[go: up one dir, main page]

JPS63145420A - Heat treatment of pitch carbon yarn - Google Patents

Heat treatment of pitch carbon yarn

Info

Publication number
JPS63145420A
JPS63145420A JP28806186A JP28806186A JPS63145420A JP S63145420 A JPS63145420 A JP S63145420A JP 28806186 A JP28806186 A JP 28806186A JP 28806186 A JP28806186 A JP 28806186A JP S63145420 A JPS63145420 A JP S63145420A
Authority
JP
Japan
Prior art keywords
pitch
bobbin
fibers
yarn
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28806186A
Other languages
Japanese (ja)
Inventor
Katsunori Shimazaki
嶋崎 勝乗
Setsu Nishizawa
西澤 節
Tomoji Takahashi
知二 高橋
Nobuyuki Komatsu
信行 小松
Shuji Yumitori
弓取 修二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP28806186A priority Critical patent/JPS63145420A/en
Publication of JPS63145420A publication Critical patent/JPS63145420A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To efficiently obtain pitch carbon yarn without causing end breakage, crimping of yarn, etc., by winding pitch yarn round a heat-resistant bobbin having electrical conductivity, carbonizing or graphitizing. CONSTITUTION:Pitch yarn is wound round a heat-resistant bobbin (e.g. ceramic bobbin of silicon carbide type, etc.) having electrical conductivity, made infusible under heating, electric current is sent to the bobbin and the carbon yarn is carbonized or graphitized to give pitch carbon yarn.

Description

【発明の詳細な説明】 [産業上の利用分骨] 本発明はピッチ系炭素繊維の熱処理方法に関し、殊にピ
ッチ系炭素繊維を製造する際における不融化処理工程及
び炭素化乃至黒鉛化工程に改良を加え、糸切れ等を生ず
ることなく優れた性能のピッチ系炭素繊維を得ることの
できる簡素化された熱処理方法に関するものである。
[Detailed Description of the Invention] [Industrial Application] The present invention relates to a method for heat treatment of pitch-based carbon fibers, and particularly to an infusible treatment step and a carbonization or graphitization step in producing pitch-based carbon fibers. The present invention relates to a simplified heat treatment method that has been improved and can produce pitch-based carbon fibers with excellent performance without causing yarn breakage or the like.

[従来の技術] 炭素繊維は@量、高強度、高弾性率等の特性を有するも
のである為、色々な原料を用いて製造することが検討さ
れている。これまでに利用されている原料は、レーヨン
、ポリアクリロニトリル(PAN) 、リグニン、ある
いは石炭系や石油系等の各種ピッチ類等であり、原料特
性に応じて色々な製造手段が工夫されている。これらの
中でも市販される程に至っているのは主にレーヨン系炭
素1a維とPAN系炭素1amであり、特に本邦ではP
AN系炭素ia維が主流を占め複合材料用強化材の分野
を中心にして広く利用されている。ところがP A、N
系炭素繊維は原料であるPANが高価格である為炭素繊
維も極めて高価なものとなり、汎用化を妨げる要因の1
つとなっている。又高弾性率という特性の面でも(40
〜50)xlO’にg/mm’が限界であるとされ頭打
ちの現状にある。
[Prior Art] Since carbon fiber has characteristics such as low volume, high strength, and high modulus of elasticity, it is being considered to manufacture it using various raw materials. Raw materials that have been used so far include rayon, polyacrylonitrile (PAN), lignin, and various pitches such as coal-based and petroleum-based pitches, and various manufacturing methods have been devised depending on the characteristics of the raw materials. Among these, the ones that have reached the point of being commercially available are mainly rayon-based carbon 1a fiber and PAN-based carbon 1am, especially in Japan.
AN-based carbon ia fibers are the mainstream and are widely used mainly in the field of reinforcing materials for composite materials. However, P A, N
Because the raw material for carbon fiber, PAN, is expensive, the carbon fiber is also extremely expensive, which is one of the factors that hinders its widespread use.
It is one. Also, in terms of the property of high elastic modulus (40
~50) It is said that g/mm' is the limit for xlO', and the current situation is that it has reached a plateau.

一方ピッチ類を原料とするピッチ系炭素繊維は、原料費
が安価であるところから低価格化の実現という面で大き
な期待が寄せられており、又弾性率の面でも50X 1
0’ Kg/mm”を綴え得るのではないかとの期待が
持たれている。ところがピッチ類を原料とする場合は製
造過程面で色々な問題が残されており、実用化において
立遅れを見せている。以下従来の製造技術を説明する。
On the other hand, pitch-based carbon fiber, which is made from pitches, has high expectations for its low cost due to its low raw material cost, and also has a modulus of elasticity of 50×1.
There are hopes that it will be possible to spell out 0' Kg/mm.However, when pitches are used as raw materials, various problems remain in the manufacturing process, and practical application is delayed. The conventional manufacturing technology will be explained below.

第1の従来法は、ピッチを溶融紡糸していったんボビン
に巻取り、次いでこれを巻戻しつつ繊維束としてから不
融化及び炭素化を行なう方法であり、第2の従来法は、
ボビンへの巻取りを行なわず、紡糸のままで金属製ベル
トコンベア上又は容器中に垂らしてアット・ランダムに
積重ね、その状態で加熱炉内に搬入し不融化及び炭素化
を行なう方法である。ところが紡糸されたままのピッチ
系繊維は極めて弱いものであり、炭素化して高強度化を
達成する迄の取扱いにはかなりの慎重さが要求される。
The first conventional method is a method in which pitch is melt-spun, wound onto a bobbin, and then unwound to form a fiber bundle, which is then infusible and carbonized.
In this method, the spun yarn is not wound onto a bobbin, but is dropped onto a metal belt conveyor or into a container, stacked at random, and transported in that state into a heating furnace to be infusible and carbonized. However, pitch-based fibers as spun are extremely weak and require great care in handling until they are carbonized to achieve high strength.

また炭素°繊維の低価格化という目的達成の為には装置
特に加熱炉の使用効率を高めなければならないという要
請があり、上記第1、第2の従来法はこれらの要請を十
分に満足し得ている訳ではない。例えば第1の従来法で
はピッチ繊維をボビンから巻戻し、束状にして走行させ
つつ不融化及び炭素化を行なう方法であるから、炉長即
ち炉容積が極めて大きくなり、炉体の容積効率が低くな
らざるを得ないとう面がある。即ち不融化工程は、本来
熱可塑性であるピッチ繊維を表面から酸化することによ
って熱硬化性繊維に変換する為の工程であり、一般に2
50〜350℃で1時間程度加熱することによって行な
うものであるから、今仮に室温よりスタートし、10℃
/分の速度で昇温して300℃に至らしめた後1時間の
不融化処理を行なうものとすると(生産fi:10に8
7時間)、この従来法では直線距離に直して約133m
もの炉長が必要となる(但し単繊維径:10μm、密度
1.2 g /cm’ 、繊維束:12×105本)。
In addition, in order to achieve the goal of lowering the price of carbon fiber, there is a need to increase the efficiency of use of equipment, especially heating furnaces, and the above-mentioned first and second conventional methods do not fully satisfy these demands. It's not like I'm getting it. For example, in the first conventional method, the pitch fibers are unwound from the bobbin, bundled, and run while infusible and carbonized, so the furnace length, that is, the furnace volume, becomes extremely large, and the volumetric efficiency of the furnace body decreases. The downside is that it has no choice but to be low. In other words, the infusibility process is a process for converting pitch fibers, which are originally thermoplastic, into thermosetting fibers by oxidizing them from the surface.
This is done by heating at 50 to 350°C for about an hour, so let's say you start at room temperature and raise it to 10°C.
Assuming that the temperature is raised at a rate of 1/min to 300°C, and then the infusibility treatment is performed for 1 hour (production fi: 10 to 8
7 hours), and with this conventional method, the straight line distance is approximately 133 m.
(However, single fiber diameter: 10 μm, density 1.2 g/cm', fiber bundle: 12 x 105).

