[go: up one dir, main page]

JPS63143220A - Heat treatment of rail - Google Patents

Heat treatment of rail

Info

Publication number
JPS63143220A
JPS63143220A JP28943886A JP28943886A JPS63143220A JP S63143220 A JPS63143220 A JP S63143220A JP 28943886 A JP28943886 A JP 28943886A JP 28943886 A JP28943886 A JP 28943886A JP S63143220 A JPS63143220 A JP S63143220A
Authority
JP
Japan
Prior art keywords
rail
temperature
heat treatment
molten salt
salt bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28943886A
Other languages
Japanese (ja)
Inventor
Keiji Fukuda
福田 敬爾
Takefumi Suzuki
鈴木 孟文
Hiroki Yoshitake
吉武 弘樹
Yoshiaki Makino
牧野 由明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28943886A priority Critical patent/JPS63143220A/en
Publication of JPS63143220A publication Critical patent/JPS63143220A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、熱間圧延を終え、あるいは熱処理する目的で
加熱されたオーステナイト域温度以上の熱を保有する高
温度のレールを冷却して高強度レールを製造する熱処理
方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention is directed to cooling a high-temperature rail that has heat above the austenite range temperature after hot rolling or for the purpose of heat treatment. The present invention relates to a heat treatment method for manufacturing strength rails.

(従来の技術) 近年、鉄道輸送は高軸荷重化、高速化を指向し、それに
ともなってレール頭部の摩耗や疲労が激しく、レールに
要求される特性も一層厳しさを増し、轡に急曲線では耐
摩耗性や耐損傷性などのよυ優れた高強度レベルのレー
ルが要求されている。
(Conventional technology) In recent years, rail transportation has become more oriented toward higher axle loads and faster speeds, which has resulted in severe wear and fatigue of rail heads, and the characteristics required of rails have become even more stringent. Curved rails require high-strength rails with excellent wear resistance and damage resistance.

このような要求を満足し得るレールは、これまでの研究
から微細パーライト組織を有する鋼レールであって、か
かるレールは耐摩耗性や耐損傷性などの点でも優れた特
性を示すことが知られている。
A rail that can satisfy these requirements is a steel rail with a fine pearlite structure, and it is known from past research that such a rail exhibits excellent properties such as wear resistance and damage resistance. ing.

このような鋼レールの製造方法として、たとえば特開昭
50−140316号公報に開示されているような炭素
鋼にS l 、Mn 、Nl 、Cr 、Mo 、’r
tなどの元素を添加して得られる成分系を有する圧延ま
まの合金鋼レールや特開5859−74227号公報に
開示されているような特段の合金成分を添加することな
く、高温度に再加熱しまたは熱間圧延を終えた圧延熱を
保有するレールを所定の温度域から冷却するとともに、
ある温度区間を冷却制御して得られる熱処理レールがあ
る。その地熱処理レールの製造方法は種々あるが、その
なかで比較的安定して微細パーライト組織が得られる熱
処理方法に、特開昭59−133322号公報に開示さ
れている冷却媒体として、溶解し撹拌流動している溶融
塩浴中に圧延を終えたレールをオーステナイト域温度以
上から浸漬し熱処理する方法がある。
As a manufacturing method for such a steel rail, for example, carbon steel as disclosed in JP-A-50-140316 is coated with S l , Mn , Nl , Cr , Mo , 'r
As-rolled alloy steel rails having a composition system obtained by adding elements such as In addition to cooling the rail that retains rolling heat after hot rolling from a predetermined temperature range,
There is a heat-treated rail that is obtained by controlling cooling in a certain temperature range. There are various methods for manufacturing geothermal treated rails, but among them, the heat treatment method that allows a fine pearlite structure to be obtained relatively stably is the method disclosed in JP-A No. 59-133322, in which the geothermal treatment rail is dissolved and stirred as a cooling medium. There is a method of heat-treating the rolled rail by immersing it in a flowing molten salt bath at a temperature above the austenite range.

(発明が解決しようとする問題点) しかしながら、上に述べた従来のいずれのレール製造法
も以下に述べる如き問題がある。すなわち合金元素を添
加し、成分系をコントロールした圧延ままのレールは、
合金元素を多量に囲周する必要があシ、合金元素が高価
であることに起因し、コスト高となる問題がある。
(Problems to be Solved by the Invention) However, all of the conventional rail manufacturing methods described above have the following problems. In other words, as-rolled rails with added alloying elements and controlled composition,
It is necessary to surround a large amount of the alloying element, and since the alloying element is expensive, there is a problem of high cost.

