[go: up one dir, main page]

JPS6314768B2 - - Google Patents

Info

Publication number
JPS6314768B2
JPS6314768B2 JP55007908A JP790880A JPS6314768B2 JP S6314768 B2 JPS6314768 B2 JP S6314768B2 JP 55007908 A JP55007908 A JP 55007908A JP 790880 A JP790880 A JP 790880A JP S6314768 B2 JPS6314768 B2 JP S6314768B2
Authority
JP
Japan
Prior art keywords
sample
section
flow cell
counting
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55007908A
Other languages
Japanese (ja)
Other versions
JPS56104233A (en
Inventor
Hirotaka Ito
Yasuhiro Osada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP790880A priority Critical patent/JPS56104233A/en
Publication of JPS56104233A publication Critical patent/JPS56104233A/en
Publication of JPS6314768B2 publication Critical patent/JPS6314768B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • G01N15/1433Signal processing using image recognition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Signal Processing (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Optical Measuring Cells (AREA)

Description

【発明の詳細な説明】 本発明は極微小物体の計数装置に係り、特に液
中に不溶解物として存在する極微小物体を簡易に
しかも高速条件下で計数することが可能な計数装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a counting device for extremely small objects, and particularly to a counting device that can easily count microscopic objects existing as insoluble substances in a liquid under high-speed conditions.

従来、液体中の極微小物体を計数する手段とし
ては、超音波の回折現象を利用したものが代表的
であるが、これは検出物体の種類、形状、大きさ
に対する補正が難かしく、また装置コストが非常
に高くつく欠点を有していたので普及されるに至
らなかつた。
Conventionally, the typical method for counting microscopic objects in liquid is to use the diffraction phenomenon of ultrasonic waves, but this method is difficult to correct for the type, shape, and size of the detected object, and the equipment is difficult to correct. It had the disadvantage of being very expensive, so it was not widely used.

一方、実体顕微鏡によつて20μ径程度のものを
観察する手段が最も手軽なものとして一般に採用
されているが、これでは測定者の視覚、勘によつ
て成されるものであるから、多くの時間と労力を
要するし、定常化した作業としては不適で計数精
度に問題があつた。
On the other hand, the method of observing objects with a diameter of about 20 μm using a stereomicroscope is generally adopted as the simplest method, but since this method relies on the observer's vision and intuition, many It required time and effort, was not suitable for regular work, and had problems with counting accuracy.

かかる問題点を解決するものとして、特開昭51
―95884号公報には、リアルタイム分析能力を持
つつた粒子分析器の構造が提案され、また、特開
昭54―24683号公報には本発明と技術分野を等し
くする液中の微粒子の係数方法が提案されてい
る。
To solve this problem, Japanese Patent Application Laid-Open No. 1973
In Japanese Patent Publication No. 95884, a structure of an ivy particle analyzer with real-time analysis capability was proposed, and in Japanese Patent Application Laid-Open No. 54-24683, a coefficient method for fine particles in liquid was proposed, which is in the same technical field as the present invention. Proposed.

ところが、前者の発明はサンプル室(本願発明
の流動セルに対応する)を含む試料通過管にポン
プと弁の組合わせになる送液ラインが接続されて
いて試料を圧送する形式のものであつて、ポン
プ,弁が必然的に試料液体と接するために汚染が
避けられなく、従つて測定の度毎にポンプ,弁の
洗浄が必要で多くの労力とロスタイムを要する不
都合がある。
However, the former invention is of a type in which a liquid feeding line, which is a combination of a pump and a valve, is connected to a sample passage tube containing a sample chamber (corresponding to the flow cell of the present invention) to forcefully feed the sample. Since the pumps and valves inevitably come into contact with the sample liquid, contamination is unavoidable.Therefore, the pumps and valves must be cleaned after every measurement, which is disadvantageous and requires a lot of labor and lost time.

一方、後者の発明は、試料液体を予め貯溜して
おいた試料容器の底部にコツク、定量ストレージ
部を有する試料通過管を垂下状態で接続してなる
構成であつて、測定に先立ち試料通過管を洗浄し
ておくか、又試料容器内の試料液体の所要量流下
排出させた後に測定を行う必要に迫られるもので
測定手順が厄介であり、しかも、測定の都度、試
料通過管に加えてコツクも試料液体に汚染される
ところから前者の発明と同様の問題点を有してい
る。
On the other hand, the latter invention has a structure in which a sample passage tube having a quantitative storage part is connected in a hanging state to the bottom of a sample container in which a sample liquid is stored in advance, and the sample passage tube is The measurement procedure is complicated because it is necessary to wash the sample liquid in the sample container or to perform the measurement after draining the required amount of sample liquid from the sample container. The Kotoku method also has the same problem as the former invention because it is contaminated by the sample liquid.

しかもそれ等従来のものに共通することは、測
定の際の操作勝手が一面でなく他面的にわたつて
いるために取扱いが面倒となる問題が解決されて
いない点である。
Moreover, what these conventional devices have in common is that they have unresolved problems in that they are difficult to handle because the ease of operation during measurement is not one-sided but is multi-faceted.