そこで繊維束を炉内で往復させるという改良を加え容積
効率の低下を防ぐことも考えられているが、往復の為の
Uターン回数を増やせばその分糸切れ回数が増加すると
いう危険もあり、炉内の汚染を招くだけでなく操業停止
に至る場合もある。しかも該第1の方法ではピッチfa
 1fflをボビンから巻戻す過程で糸切れを生じ易い
という欠点があり、又前記の様なUターン法を採用しよ
うとすれば炉内構造が複雑となって設備費及び保守費が
高くなる。また炉体の容積効率がそれによって顕著に改
善される訳でもなく、生産コストの低下に大きく寄与し
得るものでもない、なお走行させる繊維束を太くして糸
切れの防止及び容積効率の向上を図る方法も検討された
が、不融化工程において繊維間に保持された加熱媒体(
一般に空気)が次の炭素化工程に持込まれてトラブルを
発生する原因にもなるので好ましい方法とは言えない。
Therefore, it has been considered to prevent the decrease in volumetric efficiency by making the fiber bundle reciprocate in the furnace, but there is a risk that increasing the number of U-turns for reciprocating will increase the number of yarn breakages. This not only leads to contamination inside the furnace, but also may lead to operational shutdown. Moreover, in the first method, the pitch fa
There is a drawback that thread breakage is likely to occur during the process of unwinding the 1ffl from the bobbin, and if the U-turn method as described above is adopted, the internal structure of the furnace will become complicated, resulting in high equipment and maintenance costs. Furthermore, it does not significantly improve the volumetric efficiency of the furnace body, nor can it significantly contribute to lowering production costs. A heating medium held between fibers in the infusibility process (
This is not a preferable method since air (generally air) may be brought into the next carbonization step and cause trouble.

これに対し前記第2の従来法は糸切れの恐れが少ないと
いう点で極めて有利な方法であるが、炭素化工程におけ
る繊維の不均一な収縮が生じ繊維にちyれを生ずるため
、製品炭素繊維の特性は期待される程のものにならず、
PAN系炭素炭素繊維回ることができない、またこの方
法は第1の従来法に比べると炉体の容積効率は高いが、
これで十分であると評価し得るほどでもなく生産性はま
だまだ低い。なお不融化工程からの加熱媒体の持込みに
よるトラブルについては末法においても同じ様に発生す
る。
On the other hand, the second conventional method is extremely advantageous in that there is less risk of yarn breakage, but since the fibers shrink unevenly during the carbonization process, causing wrinkles in the fibers, the product carbon The properties of the fibers were not as expected;
PAN-based carbon fibers cannot be rotated, and although this method has a higher volumetric efficiency of the furnace body than the first conventional method,
This cannot be considered sufficient and productivity is still low. Incidentally, troubles caused by the heating medium brought in from the infusibility process also occur in the final process.

[発明が解決しようとする問題点コ 本発明は上記の様な事情に着目してなされたものであっ
て、その目的は、ピッチ系炭素繊維を製造する方法にお
いて、特に紡糸繊条の不融化、炭素化、黒鉛化の各工程
で生ずる糸切れの問題を解消し、且つ繊維にちXれを生
じせしめることなく処理を行ない得る様にすることによ
って炭素繊維の性能を高め、更には熱処理に用いる炉体
の容積効率も高めることのできる熱処理方法を提供しよ
うとするものである。
[Problems to be Solved by the Invention] The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a method for producing pitch-based carbon fibers, in particular to infusible spun fibers. By solving the problem of yarn breakage that occurs in each process of carbonization, carbonization, and graphitization, and by making it possible to perform the treatment without causing the fiber to unravel, the performance of carbon fiber can be improved, and furthermore, it can be easily heat treated. The present invention aims to provide a heat treatment method that can also improve the volumetric efficiency of the furnace body used.

[問題点を解決する為の手段] 上記の目的を達成することのできた本発明の構成は、導
電性を有する耐熱性ボビンにピッチ系炭素繊維を巻取り
、そのままの状態で加熱して不融化した後、該ボビンに
直接通電して炭素化乃至黒鉛化するところに要旨を有す
るものである。
[Means for Solving the Problems] The structure of the present invention that has achieved the above object is to wind pitch-based carbon fiber around a conductive heat-resistant bobbin and heat it in that state to make it infusible. After that, the bobbin is directly energized to carbonize or graphitize it.

[作用] 本発明の最大の特徴はボビンに巻取った状態の紡出糸を
そのままで不融化及び炭素化乃至黒鉛化する点にあり、
こうした構成を採用することによって次の様な作用効果
を得ることができる。
[Function] The greatest feature of the present invention is that the spun yarn wound around the bobbin is made infusible and carbonized or graphitized as it is.
By adopting such a configuration, the following effects can be obtained.

