[go: up one dir, main page]

JPS63144724A - Reactive power compensator - Google Patents

Reactive power compensator

Info

Publication number
JPS63144724A
JPS63144724A JP61288955A JP28895586A JPS63144724A JP S63144724 A JPS63144724 A JP S63144724A JP 61288955 A JP61288955 A JP 61288955A JP 28895586 A JP28895586 A JP 28895586A JP S63144724 A JPS63144724 A JP S63144724A
Authority
JP
Japan
Prior art keywords
voltage
circuit
sampling
reactive power
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61288955A
Other languages
Japanese (ja)
Other versions
JPH0744787B2 (en
Inventor
知治 中村
色川 裕之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Hitachi Ltd
Original Assignee
Electric Power Development Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Hitachi Ltd filed Critical Electric Power Development Co Ltd
Priority to JP61288955A priority Critical patent/JPH0744787B2/en
Priority to US07/127,904 priority patent/US4891570A/en
Priority to CA000553349A priority patent/CA1289190C/en
Publication of JPS63144724A publication Critical patent/JPS63144724A/en
Publication of JPH0744787B2 publication Critical patent/JPH0744787B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は無効電力補償装置に係り、特に系統電圧を検出
して制御を行う静止形無動電力補償装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a reactive power compensator, and particularly to a static non-dynamic power compensator that detects and controls system voltage.

〔従来の技術〕[Conventional technology]

一般に需要家設備用の静止形無動電力補償装置(以下S
vCと略記する)は、系統の実際の無効電力を検出して
無効電力制御を行うが、電力系統用の場合は設置点の無
効電力量を規定できないので、系統電圧を検出して制御
を行うようにしている。
Generally, static non-active power compensator (hereinafter referred to as S) for customer equipment
(abbreviated as vC) detects the actual reactive power of the grid and performs reactive power control, but in the case of power grid applications, the amount of reactive power at the installation point cannot be specified, so control is performed by detecting the grid voltage. That's what I do.

第2図はこの電圧制御形のSvCの構成を示すもので、
降圧用変圧器5.リアクトル4.サイリスタバルブ3.
及び制御装置70から成っている。
Figure 2 shows the configuration of this voltage-controlled SvC.
Step-down transformer5. Reactor 4. Thyristor valve 3.
and a control device 70.

また進相補償を必要とする場合には、進相補償用コンデ
ンサ2を設置する。
Further, if phase advance compensation is required, a phase advance compensation capacitor 2 is installed.

第2図に於て、送電線100の系統電圧Vは、電圧変成
器13を介して電圧検出回路17へとり込まれる。ここ
ではまず電圧変換回路30で制御装置内の処理に適した
電圧レベルに変換され、余波整流回路31で整流され、
実効値変換回路32で実効値(またはピーク値)に変換
される。このように変換された系統電圧は、電圧設定器
18で作られた電圧設定値vrと減算回路14で比較さ
れ、その差電圧εVが電圧制御回路15の入力となる。
In FIG. 2, the system voltage V of the power transmission line 100 is taken into the voltage detection circuit 17 via the voltage transformer 13. Here, the voltage is first converted to a voltage level suitable for processing within the control device by the voltage conversion circuit 30, and then rectified by the aftereffect rectification circuit 31.
The effective value conversion circuit 32 converts it into an effective value (or peak value). The system voltage converted in this way is compared with the voltage setting value vr created by the voltage setter 18 in the subtraction circuit 14, and the difference voltage εV is input to the voltage control circuit 15.

電圧制御回路15の出力は、自動パルス移相器16で対
応した位相のパルスに変換され、サイリスタバルブ3の
点弧パルスとなる。このような回路構成に於て、系統電
圧Vが大きくなると偏差電圧εVが大きくなり、電圧制
御回路15の出力も大きくなり、その結果リアクトル4
に流れる遅れ無効電力が大きくなるようにサイリスタバ
ルブ3が制御され、系統電圧Vを下降させるように作動
する。逆に系統電圧Vが下った時は、上記と逆の動作で
リアクトル4に流れる無効電力が小さく3) くなるよう制御され、系統電圧■を上昇させるように作
動する。このようなSvCの電圧変動を抑制する能力は
、電圧制御回路15の前向きゲインKAが大きい程大き
くなり、一般にはこのゲインは数10程度に設定されて
いて、わずかな系統電圧の変動に対しても敏感に応動す
る。
The output of the voltage control circuit 15 is converted into a pulse with a corresponding phase by an automatic pulse phase shifter 16, and becomes a firing pulse for the thyristor valve 3. In such a circuit configuration, when the system voltage V increases, the deviation voltage εV increases, the output of the voltage control circuit 15 also increases, and as a result, the reactor 4
The thyristor valve 3 is controlled so as to increase the delayed reactive power flowing to the thyristor valve 3, and operates to lower the system voltage V. On the contrary, when the system voltage V drops, the reactive power flowing to the reactor 4 is controlled to be small (3) by the operation opposite to the above, and the system operates to increase the system voltage (3). The ability to suppress such voltage fluctuations of SvC increases as the forward gain KA of the voltage control circuit 15 increases. Generally, this gain is set to about several 10, so that it can suppress even slight fluctuations in the system voltage. also responds sensitively.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

