JPS63141587A - Laser processing method for raw samples - Google Patents
Laser processing method for raw samplesInfo
- Publication number
- JPS63141587A JPS63141587A JP28662686A JP28662686A JPS63141587A JP S63141587 A JPS63141587 A JP S63141587A JP 28662686 A JP28662686 A JP 28662686A JP 28662686 A JP28662686 A JP 28662686A JP S63141587 A JPS63141587 A JP S63141587A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- raw sample
- laser
- raw
- laser processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003672 processing method Methods 0.000 title 1
- 238000000034 method Methods 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 238000000838 magnetophoresis Methods 0.000 claims description 4
- 238000001962 electrophoresis Methods 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 238000005553 drilling Methods 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 244000005700 microbiome Species 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Landscapes
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、生細胞や微生物等の生試料にレーザ光を照射
して、生試料の加工を行うものに関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to processing of a raw sample such as a living cell or microorganism by irradiating the raw sample with laser light.
従来、生細胞あるいは微生物(生試料)にレーザ光を照
射して生試料の加工を行うものが公知である。これは1
例えば、特開昭60−83583号公報に開示されてい
る。特開昭60−83583号公報には、生細胞にレー
ザ光を照射して穿孔し、この穿孔した部分からDNAf
f1生細胞内に移入するものが開示されている。2. Description of the Related Art Conventionally, it has been known to process living cells or microorganisms (raw samples) by irradiating them with laser light. This is 1
For example, it is disclosed in Japanese Patent Application Laid-Open No. 60-83583. Japanese Patent Application Laid-Open No. 60-83583 discloses that living cells are irradiated with laser light to perforate them, and DNAf is extracted from the perforated parts.
have been disclosed that translocate into live f1 cells.
上記したレーザによる生試料の加工を行う装置の構成は
、第2図に示される。The configuration of the apparatus for processing a raw sample using the laser described above is shown in FIG.
第2図において、1は穿孔用レーザ、2は1が可視光で
ない場合を考慮し、1の光路を見るために設けた参照用
レーザである。また3は顕微鏡、4は顕微鏡に組込まれ
た光路偏向装置である。上記1の穿孔用レーザは、シャ
ッター5全経由して、またこの参照用レーザはそのまま
の状態で光学的インターフェイス6に入射され、ここで
両者のレーザが所望の特性に変換された後、両者を同軸
にして4の光路偏向装置に入射される。同軸にされたレ
ーザはここで微少な位置決めをされ、対物レンズ7で集
光され、ステージ8上に設置された試料ビン9中の試料
10に入射される。上記光路偏向装置は第3図のように
2個のミラー11.11’とスキャナ12.12’が組
込まれ、ここに入射したレーザを試料10のXY方向へ
偏向できる構造になっている。以上のように構成された
同装置の使用法の1つに上記ミラー11.11”k固定
し、ステージ(第2図の8)をXY方向に走査する方法
がある。この場合、穿孔用レーザをパルスレーザとする
と、たとえば第4図の白丸印のようにレーザは試料に照
射される。このとき目標に命中する確率は、細胞13の
分布状態とレーザの照射密度に依存し、照射密度はレー
ザ光のパルス数とステージの移動速度に依存する。In FIG. 2, 1 is a drilling laser, and 2 is a reference laser provided to view the optical path of 1, considering the case where 1 is not visible light. Further, 3 is a microscope, and 4 is an optical path deflection device built into the microscope. The above-mentioned drilling laser 1 passes through the shutter 5, and this reference laser enters the optical interface 6 as it is, where both lasers are converted into desired characteristics, and then both are The light beams are made coaxial and incident on the optical path deflection device No. 4. The coaxial lasers are minutely positioned here, focused by an objective lens 7, and incident on a sample 10 in a sample bottle 9 placed on a stage 8. As shown in FIG. 3, the optical path deflecting device has a structure in which two mirrors 11.11' and a scanner 12.12' are incorporated, and the laser beam incident thereon can be deflected in the X and Y directions of the sample 10. One method of using the device configured as described above is to fix the mirror 11.11"k and scan the stage (8 in Fig. 2) in the X and Y directions. In this case, the perforating laser When is a pulsed laser, the laser is irradiated onto the sample as indicated by the white circle in Fig. 4.The probability of hitting the target at this time depends on the distribution state of the cells 13 and the laser irradiation density, and the irradiation density is It depends on the number of pulses of laser light and the moving speed of the stage.