0巻戻し時の糸切れが抑えられる(炭素化を終えてから
の巻戻しには糸切れの心配はない)。
Thread breakage when rewinding to 0 is suppressed (there is no need to worry about thread breakage when rewinding after carbonization).

■ボビンを内側からの支えとしているため、繊維が収縮
してもちXれを生ずることがなく、その結果高特性の炭
素繊維が得られる。
- Since the bobbin is supported from the inside, the fibers do not shrink and become loose, resulting in carbon fibers with high properties.

■ピッチ繊維はボビン上に密に巻取られている為小体積
化されており、独立した固体として取扱性が向上すると
共に集積して処理することが可能となる結果、炉体の容
積効率が格段に改善される。
■Pitch fibers are tightly wound on a bobbin, resulting in a small volume, which improves handling as an independent solid and allows for processing in aggregation, increasing the volumetric efficiency of the furnace body. Much improved.

■本発明において使用されるボビンは円筒形であり、発
熱体が円筒形ボビンそのものであるため、ピッチ繊維は
ボビン内から加熱されることになり加熱効率も非常に高
い。
(2) Since the bobbin used in the present invention is cylindrical and the heating element is the cylindrical bobbin itself, the pitch fibers are heated from within the bobbin, and the heating efficiency is also very high.

尚本発明を実施するに当たっては従来の円筒形発熱体を
用いた電気炉内に発熱体の替りに前述のボビンをセット
することによって容易に実施することができる。その際
発熱体との電気抵抗を合わせるためボビンにスリット等
を設けることが好ましい。
The present invention can be easily carried out by setting the aforementioned bobbin in place of the heating element in an electric furnace using a conventional cylindrical heating element. In this case, it is preferable to provide a slit or the like in the bobbin in order to match the electrical resistance with the heating element.

なおボビンの材質については、上記説明の趣旨から明白
な様に、導電性と適度の抵抗発熱性を有する限りその種
類は格別制限されないが、900℃以上の耐熱性を有す
るものが好ましい。これは本発明の炭素化処理が850
℃以上で行なわれることを考慮したからであってより確
実には現実に実施する炭素化温度以上の耐熱性を有する
ものであることが望まれる。なお炭素化温度が850℃
未満であると炭素化の進行が不十分でありピッチ系炭素
繊維としての希望特性が得られない。
As is clear from the above description, the material of the bobbin is not particularly limited as long as it has electrical conductivity and appropriate resistance heating properties, but it is preferably one that has heat resistance of 900° C. or higher. This is because the carbonization treatment of the present invention is 850%
This is because it takes into consideration that the carbonization process is carried out at a temperature of 0.degree. Note that the carbonization temperature is 850℃
If it is less than that, the progress of carbonization will be insufficient and the desired properties as a pitch-based carbon fiber will not be obtained.

なお本発明で用いられる円筒型ボビンの素材としては炭
素買若しくは黒鉛質のものが最も一般的であるが、この
他炭化ケイ素等のセラミックスの如く適度の導電性を有
し、且つ適度の電気抵抗を有して通電加熱することので
きるものであれば、どの様な耐熱性素材を使用してもよ
い。またこのボビンには前述の如くスリットや丸孔等を
設けることが推奨されるが、その目的は発熱体としての
電気抵抗値を調整するためのものであるから、形態保持
性に悪影響を与えない限り形状、向き、大きさ、数等は
一切限定されない、但しピッチ繊維の巻装内面と加熱媒
体とを十分に接触させて加熱効率を高める為には、ボビ
ン全表面に対しピッチ繊維の巻装内面が20%以上の面
積率となる様にすることが望まれ、ボビン強度に悪影響
を与えないという観点からは80%以下に抑制すべきで
ある。なお溶融紡糸条件、ピッチ繊維の太さ、不融化処
理条件、炭素化処理条件等については、従来法並びに今
後開発される方法に従えば良く、本発明においては格別
の制限が与えられる訳ではない。又ピッチ繊維の原料と
しては、レジナスピッチ、コールタールピッチ、石油ピ
ッチなどが利用される。
The most common material for the cylindrical bobbin used in the present invention is carbon fiber or graphite, but other materials such as ceramics such as silicon carbide, which have appropriate conductivity and appropriate electrical resistance, may also be used. Any heat-resistant material may be used as long as it can be heated with electricity. Additionally, it is recommended to provide slits, round holes, etc. in this bobbin as mentioned above, but since the purpose of this is to adjust the electrical resistance value as a heating element, it will not adversely affect shape retention. There are no limitations on the shape, direction, size, number, etc. However, in order to increase the heating efficiency by making sufficient contact between the inner surface of the pitch fiber wrapping and the heating medium, it is necessary to wrap the pitch fiber around the entire surface of the bobbin. It is desirable that the inner surface has an area ratio of 20% or more, and from the viewpoint of not adversely affecting the bobbin strength, it should be suppressed to 80% or less. Regarding the melt spinning conditions, pitch fiber thickness, infusibility treatment conditions, carbonization treatment conditions, etc., conventional methods and methods to be developed in the future may be followed, and there are no particular limitations in the present invention. . Further, as raw materials for pitch fibers, resinous pitch, coal tar pitch, petroleum pitch, etc. are used.

