[go: up one dir, main page]

JPS63137491A - Piezoelectric element type sensor - Google Patents

Piezoelectric element type sensor

Info

Publication number
JPS63137491A
JPS63137491A JP61284941A JP28494186A JPS63137491A JP S63137491 A JPS63137491 A JP S63137491A JP 61284941 A JP61284941 A JP 61284941A JP 28494186 A JP28494186 A JP 28494186A JP S63137491 A JPS63137491 A JP S63137491A
Authority
JP
Japan
Prior art keywords
film
electrode
piezoelectric element
electrodes
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61284941A
Other languages
Japanese (ja)
Inventor
Osamu Tawara
修 田原
Junya Kobayashi
潤也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP61284941A priority Critical patent/JPS63137491A/en
Publication of JPS63137491A publication Critical patent/JPS63137491A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To enable measurement in a gas containing a large quantity of moisture and having low insulating properties, etc., by coating an external exposed surface in a filmy metallic electrode formed onto a piezoelectric element with an electrical insulating film. CONSTITUTION:A sensor element having a pair or filmy electrodes 3 on a piezoelectric element 2 and shaping a chemical composition sensitive film 4 on at least one electrode 3 is formed. A quartz oscillator or Rochelle salt is used as the element 2, and a metallic thin-film consisting of gold, silver, etc., is employed as the filmy electrode 3 and applied onto both surfaces of the element through evaporation or sputtering. A plasma polymerization organic acid containing an ammonium group, etc., is used as the sensitive film 4 on the electrode 3, or a glass film through an alkoxide solution method is employed as a glass thin-film on the electrode. The external exposed surfaces of the metallic electrodes 3 are coated with electrical insulating films 5, thus allowing measurement at the time of immersion into a gas or a liquid containing a large number of moisture and having low insulating properties.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、圧電素子型センサに関する。さらに詳しく
は、水分センサ、湿度センサ、イオンセンサ等の種々の
化学成分のセンサとして有用であり、これ以外の化学成
分のセンサとしても応用可能な圧電素子型センサに関す
る。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a piezoelectric element type sensor. More specifically, the present invention relates to a piezoelectric element type sensor that is useful as a sensor for various chemical components such as a moisture sensor, a humidity sensor, an ion sensor, and can also be applied as a sensor for other chemical components.

(ロ)従来の技術 圧電素子ことに水晶振動子は、古くから電子、通信機器
の発信素子として用いられている。これは、水晶が物理
的・化学的に非常に安定であること、発振周波数が極め
て安定であること、振動損失が少ないこと、切断方法、
振動子形状等により種々の周波数が得られること、不純
物濃度により温度特性を制御できること、天然水晶に代
る人工水晶の生産技術の確立等の理由によるものである
(b) Prior Art Piezoelectric elements, especially crystal oscillators, have been used as transmitting elements in electronic and communication equipment for a long time. This is because the crystal is physically and chemically very stable, the oscillation frequency is extremely stable, vibration loss is low, the cutting method,
This is because various frequencies can be obtained depending on the shape of the vibrator, temperature characteristics can be controlled by impurity concentration, and the production technology for artificial quartz crystal has been established as an alternative to natural quartz crystal.

そして近年、水晶振動子の特性を利用して、該水晶振動
子上に一対の膜状電極を形成し、この少なくともいずれ
かの膜状電極上に、■第四級アンモニウム基やスルホナ
ート基等の極性基を含有した高分子電解質膜やプラズマ
重合有8!膜を形成して感湿膜として構成した湿度・水
分センサ、■イオン感応物質を含有する有機又はM殿高
分子膜を形成してイオン感応膜として構成したイオンセ
ンサ、■酵素固定化膜を形成して、酵素に対する種々の
基質の感応膜として構成した酵素センサ、が実用化又は
提案されるに至っている。これらはいずれも、目的の化
学成分が一時的に感応膜に捕捉される際の感応lI重量
変動に基づく水晶振動子の発振周波数の変化を指標とし
て、該化学成分を検出するよう構成されたものである。
In recent years, utilizing the characteristics of a quartz crystal resonator, a pair of film-like electrodes are formed on the crystal resonator, and on at least one of the film-like electrodes, Polymer electrolyte membrane containing polar groups and plasma polymerization 8! Humidity/moisture sensor configured as a moisture-sensitive membrane by forming a membrane, ■ Ion sensor configured as an ion-sensitive membrane by forming an organic or M-based polymer membrane containing an ion-sensitive substance, ■ Forming an enzyme-immobilized membrane. As a result, enzyme sensors configured as membranes sensitive to various substrates for enzymes have been put into practical use or proposed. All of these are configured to detect a chemical component using as an indicator a change in the oscillation frequency of a crystal oscillator based on a change in the sensitive lI weight when the target chemical component is temporarily captured in a sensitive film. It is.

(ハ)発明が解決しようとする問題点 上記水晶振動子はそのカット形態により種々の゛振動モ
ードを有・するが、その電気的特性はそのカット形態の
如何にかかわらず第5図の等価回路で示される。図中1
1.Ci、Rtの直列共振回路は振動子の機械的振動を
表わし、これに並列に水晶誘電体としての並列容JIC
oS存在する。これらのうち、Ll及びC1は水晶の弾
性係数、圧電定数、振動モード、切断方位、寸法形状、
電極配置等により決定されその環境に左右されないが、
R1は振動子の環境に大きく左右されるものである。従
って、R1をできるだけ安定化させることが必要であり
、この観点から、前記各種センサは絶縁性が保たれた気
体中の水分・湿度の測定やその片面だけを液体中に浸漬
した形態での測定にその使用態様が制限されていた。そ
して、例えば、全体を液体中に浸漬してその液体中の水
分、イオン、基質等を測定する場合や絶縁性の低い気体
中(例えば、高湿ガス等)での水分・湿度を測定する場
合には、一対の電極間にリークが生じて前記R1に大き
な影響を及ぼすため、側底使用に耐えなかった。さらに
かかる現象は、気体中の水分・湿度センサにおいて電極
間が結露状態となる際にも同様であり、測定値の大きな
誤差を生じる原因となっていた。
(c) Problems to be Solved by the Invention The above-mentioned crystal resonator has various vibration modes depending on its cut form, but its electrical characteristics differ from the equivalent circuit shown in Figure 5 regardless of its cut form. It is indicated by. 1 in the diagram
1. The series resonant circuit of Ci and Rt represents the mechanical vibration of the vibrator, and in parallel there is a parallel capacitance JIC as a crystal dielectric.
oS exists. Among these, Ll and C1 are the elastic modulus of crystal, piezoelectric constant, vibration mode, cutting direction, size and shape,
Although it is determined by the electrode arrangement and is not affected by the environment,
R1 is greatly influenced by the environment of the vibrator. Therefore, it is necessary to stabilize R1 as much as possible, and from this point of view, the various sensors described above can be used to measure moisture and humidity in a gas that maintains insulation properties, or with only one side of the sensor immersed in a liquid. Its usage was limited. For example, when measuring moisture, ions, substrates, etc. in a liquid by immersing the whole body in the liquid, or when measuring moisture and humidity in a gas with low insulation properties (for example, high humidity gas, etc.) In this case, leakage occurred between the pair of electrodes and had a large effect on R1, so that it could not be used on the sole of the body. Furthermore, this phenomenon also occurs when dew condensation occurs between the electrodes of a moisture/humidity sensor in a gas, causing a large error in measured values.

この発明は、かかる状況に鑑みなされたものであり、こ
とに、水分等を多量に含む絶縁性の低い気体中での測定
や全体を液体中に浸漬した状態での測定を可能とする圧
電素子型センサを提供しようとするものである。
This invention was made in view of the above circumstances, and particularly provides a piezoelectric element that enables measurement in a gas with low insulation properties that contains a large amount of water, etc., or in a state where the entire body is immersed in a liquid. The present invention aims to provide a type sensor.

(ニ)問題点を解決するための手段 かくしてこの発明によれば、圧電素子上に一対の膜状電
極を備え、その少なくとも一方の膜状電極上に化学成分
感応膜を形成したセンサ素子からなり、各膜状電極にお
ける外部露出面を電気絶縁性薄膜で被覆したことを特徴
とする圧電素子型センサが提供される。
(d) Means for Solving the Problems Thus, according to the present invention, the sensor element comprises a pair of film electrodes on a piezoelectric element, and a chemical component sensitive film is formed on at least one of the film electrodes. There is provided a piezoelectric element type sensor characterized in that the externally exposed surface of each membrane electrode is covered with an electrically insulating thin film.

上記圧電素子としては、水晶振動子、電気石、ロツシュ
ル塩、チタン酸バリウム結晶、酸化亜鉛結晶等が挙げら
れ、これらのうち水晶振動子を用いるのが好ましい。ざ
らに水晶振動子のうち、Aエカットされた平板状のもの
を用いるのが高発振周波数が得られ易いため、好ましい
Examples of the piezoelectric element include a quartz crystal oscillator, tourmaline, Rotschl's salt, barium titanate crystal, zinc oxide crystal, etc. Among these, it is preferable to use a quartz crystal oscillator. Of the rough crystal oscillators, it is preferable to use a flat plate-shaped crystal oscillator with an A cut because it is easy to obtain a high oscillation frequency.

また、膜状電極としては、金や銀等の責な金属の薄膜を
用6x、るのが適しており、これらは通常、蒸着やスパ
ッタリングにより前記圧電素子の両面に一対形成される
Further, as the film electrode, it is suitable to use a thin film of a metal such as gold or silver, and these are usually formed in pairs on both sides of the piezoelectric element by vapor deposition or sputtering.

化学成分感応膜としては、前述のごとく種々の有機・無
機膜が適用できる。感湿膜として構成する場合には、ア
ンモニウム基やスルホナート基を表層に含有するプラズ
マ重合有機膜を用いるのが好ましく、例えば特開昭59
−24234号や特開昭61−66160号公報の記載
に準じて上記電極上に形成することができる。さらに酵
素の基質感応膜として構成する場合には、アルコキシド
を用いた溶液法により、まずガラス薄膜を電極上に形成
し、これにシランカップリング法等によって意図する酵
素を化学結合的に固定することにより形成するのが好ま
しい。なお、これらの化学成分感応膜は、通常、少なく
とも膜状電極上に形成されるが、膜状電極面領域内に形
成されるのが好ましく、その中央部に形成されるのがよ
り好ましい。
As mentioned above, various organic and inorganic films can be used as the chemical component sensitive film. When forming a moisture-sensitive film, it is preferable to use a plasma-polymerized organic film containing ammonium groups or sulfonate groups on the surface layer, for example, as described in Japanese Patent Application Laid-Open No.
It can be formed on the above electrode according to the description in No. 24234 and Japanese Unexamined Patent Publication No. 61-66160. Furthermore, when configuring the membrane as a substrate-sensitive membrane for an enzyme, a glass thin film is first formed on the electrode by a solution method using an alkoxide, and the intended enzyme is immobilized thereon by chemical bonding by a silane coupling method or the like. It is preferable to form it by. These chemical component sensitive films are usually formed at least on the membrane electrode, but are preferably formed within the surface area of the membrane electrode, and more preferably in the center thereof.

上記感応膜が形成された圧電素子の膜状電極における外
部露出面に電気絶縁性薄膜が被覆形成される。この被覆
は、上記感応膜上を除いて圧電素子全面に行なわれてい
てもよく、少なくとも電極露出面が外ざと電気的に遮断
されるよう構成されておればよい。この除用いる絶縁性
薄膜としては、化学的、物理的に安定でかつ、薄膜状に
簡便に形成しつるものが好ましく、この例としては、プ
ラズマ重合有機膜又はガラス膜が挙げられる。この際の
プラズマ重合有芸膜としては実質的に極性基を有さない
ものが適しており、スチレンのごとき芳香族ビニル化合
物を七ツマ−としてプラズマ重合に付して得られる高分
子膜が好ましい。一方、ガラス膜としては、金属アルコ
キシドの溶液法によりゲル化を経て得られるガラス膜が
適して打つ、ことにケイ酸エチル、ケイ酸メチル等の低
級アルコキシシランの溶液の塗布、乾燥、加熱により得
られるガラス膜を適用するのが好ましい。なお、これら
電気絶縁性薄膜の厚みは、通常、約0.1〜10)a程
度とするのが適している。厚みが薄すぎると絶縁性が低
下し、また厚すぎると圧電素子の圧電特性低下の点から
好ましくない。
An electrically insulating thin film is formed to cover the externally exposed surface of the film-like electrode of the piezoelectric element on which the sensitive film is formed. This coating may be applied to the entire surface of the piezoelectric element except for the sensitive film, as long as at least the electrode exposed surface is electrically isolated from the outside. The insulating thin film to be removed is preferably one that is chemically and physically stable and can be easily formed into a thin film, such as a plasma polymerized organic film or a glass film. In this case, a plasma-polymerized membrane having substantially no polar groups is suitable, and a polymer membrane obtained by subjecting an aromatic vinyl compound such as styrene to plasma polymerization as a polymer is preferable. . On the other hand, as the glass film, a glass film obtained through gelation using a metal alkoxide solution method is suitable.In particular, a glass film obtained by applying a solution of a lower alkoxysilane such as ethyl silicate or methyl silicate, drying, and heating is suitable. It is preferable to apply a glass film that is Note that the thickness of these electrically insulating thin films is usually suitably about 0.1 to 10). If the thickness is too thin, the insulation properties will deteriorate, and if it is too thick, the piezoelectric properties of the piezoelectric element will deteriorate, which is not preferable.

(ホ)作 用 電気絶縁性簿膜の存在により、一対の膜状電極間のリー
クが防止され、圧電素子の電極間抵抗R1が一定に保た
れることとなる。
(E) Function The presence of the electrically insulating film prevents leakage between the pair of film-like electrodes, and keeps the inter-electrode resistance R1 of the piezoelectric element constant.

(へ)実施例 ATカットの水晶振動子(0,lX13mmφ)の両面
中央部に、蒸着により直?8間の金電極(膜状電極:厚
み約1叡)を形成した。この素子(発振周波数9.02
25’ H2)を、プラズマ重合用チャンバー内に配置
しマスクを施して下記条件:モノマm:スチレン モノマー圧:1℃orr チャンバ一温度:25℃ 放電周波数:1KHz 放電電極:  3,5w で約20秒プラズマ重合を行ない、両面の電極中央部に
約3000人の膜厚のポリスチレン簿膜を形成させた。
(f) Example Directly deposited on the center of both sides of an AT-cut crystal resonator (0.1 x 13 mmφ) by vapor deposition. A gold electrode (membrane electrode: approximately 1 ㎡ thick) was formed. This element (oscillation frequency 9.02
25' H2) was placed in a plasma polymerization chamber and masked under the following conditions: Monomer m: Styrene monomer pressure: 1°C orr Chamber temperature: 25°C Discharge frequency: 1KHz Discharge electrode: Approximately 20 at 3.5W Second plasma polymerization was performed to form a polystyrene film with a thickness of about 3000 mm at the center of the electrodes on both sides.

次いで密閉容器内を0.1tOrrまで減圧し、N、N
、N’ 、N’ −テトラメチルヘキサンジアミンの蒸
気を1 torrになるまで導入し、同様な条件下で6
0秒間、プラズマ重合を行ない、ポリスチレン薄膜上に
約5000人のアミン基含有高分子膜を密着形成さぜた
Next, the pressure inside the sealed container was reduced to 0.1 tOrr, and N, N
,N',N'-Tetramethylhexanediamine vapor was introduced to 1 torr, and 6 torr was added under the same conditions.
Plasma polymerization was performed for 0 seconds to form a polymer film containing about 5,000 amine groups in close contact with the polystyrene thin film.

次いでこの素子を塩化メチル蒸気槽内12時間放置する
ことにより、アミン基含有高分子膜(表面II)内のア
ミノ基をアルキル化してアンモニウム塩型の親水性基へ
の変換を行なった。
Next, this element was left in a methyl chloride vapor tank for 12 hours to alkylate the amino groups in the amine group-containing polymer film (surface II) and convert them into ammonium salt-type hydrophilic groups.

このようにして得られた素子を第2図に示した、。The device thus obtained is shown in FIG.

図において2は水晶振動子、3は金電極、4はアンモニ
ウム塩型の親水性基を表層に含むプラズマ重合高分子か
らなる感湿膜である。
In the figure, 2 is a crystal resonator, 3 is a gold electrode, and 4 is a moisture-sensitive film made of a plasma-polymerized polymer containing an ammonium salt type hydrophilic group in its surface layer.

上記素子における両面の感湿膜表面をマスクし、これを
再びプラズマ重合チャンバー内に配置し、下記条件: モノマー:スチレン モノマー圧: 1 torr チャンバ一温度:25℃ 放電周波数: 1 KHz 放電電力=10W (電極間距離 約50mm) で約3分プラズマ重合を行ない、感湿膜以外の面にプラ
ズマ重合膜を被覆して、金電極の露出面が厚さ約1渚の
ポリスチレン薄膜で被覆された第1図に示すごときこの
発明の一実施例の湿度センサ1を得た。図中、5はプラ
ズマ重合によるポリスチレン薄膜を示す。
The surfaces of the moisture-sensitive films on both sides of the above device were masked, and this was placed in the plasma polymerization chamber again under the following conditions: Monomer: Styrene monomer pressure: 1 torr Chamber temperature: 25° C. Discharge frequency: 1 KHz Discharge power = 10 W (distance between electrodes about 50 mm) for about 3 minutes, the surface other than the moisture sensitive membrane was coated with a plasma polymerized film, and the exposed surface of the gold electrode was covered with a polystyrene thin film about 1 layer thick. A humidity sensor 1 according to an embodiment of the present invention as shown in FIG. 1 was obtained. In the figure, 5 indicates a polystyrene thin film produced by plasma polymerization.

この湿度センサ1を第3図に示すごとく発振回路基板9
に絶縁性支柱8.8で取り付けて所定濃度の塩化ナトリ
ウム水溶液6中に全体浸漬して両電極間の電気的リーク
を評価した。図中、10は電源(DC15V)、11は
周波数カウンタを示す。
This humidity sensor 1 is connected to an oscillation circuit board 9 as shown in FIG.
The electrode was attached with an insulating support 8.8 and the whole was immersed in a sodium chloride aqueous solution 6 of a predetermined concentration to evaluate electrical leakage between both electrodes. In the figure, 10 indicates a power supply (DC 15V), and 11 indicates a frequency counter.

この結果を第4図に示す。図中Aは上記湿度センサにつ
いての結果を、Bはポリスチレン115の形成前のセン
サの結果(比較例)を各々示すものである。
The results are shown in FIG. In the figure, A shows the results for the above humidity sensor, and B shows the results for the sensor before forming polystyrene 115 (comparative example).

このように、実施例のセンサにおいては、塩化ナトリウ
ム濃度が増加しても周波数は変化せず、両電極間の絶縁
性が極めて良好に保たれていることが判る。
As described above, in the sensor of the example, the frequency does not change even when the sodium chloride concentration increases, and it can be seen that the insulation between the two electrodes is maintained extremely well.

そして、上記センサは、高湿度の環境下においても気相
中の水分・湿度センサとして使用できるものであった。
The above sensor can be used as a moisture/humidity sensor in the gas phase even in a high humidity environment.

(ト)発明の効果 この発明の圧電素子力センサによれば、水分やイオン性
物質を多量に含有する気相中において、また液相中にお
いても両電極間の電気絶縁性が良好に保たれ、かかる系
中においても意図する測定を行なうことができる。従っ
て、圧電素子のセンサへの用途を著しく拡大するもので
ある。
(G) Effects of the Invention According to the piezoelectric element force sensor of the present invention, good electrical insulation between both electrodes can be maintained even in a gas phase containing a large amount of water and ionic substances, as well as in a liquid phase. , it is possible to carry out the intended measurements even in such a system. Therefore, the application of piezoelectric elements to sensors is significantly expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例の湿度センサを示す断面
の構成説明図、第2図は、実施例のセンサの製造過程に
おける圧電素子を示す平面の構成説明図、第3図は、実
施例のセンサの電気的リークを試験する装置の構成説明
図、第4図は同じく電気的リーク試験の結果を比較例と
共に示すグラフ図、第5因は、水晶発振子の等価回路図
である。 1・・・・・・湿度センサ、 2・・・・・・水晶振動
子、3・・・・・・金電極、    4・・・・・・感
湿膜、5・・・・・・ポリスチレン薄膜。 第1図 第3図
FIG. 1 is a cross-sectional structural explanatory diagram showing a humidity sensor according to an embodiment of the present invention, FIG. 2 is a planar structural explanatory diagram showing a piezoelectric element in the manufacturing process of the sensor according to the embodiment, and FIG. A configuration explanatory diagram of a device for testing electrical leakage of the sensor of the example, FIG. 4 is a graph diagram showing the results of the electrical leakage test together with a comparative example, and the fifth factor is an equivalent circuit diagram of a crystal oscillator. . 1...Humidity sensor, 2...Crystal resonator, 3...Gold electrode, 4...Moisture sensitive membrane, 5...Polystyrene Thin film. Figure 1 Figure 3

Claims (1)

【特許請求の範囲】 1、圧電素子上に一対の膜状電極を備え、その少なくと
も一方の膜状電極上に化学成分感応膜を形成したセンサ
素子からなり、各膜状電極における外部露出面を電気絶
縁性薄膜で被覆したことを特徴とする圧電素子型センサ
。 2、電気絶縁性薄膜が、プラズマ重合有機膜又はガラス
膜である特許請求の範囲第1項記載のセンサ。 3、プラズマ重合有機膜が、芳香族ビニル化合物の重合
膜である特許請求の範囲第2項記載のセンサ。 4、ガラス膜が、金属アルコキシドの溶液法により形成
されたガラス膜である特許請求の範囲第2項記載のセン
サ。
[Claims] 1. Consisting of a sensor element comprising a pair of film electrodes on a piezoelectric element and a chemical component sensitive film formed on at least one of the film electrodes, the externally exposed surface of each film electrode is A piezoelectric element type sensor characterized by being coated with an electrically insulating thin film. 2. The sensor according to claim 1, wherein the electrically insulating thin film is a plasma polymerized organic film or a glass film. 3. The sensor according to claim 2, wherein the plasma polymerized organic film is a polymerized film of an aromatic vinyl compound. 4. The sensor according to claim 2, wherein the glass film is a glass film formed by a metal alkoxide solution method.
JP61284941A 1986-11-29 1986-11-29 Piezoelectric element type sensor Pending JPS63137491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61284941A JPS63137491A (en) 1986-11-29 1986-11-29 Piezoelectric element type sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61284941A JPS63137491A (en) 1986-11-29 1986-11-29 Piezoelectric element type sensor

Publications (1)

Publication Number Publication Date
JPS63137491A true JPS63137491A (en) 1988-06-09

Family

ID=17685048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61284941A Pending JPS63137491A (en) 1986-11-29 1986-11-29 Piezoelectric element type sensor

Country Status (1)

Country Link
JP (1) JPS63137491A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1107325A2 (en) * 1999-12-08 2001-06-13 TDK Corporation Multilayer piezoelectric element and method of producing the same
WO2022137565A1 (en) * 2020-12-25 2022-06-30 太陽誘電株式会社 Detection element, gas detection system, and method for manufacturing detection element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5255580A (en) * 1975-10-30 1977-05-07 Matsushita Electric Ind Co Ltd Humidity sensor
JPS5714734A (en) * 1980-06-26 1982-01-26 Medicor Muevek Electrical converter for mechanical vibration or pressure variation detection
JPS5924234A (en) * 1982-07-31 1984-02-07 Shimadzu Corp Humidity sensor and manufacture thereof
JPS6018743A (en) * 1983-07-11 1985-01-30 Murata Mfg Co Ltd Humidity sensor
JPS60221382A (en) * 1984-04-19 1985-11-06 シチズン時計株式会社 Method of coating organic material film on inorganic material substrate surface
JPS6164179A (en) * 1984-09-05 1986-04-02 Murata Mfg Co Ltd piezoelectric device
JPS6166160A (en) * 1984-09-08 1986-04-04 Shimadzu Corp Humidity sensor and manufacture thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5255580A (en) * 1975-10-30 1977-05-07 Matsushita Electric Ind Co Ltd Humidity sensor
JPS5714734A (en) * 1980-06-26 1982-01-26 Medicor Muevek Electrical converter for mechanical vibration or pressure variation detection
JPS5924234A (en) * 1982-07-31 1984-02-07 Shimadzu Corp Humidity sensor and manufacture thereof
JPS6018743A (en) * 1983-07-11 1985-01-30 Murata Mfg Co Ltd Humidity sensor
JPS60221382A (en) * 1984-04-19 1985-11-06 シチズン時計株式会社 Method of coating organic material film on inorganic material substrate surface
JPS6164179A (en) * 1984-09-05 1986-04-02 Murata Mfg Co Ltd piezoelectric device
JPS6166160A (en) * 1984-09-08 1986-04-04 Shimadzu Corp Humidity sensor and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1107325A2 (en) * 1999-12-08 2001-06-13 TDK Corporation Multilayer piezoelectric element and method of producing the same
EP1107325A3 (en) * 1999-12-08 2005-01-19 TDK Corporation Multilayer piezoelectric element and method of producing the same
WO2022137565A1 (en) * 2020-12-25 2022-06-30 太陽誘電株式会社 Detection element, gas detection system, and method for manufacturing detection element

Similar Documents

Publication Publication Date Title
Rabe et al. Monolithic miniaturized quartz microbalance array and its application to chemical sensor systems for liquids
US5455475A (en) Piezoelectric resonant sensor using the acoustoelectric effect
EP0024946B1 (en) Method of manufacturing variable capacitance transducers
FI96547C (en) Constant temperature hygrometer
EP0100661A2 (en) Moisture sensor and a process for the production thereof
US20020113521A1 (en) Method for producing surface acoustic wave sensors and such a surface acoustic wave sensor
US4343688A (en) Method of making humidity sensors
EP0178071B1 (en) Moisture sensor and process for producing same
WO2007047097A1 (en) Multiple function bulk acoustic wave liquid property sensor
JPS63314999A (en) Piezoelectric transducer and its manufacturing method
JP2000258324A (en) Qcm sensor device
Garcia-Jareno et al. Validation of the mass response of a quartz crystal microbalance coated with Prussian Blue film for ac electrogravimetry
Chen et al. The Liquid Sensor Using Thin Film Bulk Acoustic Resonator with C‐Axis Tilted AlN Films
US5608374A (en) Humidity sensor and a method of producing the humidity sensor
JP3933340B2 (en) Multi-channel QCM sensor device
JPS63137491A (en) Piezoelectric element type sensor
JP2713534B2 (en) Surface acoustic wave biosensor
JP3634479B2 (en) Crystal sensor
Topart et al. High frequency impedance analysis of quartz crystal microbalances coated with conducting polymers
JPS6218856B2 (en)
Grande et al. Detection of galactosyltransferase using chemically modified piezoelectric quartz
JPH0832399A (en) Surface acoustic wave element and piezoelectric vibrating element
Wang et al. Pseudo-LFE study in AT-cut quartz for sensing applications
Bruckenstein et al. Correlation of in situ and ex situ responses of the QCM accompanying silver deposition
Amer et al. Quartz crystal microbalance holder design for on-line sensing in liquid applications