[go: up one dir, main page]

JPS63147880A - Silicon carbide-carbon composite material - Google Patents

Silicon carbide-carbon composite material

Info

Publication number
JPS63147880A
JPS63147880A JP61294771A JP29477186A JPS63147880A JP S63147880 A JPS63147880 A JP S63147880A JP 61294771 A JP61294771 A JP 61294771A JP 29477186 A JP29477186 A JP 29477186A JP S63147880 A JPS63147880 A JP S63147880A
Authority
JP
Japan
Prior art keywords
silicon carbide
composite material
carbon
carbon composite
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61294771A
Other languages
Japanese (ja)
Other versions
JPH0510303B2 (en
Inventor
徳勢 允宏
純一 釘本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP61294771A priority Critical patent/JPS63147880A/en
Publication of JPS63147880A publication Critical patent/JPS63147880A/en
Publication of JPH0510303B2 publication Critical patent/JPH0510303B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はメカニカルシール等密封摺動部品として特に有
用な炭化珪素複合材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a silicon carbide composite material that is particularly useful as a sealed sliding part such as a mechanical seal.

(従来の技術およびその問題点) 近年、開発された多くのセラミックスの中で、無加圧焼
結炭化珪素は、耐摩耗性、附食性に優れていることから
、メカニカルシール等の密封摺動部品分野においても活
発に用途開発がなされてきた。
(Conventional technology and its problems) Among the many ceramics developed in recent years, pressureless sintered silicon carbide has excellent wear resistance and corrosion resistance, so it is suitable for sealing and sliding applications such as mechanical seals. Applications have been actively developed in the parts field as well.

炭化珪素焼結体の製造方法としては、例えば特開昭50
−78609号公報、特開昭51−148712号公報
等に記載の方法がある。しかし、前記製造方法により得
られる緻密質炭化珪素焼結体は摺動部品として使用した
場合、潤滑不十分な条件下では摩擦係数が高くなり、摺
動相手材の摩耗が激しく、また炭化珪素焼結体自体もク
ラックを生じ易い欠点があった。
As a method for manufacturing a silicon carbide sintered body, for example, JP-A-50
There are methods described in JP-A-78609, JP-A-51-148712, and the like. However, when the dense silicon carbide sintered body obtained by the above manufacturing method is used as a sliding part, the coefficient of friction becomes high under conditions of insufficient lubrication, causing severe wear of the sliding partner material, and the silicon carbide sintered body The structure itself also had the disadvantage of being prone to cracking.

この欠点を改良する方法として特開昭61−58136
1号公報には、焼結助剤を含む炭化珪素粉末を比較的低
温で焼結し、炭化珪素多孔質焼結体(以下、多孔体とい
う)を得、これに熱硬化性樹脂を含浸して摺動材を得る
方法が記載されている。前記方法により得られる摺動材
は多孔体密度が2.4g/d以下では樹脂含浸後でも強
度、耐りや耗性ともに不十分であるため、実際には多孔
体密度268g/−のらのを用いている。しかし、その
場合、樹脂含有量が7重量%と少ないため、含浸樹脂に
よる潤滑作用も不十分なものであった。
As a method to improve this drawback, Japanese Patent Application Laid-Open No. 61-58136
In Publication No. 1, silicon carbide powder containing a sintering aid is sintered at a relatively low temperature to obtain a porous sintered body of silicon carbide (hereinafter referred to as a porous body), which is impregnated with a thermosetting resin. A method for obtaining a sliding material is described. If the sliding material obtained by the above method has a porous material density of 2.4 g/d or less, its strength, durability, and abrasion resistance are insufficient even after resin impregnation. I am using it. However, in that case, since the resin content was as low as 7% by weight, the lubricating effect of the impregnated resin was also insufficient.

また特開昭59−131577号公報には、焼結体中に
遊離炭素相を形成させ、表面に炭素粒子を露出させるこ
とにより、摩擦係数を低減させている。しかし、過剰で
しかも大粒径の遊龍炭素の添加は、焼結を妨げ、均質で
耐摩耗性の高い焼結体を得ることが難しかった。
Furthermore, in Japanese Patent Application Laid-Open No. 59-131577, the coefficient of friction is reduced by forming a free carbon phase in a sintered body and exposing carbon particles on the surface. However, addition of excessive Yuryu carbon with large particle size hinders sintering, making it difficult to obtain a homogeneous sintered body with high wear resistance.

(発明の目的) 本発明は、前記欠点を解決し、含有炭素の十分な潤滑作
用で耐摩耗性が良好な摺動部材を提供することを目的と
する。
(Objective of the Invention) An object of the present invention is to solve the above-mentioned drawbacks and to provide a sliding member that has good wear resistance due to the sufficient lubricating action of carbon contained therein.

(問題点を解決するための技術的手段)本発明は炭化珪
素粉末が有機珪素化合物の熱分解により生成する主とし
てSi とCからなる無機物により結合された多孔体に
、加熱により炭素に転換しうる有機高分子化合物を含浸
し、炭化させてなる炭化珪累−炭素複合材に関する。
(Technical means for solving the problem) The present invention provides a porous body in which silicon carbide powder is bonded by inorganic substances mainly composed of Si and C, which is produced by thermal decomposition of an organic silicon compound, and can be converted into carbon by heating. The present invention relates to a silicon carbide-carbon composite material impregnated with an organic polymer compound and carbonized.

本発明において、炭化珪素粉末としては、α、βいずれ
でも良く、純度、粒径についても特別な制限はないが、
多孔体の強度を保持する上で、サブミクロン粉末を用い
ることが望ましい。
In the present invention, the silicon carbide powder may be either α or β, and there are no special restrictions on purity or particle size.
In order to maintain the strength of the porous body, it is desirable to use submicron powder.

有機珪素化合物としては、不活性ガス雰囲気下。For organic silicon compounds, under an inert gas atmosphere.

1000℃以上で熱処理することにより主としてSiと
Cからなる無機物に転換されるものが用いられる。特に
、珪素と炭素との結合を主な骨格成分とする有機珪素重
縮合体が好ましい。例えば、特開昭51−126300
号公報、特開昭52−112700号公報、特開昭54
−61299号公報および特開昭57−16029号公
報に記載されている主としてカルボシラン骨格よりなる
高分子有機珪素化合物が本発明の使用に適している。
The material used is one that can be converted into an inorganic material mainly consisting of Si and C by heat treatment at 1000° C. or higher. Particularly preferred are organosilicon polycondensates whose main skeleton components are bonds between silicon and carbon. For example, JP-A-51-126300
No. 52-112700, Japanese Patent Application Laid-Open No. 1972-112700
Polymeric organosilicon compounds mainly consisting of a carbosilane skeleton described in Japanese Patent Laid-Open No. 57-16029 and Japanese Patent Application Laid-Open No. 57-16029 are suitable for use in the present invention.

有機高分子化合物としては、加熱により炭素に転換しう
るちのであれば、特に制限はないが、経済性および炭化
率の高さより考慮するとフェノール系、フラン系、エポ
キシ系等の熱硬化性樹脂、またはピッチ、タール類が適
している。
The organic polymer compound is not particularly limited as long as it can be converted into carbon by heating, but from the viewpoint of economy and high carbonization rate, thermosetting resins such as phenolic, furan, and epoxy resins, Alternatively, pitch and tar are suitable.

本発明の炭化珪素−炭素複合材は以下の製法により得ら
れる。
The silicon carbide-carbon composite material of the present invention can be obtained by the following manufacturing method.

まず炭化珪素粉末に結合剤として有機珪素化合物を混合
する。炭化珪素粉末と有機珪素化合物の混合は加圧ニー
ダ−等を用いて行う、この際、成形性を良くするため、
滑剤として例えば高級脂肪酸等を添加してもよい。
First, an organic silicon compound is mixed with silicon carbide powder as a binder. The silicon carbide powder and the organic silicon compound are mixed using a pressure kneader, etc. At this time, in order to improve moldability,
For example, higher fatty acids may be added as a lubricant.

次いで得られた混合物を押出成形等により所望の形状に
成形し、これを焼成することにより多孔体が得られる。
Next, the obtained mixture is molded into a desired shape by extrusion molding or the like, and this is fired to obtain a porous body.

焼成温度は1200〜2200″C1−特に1600〜
2200℃が望ましい。温度が低すぎると多孔体の強度
が不十分となる。
Firing temperature is 1200~2200″C1-especially 1600~
2200°C is desirable. If the temperature is too low, the strength of the porous body will be insufficient.

本発明における多孔体は、炭化珪素粉末が焼結助剤を用
いず、有機珪素化合物の熱分解により生成する主として
Si とCからなる無機物により結合された多孔体であ
るため、1.8〜2.4g/cjという低密度であるに
もかかわらず、25〜35kg/−という高強度を有す
る。
The porous body in the present invention is a porous body in which silicon carbide powder is bonded by an inorganic substance mainly composed of Si and C produced by thermal decomposition of an organic silicon compound without using a sintering aid, and therefore has a 1.8 to 2 Although it has a low density of .4 g/cj, it has a high strength of 25 to 35 kg/-.

次に、多孔体に有機高分子化合物と含浸する。Next, the porous body is impregnated with an organic polymer compound.

多孔体への有機高分子化合物の含浸は通常の方法、例え
ば多孔体を真空で有機高分子化合物に浸漬する方法で行
われる。あるいはさらに、静水圧プレス等で有機高分子
を加圧することにより、気孔のM!A部まで十分に有機
高分子化合物を含浸することができる。
Impregnation of the porous body with the organic polymer compound is carried out by a conventional method, for example, by immersing the porous body in the organic polymer compound under vacuum. Alternatively, by pressurizing the organic polymer using a hydrostatic press or the like, the M of the pores can be reduced! Part A can be sufficiently impregnated with the organic polymer compound.

次いで、前記有機高分子化合物を含浸した多孔体を不活
性雰囲気下で700〜2200°Cで加熱し、炭化する
ことにより、耐摩耗性に優れた炭化珪素−炭素複合材が
得られる。さらに前記含浸−炭化操作を繰返し行うこと
により、多孔体に炭素が十分に含有された炭化珪素−炭
素複合材を得ることができる。
Next, the porous body impregnated with the organic polymer compound is heated at 700 to 2200°C in an inert atmosphere and carbonized, thereby obtaining a silicon carbide-carbon composite material with excellent wear resistance. Furthermore, by repeating the impregnation-carbonization operation, a silicon carbide-carbon composite material in which the porous body sufficiently contains carbon can be obtained.

(実施例) 以下、実施例において本発明を説明する。(Example) Hereinafter, the present invention will be explained in Examples.

実施例1 平均粒径0.3μmの炭化珪素粉末81重量部、ポリチ
タノカルボシラン10重量部およびステアリン酸9重量
部を加圧ニーダ−を用いて90分間混合した。得られた
混合物を粉砕後、押出成形によりパイプ状の成形体を得
た。この成形体を550℃までゆるやかに昇温し、ステ
アリン酸を脱脂後、1つ50°Cで焼成し、外径44n
m+、内径30(財)の焼結体を得た。この焼結体は密
度2.05g/−の多孔体であり、抗折強度は34.1
 ’sg/−であった。この焼結体を厚さ10鴫に切断
して多孔体リングを得た。
Example 1 81 parts by weight of silicon carbide powder having an average particle size of 0.3 μm, 10 parts by weight of polytitanocarbosilane, and 9 parts by weight of stearic acid were mixed for 90 minutes using a pressure kneader. After pulverizing the obtained mixture, a pipe-shaped molded product was obtained by extrusion molding. The temperature of this molded body was gradually raised to 550°C, and after degreasing the stearic acid, one piece was fired at 50°C, and the outer diameter was 44nm.
A sintered body of m+ and an inner diameter of 30 (goods) was obtained. This sintered body is a porous body with a density of 2.05 g/- and a bending strength of 34.1
'sg/-. This sintered body was cut to a thickness of 10 mm to obtain a porous ring.

この多孔体リングにレゾールタイプのフェノール樹脂を
含浸後、窒素雰囲気中で800℃に加熱し、炭化させた
。この含浸−炭化挽作を3回繰返し、密度273 g 
/ oaの複合材リングを得た。
This porous ring was impregnated with a resol type phenolic resin and then heated to 800° C. in a nitrogen atmosphere to carbonize it. This impregnation-carbonization process was repeated three times, resulting in a density of 273 g.
/ oa composite ring was obtained.

得られた複合材リングに相手材として、フェノール樹脂
含浸カーボンを用い、100°C熱水中で、摺動試験を
行った。試験条件は液圧7 kg / cA、回転数5
000 r p rn、200時間であった。摩耗量は
複合材DIjJ O,1μm、相手材側0.2μmであ
った。
A sliding test was conducted on the obtained composite ring in hot water at 100° C. using phenol resin-impregnated carbon as a mating material. Test conditions are hydraulic pressure 7 kg/cA, rotation speed 5
000 r p rn, 200 hours. The amount of wear was 1 μm on the composite material DIjJO and 0.2 μm on the mating material side.

比較例1 焼結助剤として炭化ホウ素粉末1.5重量部およびレゾ
ールタイプフェノール樹脂5.6重量部とステアリン酸
1重量部および残部が炭化珪素粉末からなる混合物をエ
タノール中で湿式ボールミル混合後、エタノール留去し
、粉砕した。得られた粉末を1. Oton /(、H
の圧力で静水圧プレスした後、真空中1850℃で焼成
し、外径44mm、内径3Om、厚さ10ffD11の
焼結体を得た。この多孔体の密度は:175g/ca、
抗折強度は15.0kg/−であった。この多孔体に実
施例1と同様な方法でフェノール樹脂を含浸硬化させた
ところ、密度′2.93 g/aa、樹脂含有率6.3
%であった。実施例1と同条件で摺動試験を行った結果
、摩耗量は複合材(!l!I O,5μm、相手材側1
.2 μm テあツタ。
Comparative Example 1 A mixture consisting of 1.5 parts by weight of boron carbide powder as a sintering aid, 5.6 parts by weight of resol type phenolic resin, 1 part by weight of stearic acid, and the balance consisting of silicon carbide powder was mixed in ethanol using a wet ball mill. Ethanol was distilled off and the mixture was ground. The obtained powder is 1. Oton /(,H
After hydrostatic pressing at a pressure of 1,850° C., the sintered body was fired at 1850° C. in a vacuum to obtain a sintered body having an outer diameter of 44 mm, an inner diameter of 3 Om, and a thickness of 10 ffD11. The density of this porous body is: 175 g/ca,
The bending strength was 15.0 kg/-. When this porous body was impregnated with phenolic resin and cured in the same manner as in Example 1, the density was 2.93 g/aa and the resin content was 6.3.
%Met. As a result of a sliding test conducted under the same conditions as in Example 1, the amount of wear was found to be
.. 2 μm.

比較例2 比較例1と同組成の解砕粉に、平均粒径15μmの炭素
粉5重量部を添加し、湿式ボールミル混合後、乾燥、粉
砕し、炭素過剰の解砕粉を得た。
Comparative Example 2 To crushed powder having the same composition as Comparative Example 1, 5 parts by weight of carbon powder with an average particle size of 15 μm was added, mixed in a wet ball mill, dried, and crushed to obtain crushed powder with excess carbon.

得られた粉末を1.0tOn/−の圧力で静水圧プレス
した後、成形体を真空中で2100℃で焼結な、得られ
た焼結体は、密度188g/cj、抗折強度は20.5
kg/−であり、低密度であった。実施例]と同様な条
件で摺動試験を行った結果、焼結体側摩耗量は0.3μ
m、相手材側は1.0μmであった。
After the obtained powder was hydrostatically pressed at a pressure of 1.0 tOn/-, the compact was sintered at 2100°C in a vacuum. The obtained sintered body had a density of 188 g/cj and a bending strength of 20. .5
kg/-, and the density was low. As a result of performing a sliding test under the same conditions as in Example], the amount of wear on the sintered body side was 0.3μ
m, and the counterpart material side was 1.0 μm.

(発明の効果) 本発明による炭化珪累−炭素複合材は、炭化珪素と含浸
炭素とからなり、後者の潤滑作用により、炭化珪素単独
のものよりはるかに低い摩擦係数を示す、また本発明の
炭化珪素−炭素複合材は、十分な強度および硬度を持っ
ており、したがって、本発明の炭化珪素−有機高分子複
合材は、潤滑性と耐摩耗性を兼備した優tした摺動部材
である。さらに、炭化珪素多孔体を製造する際に、はと
んど収縮がないことも、寸法精度良く摺動部材を製造す
る上で有利である。
(Effects of the Invention) The silicon carbide-carbon composite material according to the present invention is composed of silicon carbide and impregnated carbon, and due to the lubricating action of the latter, it exhibits a much lower coefficient of friction than silicon carbide alone. The silicon carbide-carbon composite material has sufficient strength and hardness, and therefore the silicon carbide-organic polymer composite material of the present invention is an excellent sliding member that has both lubricity and wear resistance. . Furthermore, when manufacturing a silicon carbide porous body, there is almost no shrinkage, which is advantageous in manufacturing sliding members with high dimensional accuracy.

Claims (2)

【特許請求の範囲】[Claims] (1)炭化珪素粉末が有機珪素化合物の熱分解により生
成する主としてSiとCからなる無機物により結合され
た炭化珪素多孔質焼結体に、加熱により炭素に転換しう
る有機高分子化合物を含浸し、炭化させてなる炭化珪素
−炭素複合材。
(1) A porous sintered body of silicon carbide in which silicon carbide powder is bonded by an inorganic substance mainly composed of Si and C, which is produced by thermal decomposition of an organic silicon compound, is impregnated with an organic polymer compound that can be converted into carbon by heating. , a silicon carbide-carbon composite material made by carbonization.
(2)炭化珪素多孔質焼結体の密度が1.8〜2.4g
/cm^3である特許請求の範囲第1項記載の炭化珪素
−炭素複合材。
(2) The density of the silicon carbide porous sintered body is 1.8 to 2.4 g
/cm^3 The silicon carbide-carbon composite material according to claim 1.
JP61294771A 1986-12-12 1986-12-12 Silicon carbide-carbon composite material Granted JPS63147880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61294771A JPS63147880A (en) 1986-12-12 1986-12-12 Silicon carbide-carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61294771A JPS63147880A (en) 1986-12-12 1986-12-12 Silicon carbide-carbon composite material

Publications (2)

Publication Number Publication Date
JPS63147880A true JPS63147880A (en) 1988-06-20
JPH0510303B2 JPH0510303B2 (en) 1993-02-09

Family

ID=17812082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61294771A Granted JPS63147880A (en) 1986-12-12 1986-12-12 Silicon carbide-carbon composite material

Country Status (1)

Country Link
JP (1) JPS63147880A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369575A (en) * 1989-08-07 1991-03-25 Shinagawa Refract Co Ltd Production of carbon or active carbon

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54124012A (en) * 1978-03-20 1979-09-26 Akira Washida Parts for sliding portion
JPS5848503A (en) * 1981-09-18 1983-03-22 Mitsubishi Electric Corp Antenna device
JPS61132575A (en) * 1984-11-30 1986-06-20 イビデン株式会社 Silicon carbide composite body
JPS61174182A (en) * 1985-01-26 1986-08-05 イビデン株式会社 Silicon carbide base composite body with high size precisionand sliding properties and manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54124012A (en) * 1978-03-20 1979-09-26 Akira Washida Parts for sliding portion
JPS5848503A (en) * 1981-09-18 1983-03-22 Mitsubishi Electric Corp Antenna device
JPS61132575A (en) * 1984-11-30 1986-06-20 イビデン株式会社 Silicon carbide composite body
JPS61174182A (en) * 1985-01-26 1986-08-05 イビデン株式会社 Silicon carbide base composite body with high size precisionand sliding properties and manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369575A (en) * 1989-08-07 1991-03-25 Shinagawa Refract Co Ltd Production of carbon or active carbon

Also Published As

Publication number Publication date
JPH0510303B2 (en) 1993-02-09

Similar Documents

Publication Publication Date Title
US5707567A (en) Process for producing a self-sintered silicon carbide/carbon graphite composite material having interconnected pores which maybe impregnated
CA2480156C (en) A composite body of silicon carbide and binderless carbon and process for producing
JPS58204873A (en) Substantially pore-free polycrystal sintered body comprising alpha-silicon carbide, boron carbide and free carbon and manufacture
US6398991B1 (en) Processes for making a silicon carbide composition
JP3350394B2 (en) Graphite composite silicon carbide sintered body, graphite composite silicon carbide sintered composite, and mechanical seal
US6709999B2 (en) Molded part of ceramic material derived from polymers, process for producing ceramic molded parts and sliding element having a molded part
US7166550B2 (en) Ceramic composite body of silicon carbide/boron nitride/carbon
CN1169708A (en) Selfsintered silicon carbide/carbon composite material
JPS63147880A (en) Silicon carbide-carbon composite material
JPS59131577A (en) Silicon carbide material and manufacture
JP2851717B2 (en) Sliding member
JPH0251864B2 (en)
JPS63147881A (en) Silicon carbide-organic polymer composite
JPS6158861A (en) Silicon carbide material and manufacture
JPS60112670A (en) Silicon carbide material and manufacture
JPS598668A (en) Silicon carbide sintered body and manufacture
JPH0735301B2 (en) Manufacturing method of sliding material for mechanical seal
JPS62148384A (en) Silicon carbide base composite material
JPS62176956A (en) Manufacture of silicon carbide base composite body
JPS62275066A (en) Manufacture of silicon carbide sintered body
JP2002338357A (en) Sliding body and mechanical seal
JPS6227030B2 (en)
JPS6236075A (en) Fiber reinforced carbon material
JPS62275065A (en) Manufacture of silicon carbide sintered body
JPH01278475A (en) Complex sliding member of silicon carbide