[実施例] 実施例1 市販の石炭系中ピッチに、テトラヒドロキノリン100
重量部を加え、450℃で20分間然処理した。得られ
たピッチを、10mm)Igの減圧下、460℃で20
分間処理して軟化点280tの紡糸ピッチを得た。この
紡糸ピッチを360’eで紡糸し、市販の等方性黒鉛製
の内径107mm、外径110mm、長さ250mmの
円筒形ボビンに巻取りピッチ繊維を得た。このボビンに
は、軸方向に沿って、長さ210mm、幅5■のスリッ
トがほぼ等間隔で34本設けられている0巻取られたピ
ッチ繊維の重量は、210gであフた。ボビンに巻取ら
れた該ピッチ繊維を、そのままの状態で不融化炉に送り
込み不融化を行なった。不融化条件は、昇温速度10℃
/win、300t:で1時間とした。得られた不融化
繊維をボビンに巻いたままそのボビンに通電し、N2雰
囲気下界温速度1゜’e/ll1in 1900℃で5
分間保持して炭素繊維を得た。この炭素繊維の機械的特
性は、引張強度160〜180にg/am、引張弾性率
(15〜17 ) x 103Kg/am”であった。
[Example] Example 1 Tetrahydroquinoline 100 was added to commercially available coal-based medium pitch.
Parts by weight were added, and the mixture was incubated at 450°C for 20 minutes. The resulting pitch was heated at 460 °C under a reduced pressure of 10 mm) Ig for 20
A spinning pitch with a softening point of 280t was obtained by processing for a minute. This spinning pitch was spun at 360'e, and a pitch fiber was obtained by winding it onto a cylindrical bobbin made of commercially available isotropic graphite and having an inner diameter of 107 mm, an outer diameter of 110 mm, and a length of 250 mm. This bobbin was provided with 34 slits having a length of 210 mm and a width of 5 cm at approximately equal intervals along the axial direction.The weight of the zero-wound pitch fiber was 210 g. The pitch fibers wound around a bobbin were fed as they were into an infusibility furnace to be infusible. The infusibility conditions are a heating rate of 10°C.
/win, 300t: for 1 hour. The obtained infusible fibers were wound around a bobbin and the bobbin was energized, and the bobbin was heated at 1900°C at a boundary temperature rate of 1°'e/ll1in in an N2 atmosphere.
The carbon fibers were obtained by holding for a minute. The mechanical properties of this carbon fiber were a tensile strength of 160 to 180 g/am and a tensile modulus of (15 to 17) x 103 kg/am.

また得られた炭素la維は、表面と、該表面から2II
Tl程下の層にivJ所ずつ糸切れがあった他は、完全
な連続ia維であった。
In addition, the obtained carbon la fibers have a surface and a 2II
The fibers were completely continuous IA fibers, except for the fiber breakage at ivJ locations in the layer below Tl.