上記従来技術において、目標の細胞の分布密度が第5図
のように低い場合と第4図のように高い:、f’きる。In the above conventional technology, when the distribution density of target cells is low as shown in FIG. 5, and when it is high as shown in FIG.
しかし、当然のことではあるが、細胞に命中する確率は
、細胞の分布密度が高い方が高い。However, as a matter of course, the probability of hitting a cell is higher when the distribution density of cells is higher.
しかし、従来技術はこの細胞の分布密度を制御する点に
ついて配慮がされておらず、細胞の分布密度が低い場合
、命中する確率は低かった。また生試料の位置は、試料
容器の高さ方向で一定でない。そのため、対物レンズの
焦点から大きくずれた位置にある生試料は、レーザが命
中してもエネルギー密度が低くなる丸め穿孔できない。However, in the conventional technology, no consideration was given to controlling the distribution density of cells, and when the distribution density of cells was low, the probability of a hit was low. Furthermore, the position of the raw sample is not constant in the height direction of the sample container. Therefore, even if the laser hits a live sample at a position that is far away from the focus of the objective lens, the energy density will be low and it will not be possible to round-perforate the sample.
このように、従来技術の場合、生試料が穿孔される確率
は非常に低かった。Thus, in the case of the prior art, the probability that a raw sample would be perforated was very low.
本発明の目的は、生試料が穿孔される確率を高め、高能
率の生試料加工を行うことのできる生試料のレーザ加工
方法を提供することである。An object of the present invention is to provide a method for laser processing a raw sample, which increases the probability that the raw sample will be perforated, and can process the raw sample with high efficiency.
c問題点を解決するための手段〕
上記目的は、生試料を容器内で浮遊状態とし、この浮遊
している生試料を泳動法(電気泳動法あるいは磁気泳動
法)を利用して所定領域に集合させ、この所定領域内の
生試料にレーザ光を照射する1ト、とによって達成でき
る。c) Means for Solving Problems] The above purpose is to make a living sample suspended in a container, and to transfer this floating living sample to a predetermined area using electrophoresis (electrophoresis or magnetophoresis). This can be achieved by irradiating the raw sample within this predetermined area with a laser beam.
生試料が容器内で浮遊状態となっているので、この容器
のレーザ光照射方向と垂直方向のXY平面に電界または
磁界を印加することによって生試料が泳動する。この泳
動によって、生試料が所定領域に移動することとなり、
この領域内の生試料分布密度が高まる。したがってこの
高密度になつた領域内の生試料に対してレーザ光を照射
すると。Since the raw sample is in a floating state within the container, the raw sample migrates by applying an electric field or a magnetic field to the XY plane in the direction perpendicular to the laser beam irradiation direction of the container. This electrophoresis causes the raw sample to move to a predetermined area,
The raw sample distribution density within this region increases. Therefore, when a laser beam is irradiated onto the raw sample within this high-density area.
照射効率が高まる。Irradiation efficiency increases.
第6因は本発明の一実施例における全体構成図、第6図
における試料容器9の平面図を第1図、また第1図のA
−A及びB−B断面図を第7図に示す。The sixth factor is the overall configuration diagram in one embodiment of the present invention, the plan view of the sample container 9 in FIG. 6 is shown in FIG.
-A and BB sectional views are shown in FIG.
第1図において、9は試料容器、8は遺伝子等を溶かし
た培養液、13は生試料、19は試料容器の対角に固定
されたL形の電極で直流電源16が負荷されるようにな
っている。20は多孔質の隔離膜で、電極近傍の電解液
のpH変化及び温度−変化等が試料ビン全体に及ぶのを
防ぎ、生試料の“−・・′
電気泳動を円滑にする。In FIG. 1, 9 is a sample container, 8 is a culture solution containing genes, etc., 13 is a raw sample, and 19 is an L-shaped electrode fixed to the diagonal of the sample container, so that a DC power source 16 is loaded. It has become. 20 is a porous isolation membrane that prevents changes in pH and temperature of the electrolytic solution near the electrodes from reaching the entire sample bottle, and facilitates electrophoresis of the raw sample.
幻1 また、201dこの隔離膜を支持する支柱である。Illusion 1 Further, 201d is a support supporting the isolation membrane.
試料容器のふたは、第7図の9−1に示すように対物レ
ンズ70光軸に対し垂直である。一方。The lid of the sample container is perpendicular to the optical axis of the objective lens 70, as shown at 9-1 in FIG. on the other hand.