このような実状に対処して本発明は指向性に富
み、かつ、測定精度にすぐれてなるレーザー光利
用による計数手段の特徴を十分活かし乍らも従来
の諸問題点を解消し得る科学的、合理的な装置を
提供するべく成されたものであつて、特に試料バ
ツフア部21、試料チヤージ部20および流動セ
ル2を順に上下に配し、かつ、連通して有すると
共に、定常測定用管と抽気管とを試料バツフア部
21に多岐接続してなり、試料バツフア部21ま
で充満させた試料液体1を定速で垂直方向に定量
流下せしめるための試料通過管13と、検出部と
しての前記流動セル2を挾んで装置本体の左右両
側に設けたレーザー発振器3および投影拡大部4
と、レーザー光を屈折させる少くとも1個の反射
ミラー8,10,11と、流動セル2通過後のレ
ーザー光を拡大するレンズ9とを備えて、流動セ
ル2にレーザー光を投光し該流動セル2中の流下
液流動状態を投影拡大部4に拡大結像せしめる光
学的手段と、その拡大倍率および計数すべき最大
物体の大きさに応じた受光面積を有し、前記投影
拡大部4の拡大投影像有効部分の流体流下面を横
断可能に並列配置した複数個の光電変換素子5
と、それ等光電変換素子5の電気信号変化を演算
計数し、試料液体1中の極微粒子を相対値として
計数するための演算計数部とから、液体中の極微
小物体の計数装置を構成したものであり、かくし
て検出物体の種類、形状には関係なく、その大き
さの選定が容易でかつ簡単、迅速に計数でき、さ
らに装置的にも低コスト化を果し、しかも抽気、
給気各ラインにおける弁が試料液体に接しないこ
とから測定前後の洗浄は試料通過管13だけでよ
くて測定作業の合理化がはかれ、また、前面操作
による測定作業の簡便化が果されるに至つたもの
である。
In order to cope with these circumstances, the present invention is a scientific method that can solve the various problems of the conventional method while fully utilizing the characteristics of a counting means using laser light, which is highly directional and has excellent measurement accuracy. It was designed to provide a rational device, and in particular, it has a sample buffer section 21, a sample charge section 20, and a flow cell 2 arranged one above the other in order and communicates with each other. A sample passage tube 13 is formed by connecting air bleed tubes to the sample buffer section 21 in a variety of ways, and allows the sample liquid 1 filled up to the sample buffer section 21 to flow down at a fixed rate in a vertical direction, and the flow tube 13 serves as a detection section. A laser oscillator 3 and a projection magnifying section 4 are provided on both the left and right sides of the device body with the cell 2 in between.
and at least one reflecting mirror 8, 10, 11 that refracts the laser beam, and a lens 9 that magnifies the laser beam after passing through the flow cell 2, and projects the laser beam onto the flow cell 2 and targets the target object. The projection magnifying section 4 has an optical means for magnifying and imaging the flow state of the flowing liquid in the flow cell 2 on the projection magnifying section 4, and has a light receiving area corresponding to its magnification magnification and the size of the maximum object to be counted. A plurality of photoelectric conversion elements 5 are arranged in parallel so as to be able to cross the fluid flow surface of the effective portion of the enlarged projected image.
and an arithmetic and counting section for calculating and counting changes in the electrical signals of the photoelectric conversion elements 5 and counting the ultrafine particles in the sample liquid 1 as relative values, forming a counting device for ultrafine objects in the liquid. Therefore, regardless of the type or shape of the object to be detected, it is easy to select the size of the object, and it can be counted simply and quickly, and the cost of the equipment is also low.
Since the valves in each air supply line do not come into contact with the sample liquid, only the sample passage tube 13 is required for cleaning before and after measurement, streamlining the measurement work.Moreover, the measurement work can be simplified by front operation. It has been reached.

本発明装置の具体的内容について、以下に添付
図面を参照しつつ詳細に説明する。
The specific contents of the device of the present invention will be explained in detail below with reference to the accompanying drawings.

第1図,第2図は装置を基本原理的に説明する
ための図であり、定量の試料液体1を定速下で流
動セル2に対して上下方向(第1図において紙面
を貫通する方向)に流下させながら、この流動セ
ル2にレーザー発振器3から出されるレーザー光
Lを透過的に投光して流動セル2中の流下液流状
態を投影拡大部4に拡大結像せしめる。そしてこ
の投影拡大部4に設けた光電変換素子5の一群お
よびモニター画面6によつて光電変換的および画
像的に流下液流状態を検出することにより、光電
変換素子群からの電気信号を受ける演算計数部で
極微小物体を計数する一方、この極微小物体を数
十倍に拡大した画像でモニター画面により監視す
るようにしている。
Figures 1 and 2 are diagrams for explaining the basic principles of the device, in which a fixed amount of sample liquid 1 is passed through the flow cell 2 at a constant speed in the vertical direction (in the direction penetrating the paper in Figure 1). ), a laser beam L emitted from a laser oscillator 3 is transmitted through the flow cell 2 to form an enlarged image of the flowing state of the flowing liquid in the flow cell 2 on the projection magnifying section 4. A group of photoelectric conversion elements 5 provided in the projection magnifying section 4 and a monitor screen 6 detect the state of the flowing liquid in a photoelectric conversion manner and in an image manner, thereby receiving electrical signals from the group of photoelectric conversion elements. While the counting unit counts the minute objects, the monitor screen monitors the minute objects with images magnified several dozen times.