実施例2 実施例1と全く同様にして得られた紡糸ピッチを、溶融
紡糸により炭化ケイ素系円筒形セラミックボビン(内径
107 ma+、外径115mm、長さ250 mm)
に巻取りピッチ繊維を得た。用いたセラミックボビンに
は、直径10m+oの穴が150個設けられている。巻
取られたピッチ繊維の重量は195gであった。このピ
ッチ繊維をボビンに巻いたまま不融化炉に送り込み、昇
温速度10℃/win、300℃で1時間保持し不融化
を行なった。次いでこの状態で炭素化炉に送り込み、N
2雰囲気下昇温速度10℃/win%1300℃で5分
間保持して炭素繊維を得た。この炭素繊維の機械的強度
を測定したところ、引張強度は230〜250にg/m
m’、引張弾性率は(24〜25)X10”にg/mm
”であった。また得られた繊維は、表面に2箇所の糸切
れがあった、のみで他は完全な連U繊維であった。
Example 2 The spinning pitch obtained in exactly the same manner as in Example 1 was melt-spun into a silicon carbide-based cylindrical ceramic bobbin (inner diameter 107 ma+, outer diameter 115 mm, length 250 mm).
A pitch fiber was obtained by winding. The ceramic bobbin used was provided with 150 holes with a diameter of 10 m+o. The weight of the wound pitch fiber was 195 g. This pitch fiber was fed into an infusibility furnace while being wound around a bobbin, and was held at 300° C. for 1 hour at a temperature increase rate of 10° C./win to infusible. Next, it is sent to a carbonization furnace in this state, and N
Carbon fibers were obtained by holding the carbon fibers at a heating rate of 10° C./win% of 1300° C. for 5 minutes under two atmospheres. When the mechanical strength of this carbon fiber was measured, the tensile strength was 230 to 250 g/m.
m', tensile modulus is (24-25) x 10'' g/mm
The fibers obtained had only two breaks on the surface, and the rest were completely continuous U fibers.

比較例1 実施例1と全く同様にして得た紡糸ピッチを溶融紡糸に
より塩化ビニール製円筒ボビン(内径107 mm、外
径110ma+、長さ250fflI11)に巻取りピ
ッチ繊維を得た。これをボビンの軸方向に沿って切り、
長さ約350mm(ボビンの外円周長)のピッチ繊維束
190gを得た。これを不融化炉に送り込み、実施例1
と全く同じ条°件で不融化した。その結果、不融化炉内
の空気気流によりtaiiの一部が乱れて吹き飛ばされ
た。この不融化繊維を炭素化炉に入れN2雰囲気下昇温
速度10℃/min 、 1300℃で5分間保持して
炭素繊維を得た。この炭素繊維の機械的強度を測定した
ところ、引張強度は150〜180にg/mm2、引張
弾性率は(18〜20) X 10’にg/mmであり
、実施例2で得た炭素繊維に比較して明らかに劣ってい
た。また得られた炭素繊維には、ちぢれが見受けられた
Comparative Example 1 Spun pitch obtained in exactly the same manner as in Example 1 was wound into a vinyl chloride cylindrical bobbin (inner diameter 107 mm, outer diameter 110 ma+, length 250 fflI11) by melt spinning to obtain pitch fibers. Cut this along the axial direction of the bobbin,
190 g of pitch fiber bundles having a length of about 350 mm (outer circumference of the bobbin) were obtained. This was sent to an infusibility furnace and Example 1
It was made infusible under exactly the same conditions. As a result, a part of the taii was disturbed and blown away by the air flow inside the infusibility furnace. This infusible fiber was placed in a carbonization furnace and held at 1300°C for 5 minutes at a temperature increase rate of 10°C/min under N2 atmosphere to obtain carbon fiber. When the mechanical strength of this carbon fiber was measured, the tensile strength was 150 to 180 g/mm2, and the tensile modulus was (18 to 20) x 10' g/mm. was clearly inferior to that of In addition, wrinkles were observed in the obtained carbon fiber.

[発明の効果] 本発明は以上の様に構成されており、その効果を要約す
ると次の通りである。
[Effects of the Invention] The present invention is configured as described above, and its effects are summarized as follows.

■紡糸巻取り後における巻戻しを行なわないので糸切れ
を生ずる恐れがなく、操作も非常に簡略化される。
(2) Since there is no unwinding after spinning and winding, there is no fear of yarn breakage, and the operation is extremely simplified.