試料容器の底面9−2は、上記ふたに対し傾斜している
。上記のように構成された装置において。The bottom surface 9-2 of the sample container is inclined with respect to the lid. In a device configured as described above.
電極19に通電すると、生試料は電気泳動により第1図
の矢印のように移動する。その結果、第1図に示す面内
での生試料の分布密度は増加する。When the electrode 19 is energized, the raw sample moves as indicated by the arrow in FIG. 1 due to electrophoresis. As a result, the distribution density of the raw sample within the plane shown in FIG. 1 increases.
一方、この移動方向に対し試料容器の形状は、第7図の
ように断面積が減少するため0部の生試料の分布密度は
非常に高くなる。この高密度状態においては、細胞の動
きが制約されるため、実質的に固定されたと同様となる
。On the other hand, since the cross-sectional area of the sample container decreases in the direction of movement as shown in FIG. 7, the distribution density of the 0 part raw sample becomes very high. In this high-density state, the movement of the cells is restricted, so that they are substantially fixed.
一方、このような生試料は、第6図のTV左カメラ4及
び生試料径検出器により、生試料の平均的な直径が測定
される。パルスレーザの照射密度は、穿孔用レーザのパ
ルス繰プ返し数が一定の場合、ステージ8の移動速度に
依存しており、上記、生試料の平均的な直径に応じた最
適のステージ速度が、ステージコントローラ17により
求められ、その速度にステージが制御される。なお、ス
テージの移動速凝ヲ一定にして、穿孔用レーザ1のパル
ス繰り返し数の増減で制御することもできる。On the other hand, the average diameter of such a raw sample is measured using the TV left camera 4 and the raw sample diameter detector shown in FIG. The irradiation density of the pulsed laser depends on the moving speed of the stage 8 when the number of pulse repetitions of the drilling laser is constant, and the optimal stage speed according to the average diameter of the raw sample is as follows. The speed is determined by the stage controller 17, and the stage is controlled to that speed. Note that it is also possible to keep the moving speed of the stage constant and control it by increasing or decreasing the number of pulse repetitions of the drilling laser 1.
以上は生試料の移動に電気泳動を利用している。The above uses electrophoresis to move raw samples.
ところで一対の電極19を一対の電磁石におきかえ、2
0の隔離膜をとると磁気泳動装置になり、磁気泳動によ
シ生試料を移動させ上記電気泳動と同等の効果をもたせ
ることができる。By the way, if we replace the pair of electrodes 19 with a pair of electromagnets,
If a 0.0 isolation membrane is removed, it becomes a magnetophoresis device, and the raw sample can be moved by magnetophoresis to provide the same effect as the electrophoresis described above.
本発明によれば浮遊生試料を所定領域に移動させ、該領
域内の生試料の分布密lft高くし、レーザ照射を行う
ので、能率的な加工を実現することができる。According to the present invention, the floating raw sample is moved to a predetermined area, the distribution density lft of the raw sample within the area is increased, and laser irradiation is performed, so that efficient processing can be realized.
第1図は本発明の一実施例に係る図、第2図は従来例を
示す図1.第3図は第2図の光路偏光装置の概念図、第
4図及び第5図はレーザ照射状態を示す図である。第6
図は本発明の一実施例における全体構成図、第7図は第
1図の断面図である。
9・・・試料容器、15・・・生試料径検出器、16・
・・電源、17・・・ステージコントローラ、19・・
・電極。
20・・・隔離膜。FIG. 1 shows an embodiment of the present invention, and FIG. 2 shows a conventional example. FIG. 3 is a conceptual diagram of the optical path polarization device of FIG. 2, and FIGS. 4 and 5 are diagrams showing the laser irradiation state. 6th
The figure is an overall configuration diagram of an embodiment of the present invention, and FIG. 7 is a sectional view of FIG. 1. 9... Sample container, 15... Raw sample diameter detector, 16.
...Power supply, 17...Stage controller, 19...
·electrode. 20... Isolation membrane.