系統電圧には1通常高調波酸分が含まれるが、特に進相
補償用コンデンサの設置等により、低次の高調波の含有
率が大きくなる。これら高調波のうち偶数調波成分は、
第3図に示すように、正半波と負半波のピーク値が異な
るように作用することがある。即ち、第3図(a)のよ
うに基本成分Vzに第二次高調波成分v2が図のような
位相で含まれていると、系統電圧V=Vt +V2  
(実線の曲線)の正のピーク値IVP++  より負の
ピーク値IVP−1の方が大きくなることがある。この
様な状態で電圧Vを全波整流し平滑すると、同図(b)
のV RE(!で示したように、基本波成分のリップル
が生じ、このため減算器14の出力εVも基本波成分で
振動し、従ってSvCの出力も振動することになる。例
えば第2高調波が0.5%含まれ、電圧制御回路15の
前向きゲイン20のときは、第3図(b)のΔv2は基
本波Vxの振幅の1%となり、出力変換は基本波v1の
振幅の20%にも達する。系統条件によっては、このよ
うな変動が制御不安定の原因となることがある。
The system voltage normally contains one harmonic acid component, but the content of lower harmonics increases especially due to the installation of phase advance compensation capacitors. Among these harmonics, even harmonic components are
As shown in FIG. 3, the positive half-wave and the negative half-wave may act so that their peak values are different. That is, if the fundamental component Vz includes the second harmonic component v2 with the phase shown in the figure as shown in FIG. 3(a), the system voltage V=Vt +V2
The negative peak value IVP-1 may be larger than the positive peak value IVP++ (solid curve). If the voltage V is full-wave rectified and smoothed under such conditions, the result will be as shown in the same figure (b).
As shown by V RE (!), a ripple occurs in the fundamental wave component, and therefore the output εV of the subtractor 14 also oscillates with the fundamental wave component, and therefore the output of SvC also oscillates.For example, the second harmonic When 0.5% of the wave is included and the forward gain of the voltage control circuit 15 is 20, Δv2 in FIG. 3(b) is 1% of the amplitude of the fundamental wave Vx, and the output conversion is 20% of the amplitude of the fundamental wave V1. Depending on system conditions, such fluctuations may cause control instability.

偶数調波の影響を無くす手段としては、一般にはバンド
パスフィルターを設置したり、整流回路の時定数を十分
長くする方法などがあるが、これらの方法では、検出時
間が遅くなり、SvCシステム全体の応答を悪くするこ
とになり好ましくない。
Generally, there are ways to eliminate the effects of even harmonics, such as installing a bandpass filter or making the time constant of the rectifier circuit sufficiently long, but these methods slow down the detection time and reduce the overall SvC system. This is undesirable as it will make the response worse.

本発明の目的は、電圧制御形のSvCに於て、検出遅れ
が少なく、かつ系統電圧に含まれる偶数調波による出力
変動も防止できる静止形無動電力補償装置を提供するに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a static non-dynamic power compensator in voltage-controlled SvC that has less detection delay and can also prevent output fluctuations due to even harmonics included in the system voltage.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的は、系統から検出され整流された電圧を、系
統電圧の基本波成分の一周期にわたって積分する積分手
段を設けることにより達成される。
The above object is achieved by providing an integrating means for integrating the rectified voltage detected from the grid over one period of the fundamental wave component of the grid voltage.

〔作用〕[Effect]

系統電圧に偶数調波成分が含まれているために生ずる整
流出力のリップルは、系統電圧の基本波の一周期又はそ
の整数分の−の周期を有しているから、整流出力を基本
波の一周期にわたって積分すれば上記リップル成分は完
全に平滑されてリップルが除去され、かつその積分時間
も必要な範囲の最小値であって十分に小さく、SvCの
応答遅れを十分小さくできる。
The ripple of the rectified output caused by the even harmonic component included in the grid voltage has a period of one period of the fundamental wave of the grid voltage or a period of - an integer of the fundamental wave. When integrated over one period, the ripple component is completely smoothed and ripples are removed, and the integration time is also a minimum value within the necessary range and is sufficiently small, so that the response delay of SvC can be sufficiently reduced.