■熱処理時における繊維の収縮によるちyれの発生がな
くなり、炭素繊維製品の物性は一段と高められる。
- No more sagging due to fiber shrinkage during heat treatment, and the physical properties of carbon fiber products are further improved.

■ピッチ繊維をボビンに巻いたままの状態で取扱う方法
であるから、取扱性が良好である他、熱処理設備等も小
型化することができ炉体の容積効率も大幅に向上する。
■Since this method handles the pitch fibers while still being wound around the bobbin, it is easy to handle, and the heat treatment equipment can also be downsized, greatly improving the volumetric efficiency of the furnace body.

■ボビン自体が加熱用の発熱体となっているので熱効率
が高い。
■High thermal efficiency as the bobbin itself is a heating element.

Claims (1)

【特許請求の範囲】[Claims] 導電性を有する耐熱性ボビンにピッチ系炭素繊維を巻取
り、そのままの状態で加熱して不融化した後、該ボビン
に直接通電して炭素化乃至黒鉛化することを特徴とする
ピッチ系炭素繊維の熱処理方法。
A pitch-based carbon fiber characterized in that the pitch-based carbon fiber is wound around a conductive heat-resistant bobbin, heated as it is to make it infusible, and then carbonized or graphitized by directly applying electricity to the bobbin. heat treatment method.
JP28806186A 1986-12-02 1986-12-02 Heat treatment of pitch carbon yarn Pending JPS63145420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28806186A JPS63145420A (en) 1986-12-02 1986-12-02 Heat treatment of pitch carbon yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28806186A JPS63145420A (en) 1986-12-02 1986-12-02 Heat treatment of pitch carbon yarn

Publications (1)

Publication Number Publication Date
JPS63145420A true JPS63145420A (en) 1988-06-17

Family

ID=17725327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28806186A Pending JPS63145420A (en) 1986-12-02 1986-12-02 Heat treatment of pitch carbon yarn

Country Status (1)

Country Link
JP (1) JPS63145420A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335624A (en) * 2005-06-06 2006-12-14 Denso Corp Method and apparatus for manufacturing carbon nanotube fiber
JP2017536486A (en) * 2014-10-08 2017-12-07 ジョージア テック リサーチ コーポレイション Use, stabilization, and carbonization of polyacrylonitrile / carbon composite fibers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335624A (en) * 2005-06-06 2006-12-14 Denso Corp Method and apparatus for manufacturing carbon nanotube fiber
JP2017536486A (en) * 2014-10-08 2017-12-07 ジョージア テック リサーチ コーポレイション Use, stabilization, and carbonization of polyacrylonitrile / carbon composite fibers

Similar Documents

Publication Publication Date Title
JPH022975B2 (en)
JPS63145420A (en) Heat treatment of pitch carbon yarn
US4574077A (en) Process for producing pitch based graphite fibers
JP4392433B2 (en) Method for producing carbonized fabric
JPS6220281B2 (en)
JPH0737687B2 (en) Pitch-based carbon fiber manufacturing method
EP0098025B1 (en) Process for producing polyacrylonitrile-based carbon fiber
JPS62117817A (en) Production of pitch based carbon fiber
JPS60126324A (en) Method for manufacturing carbon fiber bundles with well-aligned filaments
JPS5976926A (en) Modification of carbon fiber
JP2695355B2 (en) Carbon fiber production method
JP2930166B2 (en) Carbon fiber production method
JPS6081320A (en) Manufacture of carbon fiber
CN109056119B (en) A method for preparing mesophase pitch-based graphite fibers with improved properties by high temperature tensioning
JP2708684B2 (en) Pitch-based carbon fiber bundle
JPH0617319A (en) Method for manufacturing pitch-based carbon fiber
JPH03146717A (en) Pitch-based carbon fiber having high elongation and high strength
JPS5930917A (en) Method for producing tow-like carbon fiber from pitch
JP2004156194A (en) Method for producing carbon nano-fiber
CN115961384A (en) Preparation method of carbon nanotube fiber
JP2008169495A (en) Method for producing carbonized fabric and carbonized fabric obtained thereby
JPS6262915A (en) Manufacturing method of pitch carbon fiber
JPS59168123A (en) Preparation of pitch carbon yarn
JP2023097510A (en) Manufacturing method of gas diffusion electrode base material
JPS62177220A (en) Manufacturing method of pitch carbon fiber