ここで、光電変換素子群およびモニター画面6
の態様は第2図に略示する如く、投影拡大部4に
一直線上の密に配置した複数個の図示例では36個
の光電変換素子5例えばフオト・トランジスター
の群を上に、モニター画面6をその直下に配した
構造であつて、フオト・トランジスターの群は
100mm間にピツチ2.78mmで計36個を並べて、受光
面1.346mmφでレンズを有する指向性の高いフオ
ト・トランジスターで試料液体中の極微小物体の
像による明暗信号を検出して、演算計数部に伝え
得る如く設けている。
Here, the photoelectric conversion element group and the monitor screen 6
As schematically shown in FIG. 2, in the illustrated example, a plurality of photoelectric conversion elements 5, for example, a group of phototransistors, are arranged closely in a straight line on the projection magnifying section 4, and a monitor screen 6 is placed on top. The group of photo transistors is
A total of 36 transistors are arranged in a 100mm space with a pitch of 2.78mm, and a highly directional phototransistor with a lens with a light-receiving surface of 1.346mmφ detects the brightness and darkness signals from the image of the microscopic object in the sample liquid, and sends it to the calculation and counting section. It is set up so that it can be conveyed.

なお、レーザ発振器3は一例としてHe―Neガ
スレーザ発振器が用いられ、赤色単色光線(波長
0.6328μ、ビーム径1.2φを発するが、この光線は
シヤツター7が開の状態で全反射ミラー8により
反射して流動セル2に投射し、その透過光はレン
ズ9、全反射ミラー10,11を介して前記投影
拡大部4に至り、この部分に流動セル2中を流れ
ている試料液体1の流動状態を結像する。
As an example, the laser oscillator 3 is a He--Ne gas laser oscillator, which emits red monochromatic light (wavelength
0.6328μ and a beam diameter of 1.2φ, this light beam is reflected by the total reflection mirror 8 and projected onto the flow cell 2 when the shutter 7 is open, and the transmitted light passes through the lens 9 and the total reflection mirrors 10 and 11. The flow state of the sample liquid 1 flowing through the flow cell 2 is imaged on this portion.

第2図において、光電変換素子5の一群の直上
部に設けている1個の光電変換素子12は前記レ
ーザ光の照度を検定するためのものである。
In FIG. 2, one photoelectric conversion element 12 provided directly above a group of photoelectric conversion elements 5 is for verifying the illuminance of the laser beam.

以上の説明によつて明らかにしたように、本発
明装置の基本的構造は前記流動セル2を含む試料
流通ラインと、レーザー光を流動セル2に投光し
て該セル2中の流下液流動状態を投影拡大部4に
結像せしめる光学的手段と、その拡大倍率および
計数すべき最大物体の大きさに応じた受光面積を
夫々有して投影拡大部4の拡大投影像有効部分の
流体流下面を横断可能に並列配置した複数個の光
電変換素子5と、それ等光電変換素子5の電気信
号変化を演算計数し、試料液体1中の極微粒子を
相対値として計数するための演算計数部とからな
り、さらに必要に応じて投影拡大部4にモニター
部6を併設してなるものである。
As clarified by the above explanation, the basic structure of the apparatus of the present invention includes a sample distribution line including the flow cell 2, and a laser beam projected onto the flow cell 2 to flow the flowing liquid in the cell 2. An optical means for forming an image of the state on the projection magnifying section 4, and a fluid flow in the effective portion of the enlarged projection image of the projection magnifying section 4, each having a light-receiving area according to its magnification and the size of the maximum object to be counted. A plurality of photoelectric conversion elements 5 arranged in parallel so as to be able to cross the lower surface, and a calculation and counting section for calculating and counting changes in electrical signals of the photoelectric conversion elements 5 and counting ultrafine particles in the sample liquid 1 as relative values. The projection magnifying section 4 is further provided with a monitor section 6 as required.

この装置本体の形状は第3図および第4図に全
体および要部が夫々示されるように、試料流通ラ
インとしての試料通過管13を本体中央部の空所
部に上下の垂直となして設けて、支持台14によ
り中間位置に存する流動セル2を垂直に保持して
おり、一方、光学的手段は試料通過管13が設け
られた前記本体中央部の両側にレーザー発振器3
および投影拡大部4が配設されており、モニター
画面6、焦点合わせハンドル15、センター調整
マイクロメータ16(第6図参照)などが前面勝
手の配置をとるようになつていて、全体として前
面操作可能な横型構造をなしている。
The shape of the main body of this device is as shown in FIGS. 3 and 4, respectively, as shown in FIG. 3 and FIG. The flow cell 2 located at an intermediate position is held vertically by a support stand 14, while the optical means includes laser oscillators 3 on both sides of the central part of the main body where the sample passage tube 13 is provided.
A monitor screen 6, a focusing handle 15, a center adjustment micrometer 16 (see Fig. 6), etc. are arranged in a front-facing position, and the entire unit can be operated from the front. It has a possible horizontal structure.

次に各要部の構造例を第5図以降の各図によつ
て逐次説明する。
Next, structural examples of each main part will be explained one by one with reference to FIG. 5 and subsequent figures.

第5図は試料流通ラインの概要を示しており、
試料液体1を充満する試料容器25に挿入したガ
ラス管18をボールジヨイント19を介して流動
セル2の下部管口に接続し、さらに試料チヤージ
部20、試料バツフア部21を連通して有し、か
つ、前記両部20,21の各上下部に介設した光
電管スイツチ22,23,24を有する透明ガラ
ス製の管路を流動セル2の上部管口に接続させて
試料通過管13が形成される。
Figure 5 shows an overview of the sample distribution line.
A glass tube 18 inserted into a sample container 25 filled with a sample liquid 1 is connected to a lower tube opening of a flow cell 2 via a ball joint 19, and further has a sample charge section 20 and a sample buffer section 21 in communication with each other. , and a transparent glass conduit having phototube switches 22, 23, 24 interposed in the upper and lower parts of both parts 20, 21 is connected to the upper tube opening of the flow cell 2 to form the sample passage tube 13. be done.

この試料通過管13には、電磁弁26、ニード
ル弁27を有する定常測定用管と、電磁弁28を
有し真空ポンプ29に連絡した抽気管と、ニード
ル弁30を有するモニタリング用管とを夫々多岐
的に接続している。
This sample passage tube 13 includes a steady measurement tube having a solenoid valve 26 and a needle valve 27, a bleed tube having a solenoid valve 28 and connected to a vacuum pump 29, and a monitoring tube having a needle valve 30. Connected in many ways.

前記流動セル2は4枚のガラス(材質;バイコ
ール)を歪が少いように十分に研磨して中心部に
矩形断面(20mm×1mm)の試料流動部が形成され
るが、矩形断面に替えて円形断面のものであつて
も良いが投影拡大部4との関係上、矩形断面であ
ることが好ましい。
In the flow cell 2, four pieces of glass (material: Vycor) are sufficiently polished to minimize distortion, and a sample flow part with a rectangular cross section (20 mm x 1 mm) is formed in the center. Although it may have a circular cross section, it is preferable to have a rectangular cross section from the perspective of the projection magnifying section 4.

上述の構成になる試料流通ラインの使用態様は
次の通りである。
The usage of the sample distribution line configured as described above is as follows.

試料容器25中の試料液体1は電磁弁28の開
放により、真空タンク29の抽気作用下でガラス
管18、流動セル2を上昇流した後、試料チヤー
ジ部20、試料バツフア部21を順次上昇流して
試料液面が光電管スイツチ24を横切つた時点に
なると、該スイツチ24の指令により電磁弁28
を閉止させる。
When the electromagnetic valve 28 is opened, the sample liquid 1 in the sample container 25 flows upward through the glass tube 18 and the flow cell 2 under the bleed action of the vacuum tank 29, and then sequentially flows upward through the sample charge section 20 and the sample buffer section 21. When the sample liquid level crosses the phototube switch 24, the solenoid valve 28 is activated by a command from the switch 24.
to close.

しかる後、ニードル弁27を僅かに開いた状態
で電磁弁26を開放せしめて、試料通過管13に
給気を行うと、該管13内に充満している試料液
体1は緩速度にて流下し、前記試料液面は緩やか
に降下し、試料バツフア部21を通過して光電管
スイツチ23を横切る時点になると、該スイツチ
23の指令により演算計数部を作動させる。
Thereafter, when the electromagnetic valve 26 is opened with the needle valve 27 slightly open to supply air to the sample passage tube 13, the sample liquid 1 filling the tube 13 flows down at a slow speed. However, the sample liquid level gradually falls, and when the sample liquid level passes through the sample buffer section 21 and crosses the phototube switch 23, the arithmetic and counting section is activated by a command from the switch 23.

かくして、本測定に入る前の試料充満工程が終
るが、投影拡大部4のモニター画面6を利用して
試料液体1の流下状態を予め監視したい場合に
は、電磁弁26を閉止しておき、ニードル弁30
を僅かに開いて前記光電管スイツチ23を液面が
通過するまでの間、より緩速度下で試料液体1を
流下させるようにすれば良い。
In this way, the sample filling step before starting the actual measurement is completed, but if you wish to monitor the flow state of the sample liquid 1 in advance using the monitor screen 6 of the projection magnifying section 4, the solenoid valve 26 should be closed. needle valve 30
The sample liquid 1 may be allowed to flow down at a slower speed until the liquid level passes through the phototube switch 23 by slightly opening the phototube switch 23.

なお、試料バツフア部21を設けたことによつ
て、上昇流する際のはじめの液体相が流動セル2
に流下するのを本測定したのでは測定誤差が生じ
易い不都合を解消することが可能であり、さらに
抽気による液上昇の過程で試料液体1が誤つて電
磁弁26,28やニードル弁27,30を汚染し
たり、あるいは漏液するなどの好ましくない現象
を排除することが可能となり甚だ好都合である。
In addition, by providing the sample buffer section 21, the initial liquid phase when flowing upward flows into the flow cell 2.
It is possible to eliminate the inconvenience that measurement errors are likely to occur when the actual measurement is carried out as the liquid flows down to This is extremely advantageous because it makes it possible to eliminate undesirable phenomena such as contamination or leakage.

以上の手順が終つた後、電磁弁26を開かせて
本測定のための試料液体1流下動を行わせるが、
この電磁弁26開放は液面が光電管スイツチ23
の部分から降下して光電管スイツチ22を通過す
る時点まで持続させる。
After the above steps are completed, the solenoid valve 26 is opened to allow one sample liquid to flow downward for the actual measurement.
This solenoid valve 26 is opened when the liquid level is the photocell switch 23.
It continues until it descends from the point where it passes through the phototube switch 22.

かくして両スイツチ22,23間に存在する試
料通過管13、試料チヤージ部20の容積が固定
的であり、かつ流下液速度はニードル弁27の開
度に応じた定速となるので定量的、定速的な計測
が可能となることは言う迄もない。
In this way, the volumes of the sample passage tube 13 and the sample charging section 20 that exist between both switches 22 and 23 are fixed, and the velocity of the flowing liquid is constant according to the opening degree of the needle valve 27, so that quantitative and constant Needless to say, rapid measurement becomes possible.

しかして前記流動セル2を垂直に保持するため
の支持台14は第6図々示のセンタ調整機構と、
第7図々示の焦点合わせ機構とによつて左右,前
後に微調整移動可能となつており、マイクロメー
タ16を操作して流動セル2を横切るレーザ光に
対し該流動セル2の光軸合わせが行われ、また、
ハンドル15を操作してピニヨン・ラツクからな
る回転一直線運動変換機構17を介し、前記レン
ズ9(第4図参照)に対するピント合わせが行わ
れる。
The support base 14 for vertically holding the flow cell 2 has a center adjustment mechanism shown in FIG.
The focusing mechanism shown in FIG. 7 allows fine adjustment movements left and right, front and back, and the optical axis of the flow cell 2 is aligned with respect to the laser beam that crosses the flow cell 2 by operating the micrometer 16. is carried out, and
By operating the handle 15, the lens 9 (see FIG. 4) is brought into focus via a rotational linear motion conversion mechanism 17 consisting of a pinion rack.

一方、光学系におけるレーザー光の照度を検出
するための照度検定回路は第8図に示されるが、
前記光電変換素子12が受光によつて発する電気
信号をOPアンプ(OP1)で増幅した後、メータ
Mで確認し得るよう構成している。
On the other hand, the illuminance verification circuit for detecting the illuminance of laser light in the optical system is shown in FIG.
The electrical signal generated by the photoelectric conversion element 12 upon reception of light is amplified by an OP amplifier (OP 1 ) and then can be confirmed by a meter M.

従つてメータMの指示を観察しながらレーザ発
振器3の出力調整を行つて、適正照度の設定を容
易にすることができる。
Therefore, by adjusting the output of the laser oscillator 3 while observing the indication on the meter M, it is possible to easily set the appropriate illuminance.

次に光電変換素子5の一群に関連させて設けた
演算計数部の概要を第9図乃至第11図によつて
説明すると、演算計数部はハイパスフイルタ3
1、アンプ32、コンパレータ33、ワンシヨツ
トマルチ回路34、IC回路35、加算回路36、
カウント37、表示器38からなつており、各構
成要素の機能は次の通りである。
Next, an outline of the arithmetic and counting section provided in relation to a group of photoelectric conversion elements 5 will be explained with reference to FIGS. 9 to 11.
1, amplifier 32, comparator 33, one shot multi circuit 34, IC circuit 35, adder circuit 36,
It consists of a counter 37 and a display 38, and the functions of each component are as follows.

各光電変換素子すなわち各センサ5nからの信
号をハイパスフイルタ31に通して、センサのド
リフト成分、暗電流、光源照度の変化などの低周
波成分を除去し、安定した計数を行えるようにす
る。
Signals from each photoelectric conversion element, that is, each sensor 5n, are passed through a high-pass filter 31 to remove low frequency components such as sensor drift components, dark current, and changes in light source illumination, so that stable counting can be performed.

次いでアンプ32により信号を増幅するととも
に、センサの感度バラツキをそろえるためのゲイ
ン調整を行つた後、コンパレータ33により計数
すべき極微粒子の最低大きさを決めるしきい値の
設定を行い、これにより信号を判定する。
Next, the amplifier 32 amplifies the signal and adjusts the gain to equalize variations in sensor sensitivity, and then the comparator 33 sets a threshold value that determines the minimum size of ultrafine particles to be counted. Determine.

不溶解物を検出したことによりコンパレータ3
3で発生したデイジタル信号に対しワンシヨツト
マルチバイブレータによつて不正カウントを除去
した後、36個のセンサ5…の各情報について加算
回路36で加算し、カウント回路37を介して表
示器38に表示させる。
Comparator 3 is activated due to the detection of insoluble matter.
After removing illegal counts from the digital signals generated in step 3 using a one-shot multivibrator, each piece of information from the 36 sensors 5 is added up in an adding circuit 36 and displayed on a display 38 via a counting circuit 37. let

次に前述の装置を用いて行う測定手段を説明す
る。
Next, the measurement means performed using the above-mentioned apparatus will be explained.

試料容器25中の試料液体1を前述要領によつ
て、試料通過管13に吸上げ、液面が光電管スイ
ツチ24の位置になると電磁弁28を閉止し、こ
の状態を保持したままあるいはニードル弁30を
開いて必要に応じモニタリングを行つた後、レー
ザ発振器3を作動し、かつ焦点合わせハンドル1
5、センタ調整マイクロメータ16の操作でピン
ト・光軸を合わせる一方、レーザー光の照度調整
を行つてしかる後電磁弁26の開放操作によつて
液の流下を開始する。そして液面が光電管スイツ
チ23の位置を通過するのに連動して演算計数部
によりカウントを開始し、液面が光電管スイツチ
22の位置を通過するのに応じてカウントを停止
させる。
The sample liquid 1 in the sample container 25 is sucked up into the sample passage tube 13 in the manner described above, and when the liquid level reaches the position of the phototube switch 24, the solenoid valve 28 is closed, and this state is maintained or the needle valve 30 is closed. After opening and monitoring as necessary, turn on the laser oscillator 3 and turn on the focusing handle 1.
5. After adjusting the focus and optical axis by operating the center adjustment micrometer 16 and adjusting the illuminance of the laser beam, the liquid starts flowing down by opening the solenoid valve 26. Then, when the liquid level passes the position of the phototube switch 23, the arithmetic and counting unit starts counting, and stops counting when the liquid level passes the position of the phototube switch 22.

この間にレーザー光Lの透過によつて、流動セ
ル2内の液流動状態が投影拡大部4に結像され
る。
During this time, the liquid flow state within the flow cell 2 is imaged on the projection magnifying section 4 by the transmission of the laser beam L.

極微小物体の画像は暗点、それ以外の溶液の画
像は明るい視野として表現され、この暗点が光電
変換素子5…を通過するときに計数される。
The image of the microscopic object is represented as a dark spot, and the image of the other solution is represented as a bright visual field, and the dark spots are counted when they pass through the photoelectric conversion elements 5.

ここで極微小物体は流動セル2の断面中任意の
位置を通過するが、流動セル2の断面に対応した
投影拡大部4に対して光電変換素子5の一群が横
断的に配置されているので、その何れかによつて
必らず検出できる。
Here, the microscopic object passes through an arbitrary position in the cross section of the flow cell 2, but since a group of photoelectric conversion elements 5 are arranged transversely to the projection magnification section 4 corresponding to the cross section of the flow cell 2, , it can always be detected by either one of them.

また、微粒子の大小によつて、その結像すなわ
ち暗点の大きさは決まり、従つてその通過に伴つ
て光電変換素子に対する光遮断面の大きさが変化
することができる。
Furthermore, the size of the fine particles determines their image formation, that is, the size of the dark spot, and therefore, the size of the light blocking surface for the photoelectric conversion element can change as the fine particles pass through.

すなわち、大きい微粒子が通過する程、検出信
号の変化が大きくなるので演算計数部におけるコ
ンパレータ33のレベルを適宜調整することによ
り検出対象とする極微小物体の大きさの下限を任
意に設定できる。また、モニター画面6は検出す
べき位置および像のピント合わせの際に極めて有
効である。
That is, as larger particles pass through, the change in the detection signal becomes larger, so by appropriately adjusting the level of the comparator 33 in the arithmetic and counting section, the lower limit of the size of the microscopic object to be detected can be arbitrarily set. Furthermore, the monitor screen 6 is extremely effective in focusing the position and image to be detected.

なお、レーザー光は単波長の単色光であつて、
流動セル2通過時に光の干渉が起生し、像として
モアレが生じやすいものであるから、このために
一つの微粒子に対していくつかの断続的な変化信
号となり、これが計測数値の誤差の原因となるこ
とが考えられる。
Note that laser light is monochromatic light with a single wavelength,
Light interference occurs when passing through the flow cell 2, which tends to cause moiré in the image, resulting in several intermittent changing signals for one particle, which causes errors in measured values. It is possible that

これに対しては、演算計数部に設けたワンシヨ
ツトマルチ回路34がモアレ現象にもとづく不正
カウントを除去する上に機能するので正確な測定
が可能となる。
In response to this, the one-shot multi-circuit 34 provided in the arithmetic and counting section functions to eliminate incorrect counts based on the moiré phenomenon, thus making it possible to perform accurate measurements.

計数が終つて後始末のため、あるいは別の試料
液体との入れ換えのために試料通過管を洗滌する
場合には試料容器25の試料液体を洗滌液に入れ
換えて昇流、降流を繰り返すようにするだけで簡
単にしかも迅速に洗滌が行える。
When cleaning the sample passage tube after counting is finished or for replacing with another sample liquid, replace the sample liquid in the sample container 25 with the cleaning liquid and repeat the rising and falling flow. Cleaning can be done easily and quickly just by doing this.

本発明装置は以上詳記したように、定量・定速
の下で試料液体を流通し得る構造であるために、
計数精度は高く、しかも自動処理によつて計数を
行わせる装置であるので、測定上のバラツキが全
くないし、高速下での測定が可能となつて作業性
の改善効果は著しい。
As detailed above, the device of the present invention has a structure that allows the sample liquid to flow at a constant rate and at a constant rate.
Since the counting accuracy is high and the counting is performed automatically, there is no variation in measurement, and measurement can be carried out at high speeds, resulting in a significant improvement in work efficiency.

さらに光源としてレーザー光を用いているの
で、指向性に富む光源により、確実な結像が得ら
れて、測定精度に関しては従来のヨウ素球、水銀
球利用のものに比して格段にすぐれており、商品
生産メーカーにとつて品質評価を的確にしかも迅
速に行える装置の出現が見られるに至つた点は正
に特筆するに価することである。
Furthermore, since a laser beam is used as the light source, reliable imaging can be obtained due to the highly directional light source, and the measurement accuracy is far superior to those using conventional iodine bulbs and mercury bulbs. It is truly worth noting that a device has emerged that allows product manufacturers to conduct quality evaluations accurately and quickly.

本発明はまた、試料バツフア部21を設けてい
つたん試料チヤージ部20を経、吸上げた試料液
体1を流下させることによつて本測定を行わせて
いるので、上昇流する際のはじめの液体相を測定
に用いないことにより測定精度を高め得るもので
あり、しかも定常測定のための電磁弁および試料
充満のための電磁弁のニードル弁などの付帯機器
が試料液体に接することがなくて全然汚染されな
い利点がある。
The present invention also provides a sample buffer section 21 to carry out the main measurement by causing the sucked up sample liquid 1 to flow down after passing through the sample charge section 20. Measurement accuracy can be improved by not using the liquid phase for measurement, and additional equipment such as the solenoid valve for steady measurements and the needle valve of the solenoid valve for filling the sample does not come into contact with the sample liquid. It has the advantage of not being contaminated at all.

さらに本発明は前面操作勝手の配置構成であつ
て取扱いの簡便がはかれる実用上の利点を有す
る。
Furthermore, the present invention has the practical advantage of being front-operated and easy to handle.

【図面の簡単な説明】[Brief explanation of the drawing]

各図は本発明装置例の態様を夫々示し、第1図
は基本原理説明図、第2図は投影拡大部の概要構
造図、第3図は外観斜視図、第4図は要部示略平
面図、第5図は試料流通ラインの略示構造図、第
6図および第7図は要部構造を示す側面図および
正面図、第8図はレーザー光照度検定回路図、第
9図は演算計数部のブロツク線図、第10図,第
11図は第9図における要部の電気回路図であ
る。 1…試料液体、2…流動セル、3…レーザ発振
器、4…投影拡大部、5…光電変換素子、6…モ
ニター画面、8,10,11…反射ミラー、9…
レンズ、13…試料通過管、20…試料チヤージ
部、21…試料バツフア部、22,23,24…
光電管スイツチ、34…ワンシヨツトマルチ回
路。
Each figure shows an aspect of an example of the device of the present invention, with FIG. 1 being a basic principle explanatory diagram, FIG. 2 being a schematic structural diagram of a projection magnifying section, FIG. 3 being an external perspective view, and FIG. 4 not showing main parts. Plan view, Figure 5 is a schematic structural diagram of the sample distribution line, Figures 6 and 7 are side and front views showing the main structure, Figure 8 is a laser beam illuminance verification circuit diagram, and Figure 9 is a calculation diagram. The block diagram of the counting section, FIGS. 10 and 11, are electrical circuit diagrams of the main parts in FIG. DESCRIPTION OF SYMBOLS 1... Sample liquid, 2... Flow cell, 3... Laser oscillator, 4... Projection enlarger, 5... Photoelectric conversion element, 6... Monitor screen, 8, 10, 11... Reflection mirror, 9...
Lens, 13...Sample passage tube, 20...Sample charge section, 21...Sample buffer section, 22, 23, 24...
Phototube switch, 34...one-shot multi-circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 試料バツフア部21、試料チヤージ部20お
よび流動セル2を順に上下に配し、かつ、連通し
て有すると共に、定常測定用管と抽気管とを試料
バツフア部21に多岐接続してなり、試料バツフ
ア部21まで充満させた試料液体1を定速で垂直
方向に定量流下せしめるための試料通過管13
と、検出部としての前記流動セル2を挾んで装置
本体の左右両側に設けたレーザー発振器3および
投影拡大部4と、レーザー光を屈折させる少くと
も1個の反射ミラー8,10,11と、流動セル
2通過後のレーザー光を拡大するレンズ9とを備
えて、流動セル2にレーザー光を投光し該流動セ
ル2中の流下液流動状態を投影拡大部4に拡大結
像せしめる光学的手段と、その拡大倍率および計
数すべき最大物体の大きさに応じた受光面積を有
し、前記投影拡大部4の拡大投影像有効部分の流
体流下面を横断可能に並列配置した複数個の光電
変換素子5と、それ等光電変換素子5の電気信号
変化を演算計数し、試料液体1中の極微粒子を相
対値として計数するための演算計数部とからなる
ことを特徴とする液体中の極微小物体の計数装
置。
1 A sample buffer section 21, a sample charge section 20, and a flow cell 2 are arranged vertically in this order and communicated with each other, and a steady measurement tube and an air bleed tube are connected to the sample buffer section 21 in various ways. A sample passage tube 13 for allowing the sample liquid 1 filled up to the buffer section 21 to flow down at a constant speed in a vertical direction.
, a laser oscillator 3 and a projection magnifying section 4 provided on both left and right sides of the apparatus main body, sandwiching the flow cell 2 as a detection section, and at least one reflecting mirror 8, 10, 11 that refracts the laser beam. A lens 9 for magnifying the laser beam after passing through the flow cell 2 is provided, and an optical system for projecting the laser beam onto the flow cell 2 and forming an enlarged image of the flowing state of the flowing liquid in the flow cell 2 on the projection magnifying section 4. and a plurality of photoelectrons having a light-receiving area according to the magnification and the size of the maximum object to be counted and arranged in parallel so as to be able to cross the fluid flow surface of the enlarged projection image effective portion of the projection enlarger 4. Ultrafine particles in a liquid comprising a conversion element 5 and a calculation/counting section for calculating and counting changes in the electrical signals of the photoelectric conversion elements 5 and counting the ultrafine particles in the sample liquid 1 as relative values. Small object counting device.
JP790880A 1980-01-25 1980-01-25 Counter for microscopic object in liquid Granted JPS56104233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP790880A JPS56104233A (en) 1980-01-25 1980-01-25 Counter for microscopic object in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP790880A JPS56104233A (en) 1980-01-25 1980-01-25 Counter for microscopic object in liquid