〔実施例〕〔Example〕

以下1本発明を実施例によって詳細に説明する。 Hereinafter, the present invention will be explained in detail by way of examples.

本装置の全体構成は第2図と同じであるが、電圧検出回
路17が第11!lに示した回路で構成される。
The overall configuration of this device is the same as that shown in FIG. 2, but the voltage detection circuit 17 is the 11th! It consists of the circuit shown in 1.

即ち、サンプルホールグー33.余波整流回路31(絶
対値回路ABS)、バッファレジスタ321、タイミン
グ回路322.加算回路323から構成されている。
That is, sample hole goo 33. Aftermath rectifier circuit 31 (absolute value circuit ABS), buffer register 321, timing circuit 322. It is composed of an adder circuit 323.

このような構成に於て、まずサンプルホルダー33で、
例えば電気角30度毎に電圧変換回路30の出力VTを
とり込む。このとり込んだ電圧波形は、第4図(a)の
実線の波形を30度毎にサンプリングしたものである。
In such a configuration, first, in the sample holder 33,
For example, the output VT of the voltage conversion circuit 30 is taken in every 30 electrical degrees. This captured voltage waveform is obtained by sampling the solid line waveform in FIG. 4(a) every 30 degrees.

但し第4図(a)は第3図(a)と全く同じ位相関係で
二次の高調波成分が重畳した場合としている。続いて絶
対値回路31でこのとり込んだ電圧のサンプリング値を
余波整流し、その出力をバッファレジスタ321のn番
目にV(n)として入力する。但しこの入力の際には、
入力に先立ってバッファレジスタ321のn−10番目
をn−11番目に、n−9番目をn−10番目に・・・
・・・というように、順次占いデータから1つずつレジ
スタの入れ替えを行い、n番目のレジスタを空けておく
。バッファレジスタ321は12個のレジスタを持って
いるから。
However, FIG. 4(a) shows a case where second-order harmonic components are superimposed with exactly the same phase relationship as FIG. 3(a). Subsequently, the absolute value circuit 31 performs aftereffect rectification of the taken-in voltage sampling value, and the output thereof is inputted to the nth buffer register 321 as V(n). However, when inputting this,
Prior to input, the n-10th of the buffer register 321 is changed to the n-11th, the n-9th is changed to the n-10th, etc.
. . . The registers are sequentially replaced one by one from the fortune-telling data, and the nth register is left vacant. This is because the buffer register 321 has 12 registers.

上記のようにして30度毎のサンプリングデータV (
n−1) 、 V (n−10) 、・・・・・・V 
(n)の12個を格納すると、系統電圧基本波の1サイ
クル分のデータがそろい、それは第4図(b)の実線曲
線Vaをサンプリングしたものに相当する。
The sampling data V (
n-1), V (n-10),...V
When 12 items of (n) are stored, data for one cycle of the grid voltage fundamental wave is complete, which corresponds to the sampling of the solid curve Va in FIG. 4(b).

次にこの1サイクル分のデータの総和を加算器323で
求めると、その出力Vsは、適当な係数を掛ける事によ
り、電圧Vaの1サイクル分の積分値、つまり電圧Va
の実効値となる。しかも二次、四次、・・・・・・等の
高調波成分が整流出力、即ち電圧Vaに影響を与えてい
ても、そのリップル分は必ず基本波の周期をもつ周期波
であるから、上記積分値Vsにはリップル成分は現れず
、安定な無効電力の制御が可能となる。しかもこの積分
の時間(基本波1サイクル分)は、リップル成分除去に
必要な最小の時間で十分小さいから、SvCの応答遅れ
は最小限にすることができる。
Next, when the sum of data for one cycle is calculated by the adder 323, the output Vs is multiplied by an appropriate coefficient to obtain the integral value for one cycle of the voltage Va, that is, the voltage Va
is the effective value of Moreover, even if harmonic components such as second order, fourth order, etc. affect the rectified output, that is, the voltage Va, the ripple component is always a periodic wave with the period of the fundamental wave. No ripple component appears in the integral value Vs, allowing stable control of reactive power. Moreover, the time for this integration (one cycle of the fundamental wave) is the minimum time required to remove the ripple component and is sufficiently short, so the response delay of the SvC can be minimized.

