JPS63140300A - Deflection control system of missile - Google Patents
Deflection control system of missileInfo
- Publication number
- JPS63140300A JPS63140300A JP28457886A JP28457886A JPS63140300A JP S63140300 A JPS63140300 A JP S63140300A JP 28457886 A JP28457886 A JP 28457886A JP 28457886 A JP28457886 A JP 28457886A JP S63140300 A JPS63140300 A JP S63140300A
- Authority
- JP
- Japan
- Prior art keywords
- flying object
- flying
- movement
- azimuth
- angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001133 acceleration Effects 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- 238000010586 diagram Methods 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
Landscapes
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、飛翔体の方位角制御方式に関し、特に風の転
置による飛T、n体の飛rA位置の移動を補正する手r
2に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an azimuth control method for a flying object, and in particular a method for correcting the movement of the flying T and flying rA positions of n objects due to wind displacement.
Regarding 2.
Ci:L来の技tfi )
従来の方位角制御方式(ユ、目(7点に対する飛11体
の方位角を甲に一定に保ように$11卯ずろ方式で・あ
った。Ci: L's previous technique tfi) The conventional azimuth control method (Yu, eye) was the $11 Uzuro method to keep the azimuth of the flying 11 objects relative to the 7 points constant at the instep.
、〔発明が解決しようとする問題点〕
したがって従来の方位角il+ 60方式では、M t
1図に示すように飛翔体1が光用点0から目標点Pに対
して飛■経t8Aを飛tnする際に、風速Vなる凧が矢
印の如く吹くと、N(北)に対する方位角θをそのまま
保った状態で、飛翔体1は川に流されていき、飛翔経路
Bをたどることになる。そ句結果、風速をV9発射点O
から目標点Pに到達ずろまでの飛翔時間をtとすると、
飛翔体1が目標点Pに到達するはずの飛翔時間tを経過
した時点ては、飛翔体1は目標点Pから■・tなる距離
だけ流されてしまい、結局目標点Pにはt、+1達しな
いという問題があった。, [Problem to be solved by the invention] Therefore, in the conventional azimuth angle il+60 method, M t
As shown in Figure 1, when the flying object 1 flies from the light point 0 to the target point P on a flight path t8A, if a kite with wind speed V blows as shown by the arrow, the azimuth angle with respect to N (north) While keeping θ unchanged, the flying object 1 is swept down the river and follows the flight path B. As a result, the wind speed is V9 launch point O
If the flight time from to reaching the target point P is t, then
When the flight time t that the flying object 1 is supposed to reach the target point P has elapsed, the flying object 1 is swept away by a distance of ■·t from the target point P, and in the end, the flying object 1 reaches the target point P by a distance of t, +1 There was a problem with not being able to reach it.
そこで本発明は、鳳の影響によろR団体の飛71位置の
移動が自動的に補正され、飛翔体を目標点へ正確に¥り
達させ1与る飛翔体の方位角制御方式を提供することを
目的とする。Therefore, the present invention provides a method for controlling the azimuth angle of a flying object, in which the movement of the flying position of the R group is automatically corrected due to the influence of the bird, allowing the flying object to accurately reach the target point. The purpose is to
(問題点を解決するための手段)
本発明は上記問題点を醒決し目的を達成するメ;めに、
次のような手段を講じた。すなわら、飛翔体の横方向加
速度を検知する検知手段を上記飛翔体に搭載し、上記検
知手段により検知された横方向加速度と飛翔体の姿勢角
とに基いて、舶記飛団体が夙によって流された移行量を
舜出し、この算出された飛翔体の移行量に応じた操舵角
指令に基いて、面記飛団体が目漂点に到達するように方
位角の補正υI(Inを行なうようにした。(Means for Solving the Problems) The present invention aims to solve the above problems and achieve the purpose.
The following measures were taken. In other words, a detection means for detecting the lateral acceleration of the flying object is mounted on the flying object, and based on the lateral acceleration detected by the detection means and the attitude angle of the flying object, the ship flying organization Based on the steering angle command corresponding to the calculated amount of movement of the projectile, the azimuth angle is corrected υI (In) so that the flying group reaches the target point. I decided to do it.