つぎに高温度に加熱されたレールの頭部に水などを冷却
媒体として噴射し、強制冷却するレール製造法は特に圧
延熱を利用した直接熱処理への適用は、冷却中の形状変
化に対して強力な拘束装置と圧延間隔を考慮した非常に
長い冷却帯を必要とし、設備的にもコスト的にも不利で
ある。
Next, the rail manufacturing method in which water or other liquid is injected as a cooling medium into the head of the rail that has been heated to a high temperature to forcibly cool it is particularly suitable for direct heat treatment using rolling heat, which prevents shape changes during cooling. It requires a strong restraint device and a very long cooling zone considering the rolling interval, which is disadvantageous in terms of equipment and cost.

また所定温度に溶解し浴内下部より気体を噴出し、撹拌
流動する溶融塩浴中への浸漬熱処理においては圧延熱を
利用した直接熱処理の場合は、圧延間隔などから冷却時
間に制約をうけ、特に偏析部の未変態オーステナイトが
完全にパーライト変態を終了しないまま、後工程の溶融
塩洗浄に移り、その洗浄工程において急冷される恐れが
ちって、ミクロマルテンサイト組織が生成するという不
都合がある。
In addition, in the case of immersion heat treatment in a molten salt bath that is dissolved at a predetermined temperature and is stirred and fluidized by blowing out gas from the lower part of the bath, in the case of direct heat treatment using rolling heat, cooling time is limited due to rolling intervals, etc. In particular, the untransformed austenite in the segregated area is transferred to the subsequent molten salt cleaning process without completely completing the pearlite transformation, and there is a risk that it will be rapidly cooled in the cleaning process, resulting in the formation of a micromartensitic structure.

本発明はこのような従来の問題点を解決するためになさ
れたものでレール全断面に安定して微細パーライト組織
とした高強度レールを製造することができる熱処理方法
を提供するものである。
The present invention has been made to solve these conventional problems, and provides a heat treatment method that can produce a high-strength rail that stably has a fine pearlite structure over the entire cross section of the rail.

(問題点を解決するための手段および作用)本発明は前
記の目的を達成するために、特に偏析等によるミクロマ
ルテンサイト組織を生成させず安定して微細なパーライ
ト組織を確保することを目的としたレールの熱処理方法
である。
(Means and effects for solving the problems) In order to achieve the above-mentioned object, the present invention aims, in particular, to ensure a stable fine pearlite structure without generating a micromartensite structure due to segregation etc. This is a heat treatment method for rails.

本発明は熱間圧延を終えあるいは熱処理する目的で加熱
されたオーステナイト域温度以上の熱を保有する高温レ
ールを第1図に示すような操作でまずMs点点上上約6
00℃温度範囲に加熱溶解し撹拌流動する溶融塩浴第1
冷却槽に所定時間浸漬冷却する。図中1は温度計を示す
In the present invention, a high-temperature rail having heat above the austenite region temperature heated for the purpose of finishing hot rolling or for heat treatment is first heated by about 6 points above the Ms point by an operation as shown in FIG.
Molten salt bath No. 1 that heats and melts in the temperature range of 00℃ and stirs and flows.
Cool by immersing in a cooling tank for a predetermined period of time. In the figure, 1 indicates a thermometer.

つづいて偏析部をはじめとした未変態オーステナイトを
最も短時間でパーライト変態を終了させることのできる
温度、すなわちTTT曲線のノーズ部に相当する温度か
ら該温度の150℃以下までの温度範囲に設定した撹拌
流動する溶融塩浴第2恒温槽に浸漬し、偏析部を含めて
パーライト変態をすみやかに終了させることを特徴とす
るレールの熱処理方法である。この方法によるとレール
頭部はもちろんのこと、レール全断面に亘って、特に偏
析によって生成しやすいミクロマルテンサイトを皆無に
し、安定してノI−ライト組織を得ることができる。
Next, the temperature was set at a temperature at which the untransformed austenite including the segregated part could complete the pearlite transformation in the shortest time, that is, the temperature range from the temperature corresponding to the nose of the TTT curve to 150°C or less of that temperature. This is a heat treatment method for a rail, which is characterized in that the rail is immersed in a second constant temperature bath in a molten salt bath that is stirred and fluidized, and pearlite transformation including the segregated portion is promptly completed. According to this method, not only the rail head but also the whole rail cross section can completely eliminate micromartensite, which is particularly likely to be generated due to segregation, and it is possible to stably obtain a no-I-lite structure.