なお、本実施例では、他の高調波成分が含まれていると
き、電圧検出値Vsは、基本成分の実効値から多少ずれ
ている場合がある。一方、SvCそのものは、系統電圧
の絶対値を制御するものではなく、その変動分を抑制す
ることが主目的となる。そこで第2図に於ては、SvC
の平均出力を規定する設定器19と、この出力と実際の
電圧制御回路15の出力を比較する減算器20と、減算
器20の出力を積分する積分器21を備え、電圧制御回
路15の出力QAと設定器19の出力Qzとの差を減算
器20で求め、その偏差ΔQを積分器21で積分し、こ
の出力Vz を電圧設定値Vrから差引くことにより、
常にΔQが零に近付くように、vrに対し補正がかかる
。このようにしてSvCの平均的な出力を、常に与えら
けた設定レベルQ、近辺に維持することにより、先の電
圧検出回路17出力の直流分誤差の影響を無くすること
ができる。
Note that in this embodiment, when other harmonic components are included, the voltage detection value Vs may deviate somewhat from the effective value of the fundamental component. On the other hand, SvC itself does not control the absolute value of the grid voltage, but its main purpose is to suppress its fluctuations. Therefore, in Figure 2, SvC
, a subtracter 20 that compares this output with the actual output of the voltage control circuit 15 , and an integrator 21 that integrates the output of the subtracter 20 . By finding the difference between QA and the output Qz of the setting device 19 with a subtracter 20, integrating the deviation ΔQ with an integrator 21, and subtracting this output Vz from the voltage setting value Vr,
Correction is applied to vr so that ΔQ always approaches zero. In this way, by always maintaining the average output of SvC near the given set level Q, it is possible to eliminate the influence of the aforementioned DC component error of the output of the voltage detection circuit 17.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、系統に低次の高調波が含まれている場
合においても、大きな電圧検出遅れを生ずることがなく
、リップルの無い電圧検出もできるので、安定なSvC
の運転を確保できるという効果がある。
According to the present invention, even when low-order harmonics are included in the system, there is no large voltage detection delay and ripple-free voltage detection is possible, so stable SvC
This has the effect of ensuring the operation of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の特徴とする電圧検出回路の実施例を示
す図、第2図は静止形無動電力補償装置の全体構成を示
すブロック図、第3図は従来装置の電圧検出回路の動作
波形を示す図、第4図は第1図の回路の動作波形を示す
図である。 2・・・進相補償コンデンサ、3・・・サイリスタバル
ブ、4・・・リアクトル、14・・・減算器、15・・
・電圧制御回路、16・・・自動パルス移相器、17・
・・電圧検出回路、31・・・余波整流回路(絶対値回
路) 、321・・・バッファレジスタ、33・・・サ
ンプルホルダー、322・・・タイミング回路、323
・・・加算回路。
Fig. 1 is a diagram showing an embodiment of a voltage detection circuit which is a feature of the present invention, Fig. 2 is a block diagram showing the overall configuration of a static static power compensator, and Fig. 3 is a diagram showing a voltage detection circuit of a conventional device. FIG. 4 is a diagram showing operating waveforms of the circuit of FIG. 1. 2... Phase advance compensation capacitor, 3... Thyristor valve, 4... Reactor, 14... Subtractor, 15...
・Voltage control circuit, 16... automatic pulse phase shifter, 17.
... Voltage detection circuit, 31... Aftermath rectifier circuit (absolute value circuit), 321... Buffer register, 33... Sample holder, 322... Timing circuit, 323
... Addition circuit.

Claims (1)