このような手段を講じたことにより、飛翔体の姿勢角を
基準方位角として、飛翔体が横方向に流される移行量が
算出され、かつこの移行量を補正するだめの方位角およ
び方位角保持時間を含む操舵角指令が出力されるので、
用の影響による飛翔体の飛y、n位置の移動が自助的に
補正されことになる。By taking such measures, the amount of movement of the flying object in the horizontal direction is calculated using the attitude angle of the flying object as the reference azimuth angle, and the azimuth and azimuth angle maintenance are calculated to correct this amount of movement. Since the steering angle command including the time is output,
The movement of the flying object's flight y and n positions due to the influence of the movement is corrected on its own.
【実施例〕
第1図は本発明の一実施例の構成を示すブロック図であ
る。第1図において、11はジャイロであり、飛翔体1
0(第1図には不図示)の姿勢角を検知し姿勢角信号S
1を出力づ゛る。12は加速度計等からなる検知センサ
であり、飛翔体10の横方向加速度を検知する如く上記
飛翔体10に搭載され、検知信号すなりt5横方向加速
度信号82を出力する。これらの信@SI、S2は制y
(l計口機13に供給される。制御ll計tHJ13は
、上記飛翔体10の姿勢角信号S1と、横方向加速度信
号82とに基いて、飛翔体10が風によって流された移
行量を鋒出し、かつこの算出された飛翔体10の移行量
に応じた操舵角指令を算出し、操舵角Ih令信号S3を
サーボ装置14に供給する。サーボ装置14は上記操舵
角指令信号S3に応じて、飛翔体10が目標点に到達す
るように操舵角を制υll操作し、方位角の補正1,1
1ηOを行なう。Embodiment FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention. In Fig. 1, 11 is a gyro, and a flying object 1
0 (not shown in Figure 1) is detected and an attitude angle signal S
Outputs 1. Reference numeral 12 denotes a detection sensor consisting of an accelerometer or the like, which is mounted on the flying object 10 so as to detect the lateral acceleration of the flying object 10, and outputs a detection signal or t5 lateral acceleration signal 82. These beliefs @SI, S2 are controlled
(Supplied to the meter 13. The control meter tHJ13 calculates the amount of movement of the flying object 10 by the wind, based on the attitude angle signal S1 of the flying object 10 and the lateral acceleration signal 82. A steering angle command is calculated in accordance with the calculated amount of movement of the flying object 10, and a steering angle Ih command signal S3 is supplied to the servo device 14. The servo device 14 responds to the steering angle command signal S3. Then, the steering angle is controlled υll so that the flying object 10 reaches the target point, and the azimuth angle is corrected 1 and 1.
Perform 1ηO.
第2図および第3図は本実施例の作用を示す図である。FIGS. 2 and 3 are diagrams showing the operation of this embodiment.
第2図に示すように発射点○から目標点Pに向かって発
射された飛翔体10は、基準方位角αを一定に保つよう
に飛χ、I経路Aに沿って飛翔する。今、飛翔体10の
飛翔中において、周速Vの風が矢印方向から吹付けたと
する。そうすると、飛翔体10は基準方位角αを一定に
保ちながら距MXだけ流される。このとき、基準方位角
αを一定に保つだけで、風の影響を補正する手段を有し
ていなければ、従来例で説明したと同様に、飛翔体10
は飛翔経路Bに沿って飛翔し、10′のような位置へ移
行してしまうことになる。しかるに本実り例においては
、風の影響を補正する手段を有しているため、次のよう
に方位角制御が行なわれる。As shown in FIG. 2, the flying object 10 launched from the launch point ○ toward the target point P flies along the flight χ, I path A so as to keep the reference azimuth α constant. Now, suppose that while the flying object 10 is in flight, a wind with a circumferential speed of V is blown from the direction of the arrow. Then, the flying object 10 is swept away by a distance MX while keeping the reference azimuth α constant. At this time, if the reference azimuth angle α is kept constant and there is no means to correct the influence of the wind, the flying object 10
will fly along flight path B and move to a position such as 10'. However, in this example, since a means for correcting the influence of wind is provided, azimuth angle control is performed as follows.