以下、本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

安定してパーライト組織が得られる鋼成分系、すなわち
C:0.55〜0.85%、SI:0.20〜1.20
%。
Steel composition system that can stably obtain a pearlite structure, that is, C: 0.55 to 0.85%, SI: 0.20 to 1.20
%.

Mn : 0150〜1.50%、若しくはこれにCr
:0.10〜0.80%を加えた成分系を基本とし、必
要に応じてNb、V、Ti 、Co、ALなどの1種ま
たは2種以上、残部Fsからなる成分系の鋼レールを、
熱間圧延を終え、所定の寸法(長さ〕に鋸断されたある
いは熱処理する目的で加熱されてオーステナイト域以上
の温度域にある状態から上記方法で熱処理をする。まず
第1図に示す第1冷却槽に所定時間、好ましくは30秒
乃至120秒浸漬し強制冷却する。浸漬所要時間Tcは
レール規格、冷却開始温度θie、第1冷却槽溶融塩温
度θS1、炭素当量Ceqおよびレール強度製造目標レ
ベル(Hv:レール頭頂部中央表面下−10關の位置)
によって(1)式で決定される。
Mn: 0150-1.50%, or Cr
:Basically, the steel rail has a composition with 0.10~0.80% added, and if necessary, one or more of Nb, V, Ti, Co, AL, etc., and the balance Fs. ,
After hot rolling, the material is sawn to a predetermined size (length) or heated for the purpose of heat treatment and is in a temperature range above the austenite region, and is then heat treated by the above method.First, the material shown in FIG. 1 cooling tank for a predetermined time, preferably 30 seconds to 120 seconds, and forced cooling.The required immersion time Tc is based on the rail standard, cooling start temperature θie, first cooling tank molten salt temperature θS1, carbon equivalent Ceq, and rail strength production target. Level (Hv: position -10 degrees below the center surface of the top of the rail)
is determined by equation (1).

Tc=a+θ1c(b−)−c@θIc)+θ1(d−
)−osθfi1)    −(1)但し、θs1 =
al+Hv”(bl+cl・Hv)+Ceq・(dl+
el*ceq)Tc;レールの第1冷却槽浸漬時間(S
)θ1c;レール頭頂面の冷却開始温度(℃)θ1;第
1冷却槽溶融塩浴温度(C) Hv;レール頭頂部中央表面下−10闘位置の製造目標
強度 C@q :レールの炭素当量(C+Si / 24+M
n/ 6+Cr/6 )& r b r e Hd H
@ T 11 + b I He 1 * d 1 +
 @ 1 :レール形状に関わる係数 ここでTed熱処理レールの頭部中央部付近がパーライ
ト変態を開始する温度(kr3)に達する時間相当する
。また溶融塩浴の攪拌は、例えば浴融塩浴槽底部に設け
られた配管から気体(空気、窒素ガスなど)を噴出させ
、浴全体を気体の浮力全利用して流動攪拌するのが好ま
しい。気体の流量が多くなるにしたがって溶融塩浴内の
流動は激しくなシ熱伝達もよくなるが、本方法によると
単位面積In”当り0.5Nm’/分もあればよい。
Tc=a+θ1c(b-)-c@θIc)+θ1(d-
) −osθfi1) −(1) However, θs1 =
al+Hv"(bl+cl・Hv)+Ceq・(dl+
el*ceq)Tc; Rail immersion time in the first cooling tank (S
) θ1c; Cooling start temperature of the top of the rail (°C) θ1; Temperature of the first cooling tank molten salt bath (C) Hv; Target manufacturing strength at the -10 position below the central surface of the top of the rail C@q: Carbon equivalent of the rail (C+Si/24+M
n/6+Cr/6) & r b r e Hd H
@ T 11 + b I He 1 * d 1 +
@1: Coefficient related to rail shape This corresponds to the time required for the vicinity of the center of the head of the Ted heat-treated rail to reach the temperature (kr3) at which pearlite transformation begins. Further, the molten salt bath is preferably stirred by, for example, jetting gas (air, nitrogen gas, etc.) from a pipe provided at the bottom of the molten salt bath, and fluidly stirring the entire bath by making full use of the buoyancy of the gas. As the gas flow rate increases, the flow in the molten salt bath becomes more intense and the heat transfer also improves, but according to the present method, the flow rate may be as low as 0.5 Nm'/min per unit area In''.

所定時間Tcで冷却されたレールはつづいてTTT曲線
ノーズ部付近温度θ。。、@からθ。。、。
The rail, which has been cooled for a predetermined time Tc, continues to have a temperature θ near the nose of the TTT curve. . , @ to θ. . ,.

−150℃までの温度範囲に保定された第2恒温槽溶融
塩浴中に浸漬し、はぼパーライト変態を終了させる。第
2恒温槽の溶融塩温度は、レールの形状によって相違す
るがθ□。、、−100℃までがレール頭部中央部のパ
ーライト変態を短時間で終了させる上で最も望しい温度
であり、また浸漬時間は通常60秒程度であればよい。
It is immersed in a second constant-temperature bath molten salt bath maintained at a temperature range of up to -150°C to complete the pearlite transformation. The temperature of the molten salt in the second constant temperature bath varies depending on the shape of the rail, but is θ□. The temperature up to -100°C is the most desirable temperature for completing the pearlite transformation in the center of the rail head in a short time, and the immersion time usually only needs to be about 60 seconds.

はぼ変態を終了したレールは、まず空気等の気体で付着
した溶融塩を吹き払い、つづいて水スプレィまたは湯浸
漬によって洗浄処理後、矯正し精整される。
Once the rail has undergone transformation, the molten salt adhering to it is first blown away with a gas such as air, and then the rail is cleaned by water spray or hot water immersion, and then straightened and refined.

このように本発明の方法によれば、有害なミクロマルテ
ンサイト組織の生成を確実に防止し、安定した微細・々
−ライト組織の高強度レールが製造できる。
As described above, according to the method of the present invention, it is possible to reliably prevent the formation of harmful micromartensitic structures, and to manufacture high-strength rails with stable fine and auritic structures.

(実施例〕 第1表に示す成分鋼を、132ポンド/ヤード レール
に熱間圧延後鋸断し、本発明方法を用いて熱処理した。
EXAMPLES Steel compositions shown in Table 1 were hot rolled into 132 pound/yard rails, sawn, and heat treated using the method of the present invention.

第  1  表  (vt%) 熱処理条件は、レール頭部目標強度レベル(頭頂部中央
表面下−iow位置)でHv〉360とし、冷却開始温
度θie#’i6o℃、第1冷却槽溶融塩浴温度θs1
#400℃、溶融塩浴攪拌用窒素ガス流量QN2 # 
0.5 Nm”/ mln−m”に設定した。
Table 1 (vt%) The heat treatment conditions were Hv > 360 at the rail head target strength level (lower center surface of the top of the head - iow position), cooling start temperature θie#'i6o℃, and first cooling tank molten salt bath temperature. θs1
#400℃, molten salt bath stirring nitrogen gas flow rate QN2 #
It was set at 0.5 Nm"/mln-m".

この場合の第1冷却槽浸漬時間Tcは(1)式から65
秒でおる。また第2恒温槽溶融塩浴温度はTTT曲線ノ
ーズ部より100℃以下のθ12#470℃とし、第2
恒温槽浸漬時間約60秒、攪拌ガスは第1槽と同じであ
る。
In this case, the first cooling tank immersion time Tc is 65 from equation (1).
It will be over in seconds. In addition, the temperature of the second constant temperature bath molten salt bath is set to θ12#470°C, which is 100°C or less from the TTT curve nose.
The immersion time in the constant temperature bath was about 60 seconds, and the stirring gas was the same as in the first bath.

熱処理結果は、第2図に示すレール頭部硬度分布、第2
表に示す機械的性質が得られ、組織はミクロ観察によっ
ても全断面微細ノ9−ライト組織で偏析部にも有害なミ
クロマルテンサイト組織は認められない。
The heat treatment results are the rail head hardness distribution shown in Figure 2,
The mechanical properties shown in the table were obtained, and microscopic observation showed that the entire cross section was a fine 9-lite structure with no harmful micromartensite structure observed in the segregated areas.

第  2  表 (発明の効果) 以上の如く本発明の熱処理方法によれば、従来と同様の
圧延による、または熱処理することを目的に加熱した高
温度レールに特別にきびしい処理条件を付加することな
くレール頭部断面に有害なペーイナイト、マルテンサイ
ト組織。
Table 2 (Effects of the Invention) As described above, according to the heat treatment method of the present invention, the high-temperature rail heated for the purpose of rolling or heat treatment can be treated without applying particularly severe treatment conditions. Payinite and martensitic structures are harmful to the cross section of the rail head.

特に偏析部のミクロマルテンサイト組織の生成を確実に
防止し、安定して微細パーライト組織の高強度レールを
製造することができる。
In particular, it is possible to reliably prevent the formation of a micromartensite structure in the segregated portion, and to stably produce a high-strength rail with a fine pearlite structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施態様例を示す説明図、第2図(
4)は本発明実施例における熱処理結果を示す図で第2
図ω)は測定部を示すレールの一部断面図である。 l:温度計。
FIG. 1 is an explanatory diagram showing one embodiment of the present invention, and FIG. 2 (
4) is the second diagram showing the heat treatment results in Examples of the present invention.
Figure ω) is a partial sectional view of the rail showing the measurement part. l: Thermometer.

Claims (1)

【特許請求の範囲】[Claims] 熱間圧延を終え、あるいは熱処理する目的で加熱された
オーステナイト域温度以上の熱を保有する高温度レール
を、該レールのMs点以上600℃の範囲に加熱溶解し
撹拌流動する溶融塩浴中に30秒以上120秒の範囲で
浸漬し、つづいてTTT曲線ノーズ部に相当する温度か
ら該温度の150℃以下までの温度範囲に加熱溶解し、
撹拌流動する溶融塩浴中に浸漬し、未変態オーステナイ
トをパーライト変態させることを特徴とするレールの熱
処理方法。
A high-temperature rail that is heated to a temperature higher than the austenite range temperature after hot rolling or for the purpose of heat treatment is melted by heating to a temperature in the range of 600°C above the Ms point of the rail and placed in a molten salt bath that is stirred and fluidized. immersion for 30 seconds or more and 120 seconds, followed by heating and melting in a temperature range from the temperature corresponding to the TTT curve nose to 150 ° C. or less,
A method for heat treatment of a rail, which comprises immersing the rail in a molten salt bath that is stirred and fluidized to transform untransformed austenite into pearlite.
JP28943886A 1986-12-04 1986-12-04 Heat treatment of rail Pending JPS63143220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28943886A JPS63143220A (en) 1986-12-04 1986-12-04 Heat treatment of rail

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28943886A JPS63143220A (en) 1986-12-04 1986-12-04 Heat treatment of rail

Publications (1)

Publication Number Publication Date
JPS63143220A true JPS63143220A (en) 1988-06-15

Family

ID=17743256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28943886A Pending JPS63143220A (en) 1986-12-04 1986-12-04 Heat treatment of rail

Country Status (1)

Country Link
JP (1) JPS63143220A (en)

Similar Documents

Publication Publication Date Title
CN100473731C (en) Method for producing high tensile steel sheet
US4361448A (en) Method for producing dual-phase and zinc-aluminum coated steels from plain low carbon steels
FR2573775A1 (en) NICKEL STEELS HAVING GREAT ABILITY TO STOP CRAQUETURES
US5876523A (en) Method of producing spheroidal graphite cast iron article
US4146411A (en) Hot bar cooling
JPH11152520A (en) Manufacturing method of high-strength bainite-based rail with excellent surface damage resistance and wear resistance
US1919136A (en) Enameled metal articles and method of producing them
JP2009263753A (en) Rail whose internal has high hardness
JPS63143220A (en) Heat treatment of rail
JPS613842A (en) Manufacture of high strength rail
JPH0641647A (en) Heat treatment method for wire rod
JP3731934B2 (en) Manufacturing method of deep and high strength rail
JPS62120429A (en) Heat treatment of rail
JP3950212B2 (en) Manufacturing method of high-strength pearlitic rail with excellent wear resistance
CN109128576A (en) A kind of welding material of nuclear pressure container steel and preparation method thereof and a kind of welding method
JPH0512411B2 (en)
JP2022514099A (en) Manufacturing method of T-shaped rail with high-strength foot
JPS59133322A (en) Heat treatment of rail
JPS62278229A (en) Heat treatment of rail
JPH07268464A (en) Method for producing bainite wire or steel wire for wire drawing
US2116070A (en) Heat treatment of ferrous sections
JP2010070783A (en) Heat-treatment method for steel wire rod
KR20170095363A (en) Dual phase steel with improved properties
JPS5950991A (en) Deposited metal for welding stainless cast steel and weld repairing method
CN115491580A (en) A kind of low carbon alloy steel and its preparation method and application