Publications (2)

Publication Number Publication Date
JPS56104233A JPS56104233A (en) 1981-08-19
JPS6314768B2 true JPS6314768B2 (en) 1988-04-01

Family

ID=11678643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP790880A Granted JPS56104233A (en) 1980-01-25 1980-01-25 Counter for microscopic object in liquid

Country Status (1)

Country Link
JP (1) JPS56104233A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123548U (en) * 1986-01-27 1987-08-05
US10132736B2 (en) * 2012-05-24 2018-11-20 Abbvie Inc. Methods for inspection of protein particles in a liquid beneficial agent

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4075462A (en) * 1975-01-08 1978-02-21 William Guy Rowe Particle analyzer apparatus employing light-sensitive electronic detector array
JPS5424683A (en) * 1977-07-26 1979-02-24 Kanebo Ltd Method of counting fine particles in solution

Also Published As

Publication number Publication date
JPS56104233A (en) 1981-08-19

Similar Documents

Publication Publication Date Title
US4075462A (en) Particle analyzer apparatus employing light-sensitive electronic detector array
US5469251A (en) Apparatus for detecting fluorescence of particles in a fluid and analyzing the particles
TWI797296B (en) System and method for inspecting optical power and thickness of ophthalmic lenses immersed in a solution
US4688938A (en) Method and apparatus for determining the contact angle of a drop of liquid placed on a solid or liquid horizontal substrate
CN108332708A (en) Laser leveler automatic checkout system and detection method
US3609043A (en) Spray droplet analyzer
US4402612A (en) Apparatus for detecting foreign particles in a liquid
JPS61159135A (en) Particle analyzing device
JP3102925B2 (en) Particle analyzer
RU2599410C1 (en) Method for measuring height of transparent liquid level and device for its implementation
DE69830323T2 (en) DEVICE AND METHOD FOR DETERMINING THE OPTICAL DISTORTION OF A TRANSPARENT SUBSTRATE
JPH1123447A (en) Compound lens integrating a particle analyzer and a lens element having a plurality of focal positions
US3520609A (en) Method and apparatus for detecting agglutination reactions
JPS62190438A (en) Particle illumination method and particle analyzer using the same
JPS6314768B2 (en)
US3511573A (en) Flow cell structure for particle counting having improved wash
GB2095827A (en) Measurement of diameters of small objects
CN101738164B (en) Method for demarcating four-quadrant detector in real time
JPS6086439A (en) Optical quantifying device of very small quantity
JP2548383B2 (en) Method and apparatus for detecting bubbles in liquid sample
JPH06288895A (en) Particle analyzer
US2966091A (en) Industrial refractometers
JP4346442B2 (en) Method and apparatus for correcting the measurement volume size and / or shape of a chemical and / or biological sample
JPS59166838A (en) Device for measuring refractive index of optical fiber
JPH0627027A (en) Foreign matter inspecting apparatus