Claims (1)
ーザ加工方法において、 該生試料を容器内で浮遊状態とし、 該浮遊状態となつた生試料を電気または磁気泳動によつ
て所定領域に集合させ、 該所定領域内の該生試料に該レーザ光を照射することを
特徴とする生試料のレーザ加工方法。[Claims] 1. In a method for laser processing a raw sample in which the raw sample is processed by irradiating the raw sample with laser light, the raw sample is brought into a floating state in a container, and the raw sample in the suspended state is subjected to electrical or 1. A method for laser processing a raw sample, comprising: collecting the raw sample in a predetermined area by magnetophoresis, and irradiating the raw sample within the predetermined area with the laser beam.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28662686A JPH0714345B2 (en) | 1986-12-03 | 1986-12-03 | Laser processing method for raw samples |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28662686A JPH0714345B2 (en) | 1986-12-03 | 1986-12-03 | Laser processing method for raw samples |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63141587A true JPS63141587A (en) | 1988-06-14 |
JPH0714345B2 JPH0714345B2 (en) | 1995-02-22 |
Family
ID=17706846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28662686A Expired - Lifetime JPH0714345B2 (en) | 1986-12-03 | 1986-12-03 | Laser processing method for raw samples |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0714345B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5720921A (en) * | 1995-03-10 | 1998-02-24 | Entremed, Inc. | Flow electroporation chamber and method |
US6773669B1 (en) | 1995-03-10 | 2004-08-10 | Maxcyte, Inc. | Flow electroporation chamber and method |
US7029916B2 (en) | 2001-02-21 | 2006-04-18 | Maxcyte, Inc. | Apparatus and method for flow electroporation of biological samples |
US7141425B2 (en) | 2001-08-22 | 2006-11-28 | Maxcyte, Inc. | Apparatus and method for electroporation of biological samples |
US7771984B2 (en) | 2004-05-12 | 2010-08-10 | Maxcyte, Inc. | Methods and devices related to a regulated flow electroporation chamber |
-
1986
- 1986-12-03 JP JP28662686A patent/JPH0714345B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5720921A (en) * | 1995-03-10 | 1998-02-24 | Entremed, Inc. | Flow electroporation chamber and method |
US6773669B1 (en) | 1995-03-10 | 2004-08-10 | Maxcyte, Inc. | Flow electroporation chamber and method |
US7029916B2 (en) | 2001-02-21 | 2006-04-18 | Maxcyte, Inc. | Apparatus and method for flow electroporation of biological samples |
US7141425B2 (en) | 2001-08-22 | 2006-11-28 | Maxcyte, Inc. | Apparatus and method for electroporation of biological samples |
US7186559B2 (en) | 2001-08-22 | 2007-03-06 | Maxcyte, Inc. | Apparatus and method for electroporation of biological samples |
US7771984B2 (en) | 2004-05-12 | 2010-08-10 | Maxcyte, Inc. | Methods and devices related to a regulated flow electroporation chamber |
US9546350B2 (en) | 2004-05-12 | 2017-01-17 | Maxcyte, Inc. | Methods and devices related to a regulated flow electroporation chamber |
Also Published As
Publication number | Publication date |
---|---|
JPH0714345B2 (en) | 1995-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07500418A (en) | Apparatus and method for aligning capillary separation tubes and detection optics | |
JPH04230944A (en) | Method and apparatus for performing ion implantation with a wide beam | |
Khodjakov et al. | The force for poleward chromosome motion in Haemanthus cells acts along the length of the chromosome during metaphase but only at the kinetochore during anaphase. | |
JPS63141587A (en) | Laser processing method for raw samples | |
CN107186364B (en) | Method for realizing accurate laser cutting track and microscopic cell cutting without mechanical movement | |
US12165828B2 (en) | Electron gun and electron beam application apparatus | |
JPH02186993A (en) | How to irradiate living cells with laser light | |
GB2037480A (en) | Method of mosaicing electron microscope images on a single photographic plate and apparatus therefor | |
JP2008130483A (en) | Electron beam fusion device | |
CN206480588U (en) | A kind of scanning focused system | |
JPS584257A (en) | Scanning-type electron-beam annealing device | |
JPH0549483A (en) | Method for irradiating living cell with laser | |
JPH0533985B2 (en) | ||
JPS62194614A (en) | Linear electron beam annealing device | |
JPH0319166Y2 (en) | ||
JPH0337947A (en) | Focusing ion beam device | |
JPS61114453A (en) | Charged particle beam device | |
JPS62229645A (en) | Focusing ion beam device | |
JPH04101343A (en) | Reflective electron microscope and electron beam incident angle setting method in reflective electron microscope | |
JPH0550267A (en) | Electron beam working device | |
JPH04248985A (en) | Method for cell fusion | |
JPH04166081A (en) | How to irradiate a callus with laser light | |
JPH02121252A (en) | Charged particle beam complex device | |
CN113670799A (en) | Single-cell two-photon Raman recognition and accurate sorting instrument and sorting method thereof | |
JPS62206754A (en) | Linear electron beam generator |