本実浦例においては、飛翔体10の「自己姿勢角」−「
基準方位角α」となるため、基準方位角αに対して直角
方向に流された移行量Xは、ジャイロ11で1qられた
姿勢角信号S1と、飛翔体10に搭載した加速度計等の
検知センサ12により検知した横方向加速度nyを示す
信号S2とにより計粋可能である。すなわち、第3図に
示すようにJgtl!方位角αと、この基準方位角αに
対して直角方向の横方向加速度nyが検知されると、制
61]i!tt313113は横方向加速度nyの積分
を行なうことによって流された移11■Xを計典し、か
っこの移行ff1Xを14正するに必要な制御方位角β
と、その保持時間tとを含む操舵角指令を算出し、操舵
角指令信号S3を送出する。このような制御を逐次繰返
して実行することにより、飛翔体10は第2図に示す飛
翔経路Cに沿って飛翔することになる。かくして飛翔体
10は凧の影響による飛111位置の移動を補正されな
がら目標点Pへ到達する。In the Motominoura example, the "self-attitude angle" of the flying object 10 - "
Since the reference azimuth angle α is the same, the amount of shift X that is perpendicular to the reference azimuth angle α is determined by the attitude angle signal S1 multiplied by 1q by the gyro 11 and the detection by an accelerometer etc. mounted on the flying object 10. This can be calculated using the signal S2 indicating the lateral acceleration ny detected by the sensor 12. That is, as shown in FIG. 3, Jgtl! When the azimuth angle α and the lateral acceleration ny perpendicular to the reference azimuth angle α are detected, the control 61]i! tt313113 is the control azimuth angle β necessary to calculate the flowed displacement 11■X by integrating the lateral acceleration ny, and correct the displacement ff1X in parentheses by 14.
and its holding time t, and sends out a steering angle command signal S3. By sequentially repeating and executing such control, the flying object 10 flies along the flight path C shown in FIG. 2. In this way, the flying object 10 reaches the target point P while the movement of the flight 111 position due to the influence of the kite is corrected.
このように本実施例において【ユ、a 7.’i i、
a 10に搭載した加速度計等からなる検知センサ12
により検知した横方向加速度nyに塁いて、飛19体1
0が用により流された移行量Xを検知し、この移行ff
1X+こ応じて飛翔体10の方位角を逐次補正制御する
ようにしたので、従来方式では実現できなかった風の影
響による到達位置の位置ずれを除去でき、目標点Pに対
して飛翔体10を正確に導くことが可能となる。In this way, in this example, [Yu, a 7. 'i i,
Detection sensor 12 consisting of an accelerometer etc. mounted on a 10
Based on the lateral acceleration ny detected by
0 detects the amount of transfer X caused by the flow, and this transfer ff
Since the azimuth of the flying object 10 is sequentially corrected and controlled in accordance with 1 It becomes possible to guide accurately.
なお本発明Iま前記実施例に限定されろものではなく、
本発明の費目を逸脱しない筒用で種々変形実施可能であ
るのは勿論である。Note that the present invention is not limited to the above embodiments,
Of course, various modifications can be made to the cylinder without departing from the scope of the present invention.
本発明によれば、飛翔体の姿勢角を基準方位角として、
飛翔体が横方向に流される移行量が算出され、かつこの
移行量を補正するための方位角および方位角保持時間を
含む操舵角指令が出力されるので、風の影響による飛翔
体の飛翔位置の移動が自動的に補正され、飛翔体を目漂
点へ正確に到達させ得る飛翔体の方位角1)す御方式を
提供できる。According to the present invention, the attitude angle of the flying object is the reference azimuth angle,
The amount of movement of the flying object in the lateral direction is calculated, and a steering angle command including the azimuth angle and azimuth angle holding time to correct this amount of movement is output, so the flying position of the flying object due to the influence of the wind is calculated. It is possible to provide a method for controlling the azimuth angle of a flying object, in which the movement of the flying object is automatically corrected, and the flying object can accurately reach the target point.
第1図〜第3図は本発明の一実施例を示す図で、第1図
は構成を示すブロック図、第2図および第3図は作用説
明図である。第4図は従来例の欠点を説明するための図
である。
1.10・・・R団体、11・・・ジャイロ、12・・
・検知センサ、13・・・制御計tigt、i4・・・
サーボ装置。
出願人復代理人 弁理士 鈴江武彦
第1図
第2図
第3図
第4図1 to 3 are diagrams showing an embodiment of the present invention, in which FIG. 1 is a block diagram showing the configuration, and FIGS. 2 and 3 are diagrams for explaining the operation. FIG. 4 is a diagram for explaining the drawbacks of the conventional example. 1.10...R group, 11...gyro, 12...