【特許請求の範囲】[Claims] 1、調相用リアクトルと、該リアクトルに流れる電流を
制御できるスイッチング素子と、調相の対象とする電力
系統の系統電圧を検出する電圧検出手段と、該手段によ
る電圧検出値と予め設定した基準電圧との偏差が零とな
るように上記スイッチング素子を駆動制御する制御手段
とを有した無効電力補償装置に於て、上記電圧検出手段
を、系統電圧をサンプリングしてとり込むためのサンプ
ルホルダーと、該サンプルホルダーによりとり込まれた
サンプリング電圧の絶対値を算出する絶対値回路と、該
回路により得られたサンプリング電圧の絶対値を系統電
圧中の基本波成分の1サイクル分格納できるバッファメ
モリーと、該バッファメモリー内の上記1サイクル分の
サンプリング電圧の絶対値の和を算出することによつて
系統電圧の検出値を出力するところの加算手段と、上記
サンプルホルダー、バッファメモリー、及び加算手段の
動作タイミングを与えるタイミング回路とから構成した
ことを特徴とする無効電力補償装置。
1. A reactor for phase adjustment, a switching element that can control the current flowing through the reactor, a voltage detection means for detecting the grid voltage of the power system that is the target of phase adjustment, and a voltage detection value by the means and a preset standard. In the reactive power compensator, the voltage detection means is provided with a sample holder for sampling and taking in the system voltage, and a control means for driving and controlling the switching element so that the deviation from the voltage becomes zero. , an absolute value circuit that calculates the absolute value of the sampling voltage taken in by the sample holder, and a buffer memory that can store the absolute value of the sampling voltage obtained by the circuit for one cycle of the fundamental wave component in the system voltage. , an adding means for outputting a detected value of the grid voltage by calculating the sum of the absolute values of the sampling voltages for one cycle in the buffer memory; and the sample holder, the buffer memory, and the adding means. A reactive power compensator comprising a timing circuit that provides operation timing.
JP61288955A 1986-12-05 1986-12-05 Reactive power compensator Expired - Lifetime JPH0744787B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61288955A JPH0744787B2 (en) 1986-12-05 1986-12-05 Reactive power compensator
US07/127,904 US4891570A (en) 1986-12-05 1987-12-02 Static var compensator with thyristor control
CA000553349A CA1289190C (en) 1986-12-05 1987-12-02 Static var compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61288955A JPH0744787B2 (en) 1986-12-05 1986-12-05 Reactive power compensator

Publications (2)

Publication Number Publication Date
JPS63144724A true JPS63144724A (en) 1988-06-16
JPH0744787B2 JPH0744787B2 (en) 1995-05-15

Family

ID=17736964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61288955A Expired - Lifetime JPH0744787B2 (en) 1986-12-05 1986-12-05 Reactive power compensator

Country Status (1)

Country Link
JP (1) JPH0744787B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7944184B2 (en) * 2008-04-07 2011-05-17 Korea Electric Power Corporation Static compensator apparatus for HVDC system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716575A (en) * 1980-06-30 1982-01-28 Toyo Electric Mfg Co Ltd Detecting method for commutation harmonic wave removal signal
JPS59146319A (en) * 1983-02-10 1984-08-22 Nissin Electric Co Ltd Suppressing device of voltage variance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716575A (en) * 1980-06-30 1982-01-28 Toyo Electric Mfg Co Ltd Detecting method for commutation harmonic wave removal signal
JPS59146319A (en) * 1983-02-10 1984-08-22 Nissin Electric Co Ltd Suppressing device of voltage variance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7944184B2 (en) * 2008-04-07 2011-05-17 Korea Electric Power Corporation Static compensator apparatus for HVDC system

Also Published As

Publication number Publication date
JPH0744787B2 (en) 1995-05-15

Similar Documents

Publication Publication Date Title
US5648894A (en) Active filter control
US7239043B2 (en) Power conversion apparatus and methods using an adaptive waveform reference
US5115386A (en) Circuit for controlling an electric power supply apparatus, a method therefor and an uninterruptible power supply
TWI626459B (en) Sensorless measurement method and device for filter capacitor current by using a state observer
WO1997012437A1 (en) Controller for pwm-controlled converter
US4930064A (en) Phase stabilized high frequency link power converter apparatus having a wide phase controllable range
Yang et al. DC-link voltages digital sampling for cascaded H-bridge rectifiers with single voltage sensor under loads unbalanced condition
JPS63144724A (en) Reactive power compensator
US20230095175A1 (en) Power supply circuit, compensation circuit and harmonic distortion compensation method thereof
CN110855173A (en) Control method of UPS system inverter based on prediction model
CN115001016B (en) A method and system for optimal control of converter grid connection based on model-free prediction
JP4003501B2 (en) Three-phase PWM rectifier controller
JPH05232157A (en) Voltage drop detection device
US4282570A (en) Method and apparatus for controlling an output current of a controlled rectifier
JPS6216022A (en) Semiconductor type current compensator
JP2003324847A (en) Voltage flicker compensation method and apparatus
JPH08223803A (en) Method and device for controlling active filter
JP2745728B2 (en) Inverter control method
US20240243654A1 (en) Method and apparatus for regulating converter
JP2779743B2 (en) Power conversion controller filter
JP2816202B2 (en) Control circuit and control method for power supply device and power supply device
Kim et al. Instantaneous control of a single-phase PWM converter considering the variation of observer parameter
JPH0690529A (en) Controller of reactive power compensating device
JP2606946Y2 (en) Control device for voltage fluctuation suppression device
JP2581459Y2 (en) Control method of voltage fluctuation suppression device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term