction of liquid copper
JPS62174338A (en) Refining method for copper