・Detection sensor, 13...Control meter tigt, i4...
Servo device. Applicant Sub-Agent Patent Attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Figure 4
Claims (1)
に搭載し、上記検知手段により検知された横方向加速度
と飛翔体の姿勢角とに基いて、前記飛翔体が風によって
流された移行量を算出し、この算出された飛翔体の移行
量に応じた操舵角指令に基いて、前記飛翔体が目標点に
到達するように方位角の補正制御を行なうようにしたこ
とを特徴とする飛翔体の方位角制御方式。A detection means for detecting lateral acceleration of the flying object is mounted on the flying object, and based on the lateral acceleration detected by the detection means and the attitude angle of the flying object, it is determined whether the flying object is blown away by the wind. The present invention is characterized in that the azimuth angle is corrected and controlled so that the flying object reaches the target point based on a steering angle command corresponding to the calculated amount of movement of the flying object. Azimuth control method for flying objects.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61284578A JP2505432B2 (en) | 1986-11-29 | 1986-11-29 | Azimuth control method for flying objects |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61284578A JP2505432B2 (en) | 1986-11-29 | 1986-11-29 | Azimuth control method for flying objects |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63140300A true JPS63140300A (en) | 1988-06-11 |
JP2505432B2 JP2505432B2 (en) | 1996-06-12 |
Family
ID=17680277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61284578A Expired - Fee Related JP2505432B2 (en) | 1986-11-29 | 1986-11-29 | Azimuth control method for flying objects |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2505432B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5757313A (en) * | 1980-01-29 | 1982-04-06 | Europ Propulsion | Guided system for bullet type or rocket bullet type missle |
JPS5866120A (en) * | 1981-10-16 | 1983-04-20 | Nissan Motor Co Ltd | Attitude controller for flying object |
-
1986
- 1986-11-29 JP JP61284578A patent/JP2505432B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5757313A (en) * | 1980-01-29 | 1982-04-06 | Europ Propulsion | Guided system for bullet type or rocket bullet type missle |
JPS5866120A (en) * | 1981-10-16 | 1983-04-20 | Nissan Motor Co Ltd | Attitude controller for flying object |
Also Published As
Publication number | Publication date |
---|---|
JP2505432B2 (en) | 1996-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3746281A (en) | Hybrid strapdown guidance system | |
US4054254A (en) | Rolling airframe autopilot | |
CN106556287B (en) | One kind integration proportional guidance Nonlinearity Correction Method | |
CN105241319B (en) | A kind of guided cartridge of spin at a high speed real-time alignment methods in the air | |
GB2025660A (en) | Missile steering apparatus | |
US3188019A (en) | Simplified inertial guidance system | |
JPS63140300A (en) | Deflection control system of missile | |
WO2018107733A1 (en) | Method and device for controlling airship | |
CN111221348B (en) | Sideslip correction method applied to remote guidance aircraft | |
CN114740760B (en) | Semi-physical simulation method and system for strapdown guided missile | |
CN110955256A (en) | Underwater high-precision attitude control method suitable for submarine-launched missile | |
US5740986A (en) | Method of determining the position of roll of a rolling flying object | |
JP3391869B2 (en) | How to guide moving objects | |
CN111273682B (en) | Side deviation correction method based on virtual target point | |
JPH0618276A (en) | Setting method of initial coordinate value of inertia detecting means of moving body | |
JPS5866120A (en) | Attitude controller for flying object | |
US20140042265A1 (en) | Method for automatically managing a homing device mounted on a projectile, in particular on a missile | |
JP3363914B2 (en) | Flying object guidance control device | |
JP2744007B2 (en) | Flying object guidance device | |
Hutchins et al. | Filtering and control of an autonomous underwater vehicle for both target intercept and docking | |
JP2525072B2 (en) | Method of initializing flying body guidance device | |
JP2024063398A (en) | Missile launching device and missile launching method | |
JPS5927199A (en) | Automatic steering system of missile | |
RU2225812C2 (en) | Method of automatic control of tethering process | |
JPS58186808A (en) | Guidance system of airframe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |