[go: up one dir, main page]

JPS63136055A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS63136055A
JPS63136055A JP28201786A JP28201786A JPS63136055A JP S63136055 A JPS63136055 A JP S63136055A JP 28201786 A JP28201786 A JP 28201786A JP 28201786 A JP28201786 A JP 28201786A JP S63136055 A JPS63136055 A JP S63136055A
Authority
JP
Japan
Prior art keywords
type
axis diameter
metal
particles
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28201786A
Other languages
Japanese (ja)
Other versions
JPH0560864B2 (en
Inventor
Toshio Enokida
年男 榎田
Shigemasa Takano
高野 繁正
Hiroko Hotta
裕子 堀田
Akihide Sano
佐野 彰秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP28201786A priority Critical patent/JPS63136055A/en
Publication of JPS63136055A publication Critical patent/JPS63136055A/en
Publication of JPH0560864B2 publication Critical patent/JPH0560864B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To enhance sharpness and gradation of the image to be formed by using metal-free phthalocyanine particles having a crystal form of a gamma-type, gamma'-type, eta-type, or eta'-type, as an electric charge generating material, and specifying a longer axis diameter to shorter axis diameter ratio, and the shorter axis diameters of said particles. CONSTITUTION:The charge generating material is the metal-free phthalocyanine particles having the crystal form of a gamma-type, gamma'-type, eta-type, or eta'-type, and a longer axis diameter to shorter axis diameter ratio of 1.5-10, and the shorter axis diameters regulated to <=0.35mum confirmed by the centrifugal precipitation type particle size determination method using the scanning type electron microscope, and the particle size distribution is obtained by dispersing the phthalocyanine particles into a solvent, such as tetrahydrofuran, and measuring the average particle diameter. This photosensitive body is constituted by successively laminating on a conductive substrate an undercoat layer, the charge generating layer, and a charge transfer layer, or omitting the undercoat layer from the other layers, thus permitting deterioration of sharpness and gradation of the image to be prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電子写真感光体に関し、詳しくは高感度、長
期にわたる繰り返し特性が安定であり2画像の鮮明性1
階調性の良好な電子写真感光体に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an electrophotographic photoreceptor, and more specifically, the present invention relates to an electrophotographic photoreceptor that has high sensitivity, stable repeatability over a long period of time, and 2.
This invention relates to an electrophotographic photoreceptor with good gradation.

(従来の技術) 従来、電子写真感光体は、セレン、セレン合金。(Conventional technology) Conventionally, electrophotographic photoreceptors are made of selenium or selenium alloys.

酸化亜鉛、硫化カドミウムおよび酸化チタン等の無機光
導電体を用いたものが主として使用されてきた。
Those using inorganic photoconductors such as zinc oxide, cadmium sulfide and titanium oxide have mainly been used.

近年、半導体レーザーの発展は目覚ましく、小型で安定
したレーザー発振器が安価に入手できるようになり、電
子写真用光源として用いられ始めている。
In recent years, the development of semiconductor lasers has been remarkable, and small and stable laser oscillators have become available at low cost and are beginning to be used as light sources for electrophotography.

しかし、これらの装置に短波長光を発振する半導体レー
ザーを用いるのは、寿命、出力等に問題が多いので、こ
れらの問題のない長波長光を発振する半導体レーザーが
用いられるようになり、それに従って長波長領域(78
0nm以上)に高感度を持つ光導電材料を開発する必要
が生じてきた。最近は有機系の材料、特に長波長領域に
感度を有するフタロシアニンを使用した積層型感光体、
p研究が盛んに行われている。
However, using semiconductor lasers that emit short-wavelength light in these devices has many problems in terms of lifespan, output, etc., so semiconductor lasers that emit long-wavelength light, which do not have these problems, are now being used. according to the long wavelength region (78
There is now a need to develop photoconductive materials that have high sensitivity in the wavelength range (0 nm or more). Recently, laminated photoreceptors using organic materials, especially phthalocyanine, which is sensitive in the long wavelength region, are being developed.
P research is being actively conducted.

本発明者らはすでに、780nm以上の波長に対して感
度を有するτ、τ′ηおよびη′型の結晶形を有する無
金屈フタロシアニンを見い出している。これらの無金屈
フタロシアニンを用いた電子写真感光体は、可とう性、
加工性、衛生性に優れ、長波長光への感度も良好である
が2画質、解像度および繰り返し使用時の安定性におい
て問題があることが判明した。
The present inventors have already found an arotropic phthalocyanine having crystal forms of the τ, τ′η and η′ types that are sensitive to wavelengths above 780 nm. Electrophotographic photoreceptors using these metal-free phthalocyanines have flexibility,
Although it has excellent processability and hygiene, and good sensitivity to long wavelength light, it has been found that there are problems with image quality, resolution, and stability during repeated use.

(発明が解決しようとする問題点) 本発明の目的は、均一でかつ平滑な電荷発生層を形成で
ることができ、高感度で長期にわたる繰り返し特性が安
定であり2画像の鮮明性2階調性の良好な電子写真感光
体を得ることにある。
(Problems to be Solved by the Invention) The objects of the present invention are to be able to form a uniform and smooth charge generation layer, to have high sensitivity and stable repeating characteristics over a long period of time, and to have two image clarity and two gradation levels. The object of the present invention is to obtain an electrophotographic photoreceptor with good properties.

(問題点を解決するための手段) 本発明は、導電性支持体上に、電荷発生物質と。(Means for solving problems) The present invention provides a charge generating material on a conductive support.

電荷移動物質とを含む層を形成してなる電子写真感光体
において、該電荷発生物質がτ型、τ′型5 η型およ
びη′型から選ばれる結晶形を有する無金属フタロシア
ニン粒子であり、該粒子は、長軸径/短軸径の比(以下
L/S比という)が1.5〜10の範囲にあり、かつ短
軸径が0.35μm以下であることを特徴とする電子写
真感光体である。
In an electrophotographic photoreceptor formed of a layer containing a charge transfer substance, the charge generation substance is metal-free phthalocyanine particles having a crystal form selected from τ type, τ′ type, η type, and η′ type, The particles are electrophotographic, characterized in that the ratio of major axis diameter/minor axis diameter (hereinafter referred to as L/S ratio) is in the range of 1.5 to 10, and the minor axis diameter is 0.35 μm or less. It is a photoreceptor.

本発明において用いられる。τ型無金、属フタロシアニ
ンは特開昭58−18263982639号型態金泥フ
タロシアニンは特開昭58−183758号公報に、ま
た、τ′型およびη′型の無金属フタロシアニンは特開
昭60−19153号公報にそれぞれ記載されているも
のであり、原料としてのα型無金属フタロシアニンもし
くはα型無金属フタロシアニンとフタロシアニン誘導体
とを摩砕助剤、溶媒等とともに各種分散機を用いて混練
することにより。
Used in the present invention. τ-type metal-free, genus phthalocyanine is described in JP-A-58-18263982639; type gold-paste phthalocyanine is described in JP-A-58-183758; τ'-type and η'-type metal-free phthalocyanine is described in JP-A-60-19153. They are described in the respective publications, and are made by kneading α-type metal-free phthalocyanine or α-type metal-free phthalocyanine and phthalocyanine derivative as raw materials together with a grinding aid, a solvent, etc. using various dispersers.

所定の結晶型を有する無金属フタロシアニン粒子に結晶
転移させることができる。
Crystal transition can be carried out into metal-free phthalocyanine particles having a predetermined crystal type.

上記結晶形を有する無金冗フタロシアニンは1通常、棒
状の結晶形を有しているが1本発明においては、特定の
L/S比を有し、特に短軸径の小さいフタロシアニン粒
子が電子写真感光特性に優れている。
The gold-free redundant phthalocyanine having the above-mentioned crystal form usually has a rod-like crystal form, but in the present invention, phthalocyanine particles having a specific L/S ratio and a particularly small minor axis diameter are electrophotographed. Excellent photosensitivity.

このような微細な結晶粒子は、結晶転移の際、転移時間
、転移温度2分散メディアと原料の比率摩砕助剤と原料
との比率、溶媒等の諸条件を適宜選定して得ることがで
きる。
Such fine crystal particles can be obtained by appropriately selecting conditions such as transition time, transition temperature, ratio of dispersion media to raw materials, ratio of grinding aid to raw materials, and solvent during crystal transition. .

本発明で得られる上記結晶形無金属フタロシアニン粒子
は、L/S比が1.5〜10の範囲であり、特に、短軸
径の長さが0.35μm以下、好ましくは0゜25μm
以下、より好ましくは0.15μm以下である。本発明
で得られる無金属フタロシアニンと掻めて微粒子である
ために塗液中における粒子の分散が良好であり、ゴ膜で
均一な電荷発生層を形成することができる。無金属フタ
ロシアニン粒子の短軸径が0.35μmより大きな粒子
になると、塗液の分散が悪くなるの電荷発生層表面の平
滑性が低下し、これが静電画像に影響を及ぼし、結果と
して画像解像度および諧調性が低下する。
The crystalline metal-free phthalocyanine particles obtained in the present invention have an L/S ratio in the range of 1.5 to 10, and particularly have a minor axis length of 0.35 μm or less, preferably 0°25 μm.
The thickness is more preferably 0.15 μm or less. Since the particles are as fine as the metal-free phthalocyanine obtained in the present invention, the particles are well dispersed in the coating liquid, and a uniform charge generation layer can be formed in the coating. When the minor axis diameter of the metal-free phthalocyanine particles becomes larger than 0.35 μm, the dispersion of the coating liquid deteriorates and the smoothness of the surface of the charge generation layer decreases, which affects the electrostatic image and, as a result, reduces the image resolution. and tonality decreases.

一方1粒子のL/S比は1.5〜10の範囲が好ましく
、L/S比があまりに小さいと、フタロシアニン粒子の
分散した塗液が凝集しやすく経時安定性が低下し、チキ
ソトロピー性も増加するため均一な塗膜が形成されに(
り、結晶欠陥が増える結果、感度。
On the other hand, the L/S ratio of one particle is preferably in the range of 1.5 to 10; if the L/S ratio is too small, the coating liquid in which the phthalocyanine particles are dispersed tends to aggregate, decreasing the stability over time and increasing thixotropy. As a result, a uniform coating film is formed (
As a result, sensitivity increases as crystal defects increase.

繰り返し特性が低下することになる。The repeatability will deteriorate.

フタロシアニン粒子の短軸径は、遠心沈降式の粒度分布
測定法および走査型電子顕微鏡(SEM)により確認す
ることができる。粒度分布測定法ではフタロシアニン粒
子をテトラヒドロフランのような溶剤に分散し2回転数
5000回転/分程度の条件で平均粒子径を測定する。
The minor axis diameter of the phthalocyanine particles can be confirmed by a centrifugal sedimentation type particle size distribution measurement method and a scanning electron microscope (SEM). In the particle size distribution measurement method, phthalocyanine particles are dispersed in a solvent such as tetrahydrofuran, and the average particle diameter is measured under conditions of two revolutions of about 5000 revolutions/minute.

この場合フタロシアニンの粒子を球状と仮定しているの
で、得られた数値に性急する必要があるが、このように
して得られた平均粒子径とSEMによる観測像に基づく
数値とはほぼ一致する。SEMによる粒子径は、ある観
測される粒子像に対して、2本の平行線により粒子をは
さみ。
In this case, it is assumed that the phthalocyanine particles are spherical, so it is necessary to be quick with the obtained values, but the average particle diameter thus obtained and the value based on the observed image by SEM almost match. The particle diameter measured by SEM is determined by sandwiching the particle between two parallel lines for a certain observed particle image.

この2線間距離の最小のものを短軸径(S)とし。The minimum distance between these two lines is defined as the minor axis diameter (S).

これに垂直な2本の平行線で粒子をはさんだときの距離
を長軸径(L)とする。
The distance when the particle is sandwiched between two parallel lines perpendicular to this is defined as the major axis diameter (L).

本発明における感光体の好ましい層構成は、導電性基板
上に、下引き層、電荷発生層、電荷移動層の順にで積層
されたもの、あるいは下引き層を除いて上記層を構成し
たものがある。
A preferable layer structure of the photoreceptor in the present invention is one in which an undercoat layer, a charge generation layer, and a charge transfer layer are laminated in this order on a conductive substrate, or one in which the above layers are formed except for the undercoat layer. be.

各層は電荷発生剤と電荷移動剤を適切な結着剤樹脂で分
散塗布して形成することが好ましい。
Each layer is preferably formed by dispersing and coating a charge generating agent and a charge transfer agent with a suitable binder resin.

上記結着剤樹脂としては、シリコン樹脂、ケトン樹脂、
ポリ塩化ビニル樹脂、アクリル樹脂、ポリエステル樹脂
、ポリカーボネート樹脂、ポリビニルブチラール樹脂な
どの絶縁性樹脂があるがこれらに限定されるものではな
い。
The above-mentioned binder resin includes silicone resin, ketone resin,
Insulating resins include, but are not limited to, polyvinyl chloride resin, acrylic resin, polyester resin, polycarbonate resin, and polyvinyl butyral resin.

電荷発生層は9本発明の無金属フタロシアニン討子を塗
膜重量で40重量%以上含有し、上記樹脂の溶剤を加え
た塗液を、スピンコーター、アプリケーター、スプレー
コーター、バーコータ 、漫?Mコーター、ドクターブ
レード、ローラーコーター、カーテンコーター、ビード
コーター等の塗工装置を用いて乾燥後膜厚として、5〜
50μm、望ましくは10〜20μmになるように形成
する。
The charge generation layer is formed by applying a coating solution containing at least 40% by weight of the metal-free phthalocyanine compound of the present invention and a solvent for the above resin using a spin coater, an applicator, a spray coater, a bar coater, or a dry coater. The film thickness after drying using coating equipment such as M coater, doctor blade, roller coater, curtain coater, bead coater, etc. is 5 to 5.
It is formed to have a thickness of 50 μm, preferably 10 to 20 μm.

電荷移動層は、電荷移動剤の単層または電荷移動剤を結
着剤樹脂溶液に溶解分散させた塗液を乾燥塗膜厚として
0.1〜5μm、望ましくは0.3〜1μmの厚さで形
成したものである。電荷移動物質としては電子移動物質
と正孔移動性物質があるかいずれも使用することができ
る。好ましい電荷移動剤としては、オキサゾール誘導体
、カルバゾール誘導体。
The charge transfer layer has a dry film thickness of 0.1 to 5 μm, preferably 0.3 to 1 μm, of a single layer of a charge transfer agent or a coating liquid in which a charge transfer agent is dissolved and dispersed in a binder resin solution. It was formed by As the charge transfer substance, either an electron transfer substance or a hole transfer substance can be used. Preferred charge transfer agents include oxazole derivatives and carbazole derivatives.

ヒドラゾン誘導体、スチリル色素系、シアニン色素系、
オキサジアゾール誘導体、ピラゾリン誘導体。
hydrazone derivatives, styryl dyes, cyanine dyes,
Oxadiazole derivatives, pyrazoline derivatives.

トリフェニルメタン系化合物、トリフェニルアミン系化
合物、ニトロフルオレノン類等の正孔移動物質がある。
There are hole transfer substances such as triphenylmethane compounds, triphenylamine compounds, and nitrofluorenones.

下引き層としては、ナイロン610.共重合ナイロン、
アルコキシメチル化ナイロンなどのアルコール可溶性ポ
リアミド、カゼイン、ポリビニルアルコール、ニトロセ
ルロース、エチレン−アクリル酸コポリマー、ゼラチン
、ポリウレタン、ポリビニルブチラールおよび酸化アル
ミニウムなどの金属酸化物を0.1〜20μm、望まし
くは0.1〜1μmとなるように形成したものである。
Nylon 610. copolymerized nylon,
Alcohol-soluble polyamides such as alkoxymethylated nylon, casein, polyvinyl alcohol, nitrocellulose, ethylene-acrylic acid copolymers, gelatin, polyurethane, polyvinyl butyral and metal oxides such as aluminum oxide, preferably 0.1 to 20 μm, preferably 0.1 It is formed to have a thickness of ~1 μm.

また、酸化亜鉛、酸化チタン等の金属酸化物、窒化ケイ
素、炭化ケイ素やカーボンブラックなどの導電性および
誘電性粒子を樹脂中に含有させて調整することもできる
Further, conductive and dielectric particles such as metal oxides such as zinc oxide and titanium oxide, silicon nitride, silicon carbide, and carbon black can be included in the resin for adjustment.

上記各層を形成するべき導電性支持体としては。As the conductive support on which each of the above layers is to be formed.

アルミニウム、アルミニウムと他種金属との合金。Aluminum, alloys of aluminum and other metals.

鋼、鉄、銅、ニッケル等の金属の他に導電性プラスチッ
クおよびプラスチック、紙、ガラス等に導電性を付与し
たものを用いることができる。
In addition to metals such as steel, iron, copper, and nickel, conductive plastics and plastics, paper, glass, etc. that have been imparted with conductivity can be used.

プリンター用デジタル光源としては、レーザーの他、L
EDも使用できる。可視光領域のLEDも使われている
が、一般に実用化されているものは、65Qnm以上、
標準的には660部mの発振波長を持っている。また、
当該無金属フタロシアニン化合物は、650部m前後に
吸収ピークを持つため、LED用材料としても有効な材
料として使用できる。
In addition to lasers, digital light sources for printers include L
ED can also be used. LEDs in the visible light range are also used, but those that are generally in practical use are those with wavelengths of 65 Qnm or more,
It typically has an oscillation wavelength of 660 parts m. Also,
Since the metal-free phthalocyanine compound has an absorption peak around 650 parts m, it can be used as an effective material for LEDs.

以下2本発明の実施例について説明する。例中で部とは
1重量部を示す。
Two embodiments of the present invention will be described below. In the examples, part means 1 part by weight.

(実施例) 参考例1 (α型無金属フタロシアニンの製造)アミノ
イミノイソインドレニン14.5部をトリクロロベンゼ
ン50部中で200℃にて2時間加熱し。
(Examples) Reference Example 1 (Production of α-type metal-free phthalocyanine) 14.5 parts of aminoiminoisoindolenine was heated at 200° C. for 2 hours in 50 parts of trichlorobenzene.

反応後、水蒸気蒸溜で溶媒を除き、2%塩酸水溶液。After the reaction, the solvent was removed by steam distillation and a 2% aqueous hydrochloric acid solution was obtained.

続いて2%水酸化ナトリウム水溶液で精製した後。After subsequent purification with a 2% aqueous sodium hydroxide solution.

水で十分洗浄後、乾燥することによって無金属フタロシ
アニン8.8部(収率70%)を得た。このようにして
得た無金属フタロシアニンはβ型の結晶形を有している
。β型からα型への転移は次の操作で製造される。10
“C以下の98%硫酸10部の中に1部のβ型無金属フ
タロシアニンを少しずつ溶解し。
After thorough washing with water, 8.8 parts of metal-free phthalocyanine (yield 70%) was obtained by drying. The metal-free phthalocyanine thus obtained has a β-type crystal form. The transition from β type to α type is produced by the following operation. 10
“1 part of β-type metal-free phthalocyanine was dissolved little by little in 10 parts of 98% sulfuric acid of C or less.

その混合物を約2時間の間、5℃以下の温度を保ちなが
ら攪拌する。続いて硫酸溶液を200部の氷水中に注入
し、析出した結晶をろ過する。結晶を酸が残留しなくな
るまで蒸留水で洗浄し、乾燥すると0゜95部のα型無
金属フタロシアニンが得られる。
The mixture is stirred for about 2 hours while maintaining the temperature below 5°C. Subsequently, the sulfuric acid solution is poured into 200 parts of ice water, and the precipitated crystals are filtered. The crystals are washed with distilled water until no acid remains and are dried to obtain 0.95 parts of α-type metal-free phthalocyanine.

参考例2 (τ型無金泥フタロシアニンの製造)α型態
金属フタロシアニフ10部に1食塩30部。
Reference Example 2 (Production of τ-type gold-free phthalocyanine) 10 parts of α-type metal phthalocyanine was mixed with 30 parts of common salt.

ポリエチレングリコール8部をニーダーに入れ、80℃
で7〜15時間ニーディングし、サンプングして、X線
回折図でτ型に転移したことを確認の後。
Put 8 parts of polyethylene glycol into a kneader and heat at 80°C.
After kneading for 7 to 15 hours, sampling, and confirming the transition to the τ type using an X-ray diffraction pattern.

ニーダ−より取り出し、水およびメタノールで磨砕助剤
、溶媒を洗浄除去後、2%の希硫酸水溶液中で攪拌、精
製し、ろ過、水洗、乾燥して鮮明な色相の青色結晶を得
た。これらの結晶は赤外線吸収スペクトルの測定によっ
てもτ型無金泥フタロシアニンであることが確認された
It was taken out from the kneader, and after washing and removing the grinding aid and solvent with water and methanol, it was stirred and purified in a 2% dilute sulfuric acid aqueous solution, filtered, washed with water, and dried to obtain blue crystals with a clear hue. These crystals were also confirmed to be τ-type gold-free phthalocyanine by measurement of infrared absorption spectra.

こうして得られたフタロシアニン粒子の大きさを遠心沈
降式(回転数500Orpm)による粒度分布の測定お
よび走査型電子顕微鏡にて!認したところ。
The size of the phthalocyanine particles thus obtained was determined by measuring the particle size distribution using a centrifugal sedimentation method (rotation speed: 500 rpm) and using a scanning electron microscope! I just acknowledged it.

短軸径は0.13μm、長軸径は0.70μm(長軸径
/短軸径の比5.38)であった。
The minor axis diameter was 0.13 μm, and the major axis diameter was 0.70 μm (major axis diameter/minor axis diameter ratio 5.38).

参考例3 (τ”型無金属フタロシアニンの製造)α型
無金屈フタロシアニン10部3食塩300部。
Reference Example 3 (Production of τ”-type metal-free phthalocyanine) 10 parts of α-type metal-free phthalocyanine, 300 parts of common salt.

エチレングリコール300部をサンドミルに入れ。Place 300 parts of ethylene glycol in a sand mill.

100℃で20時間ミリングした。サンプリングして、
X線回折図でτ゛′型(変形τ型)に転移したことを確
認の後、ニーダ−より取り出し、参考例2と同様にして
青色結晶を得た。この結晶は赤外線吸収スペクトルの測
定によってもτ′型型金金泥フタロシアニンあることが
確認された。
Milling was carried out at 100°C for 20 hours. sample and
After confirming the transition to the τ'' type (modified τ type) using an X-ray diffraction diagram, the mixture was taken out from the kneader and the same procedure as in Reference Example 2 was carried out to obtain blue crystals. This crystal was also confirmed to be a τ' type gold mud phthalocyanine by measurement of infrared absorption spectrum.

このフタロシアニン粒子の大きさを参考例2と同様に測
定したところ、短軸径は0.13μm、長軸径は0.7
0μm(長軸径/短軸径の比5.38)であった。
When the size of these phthalocyanine particles was measured in the same manner as in Reference Example 2, the short axis diameter was 0.13 μm and the long axis diameter was 0.7 μm.
It was 0 μm (ratio of major axis diameter/minor axis diameter 5.38).

参考例4 (η型無金屈フタロシアニンの製造)熱金属
フタロシアニン100部、ジエチルアミノメチル洞フタ
ロシアニン(ジエチルアミノエチル基を平均1.1 +
lI含有)10部を水冷した98%硫酸に溶解し、この
溶液を水中に投入し、沈澱物をろ過。
Reference Example 4 (Production of η-type non-metallectal phthalocyanine) 100 parts of hot metal phthalocyanine, diethylaminomethyl phthalocyanine (diethylaminoethyl groups average 1.1 +
10 parts (containing 1I) were dissolved in water-cooled 98% sulfuric acid, this solution was poured into water, and the precipitate was filtered.

水洗、乾燥することによって均一な混合物を得た。A homogeneous mixture was obtained by washing with water and drying.

この混合物100部、粉砕食塩300部およびポリエチ
レングリコール80部をニーダーに入れ、90°Cで7
〜20時間ニーディングした。サンプリングして、X線
回折図でη型に転移したことを確認の後。
100 parts of this mixture, 300 parts of ground salt and 80 parts of polyethylene glycol were placed in a kneader, and heated at 90°C for 7 hours.
Kneaded for ~20 hours. After sampling and confirming that it had transitioned to the η type using an X-ray diffraction diagram.

ニーダ−より取り出し、水およびメタノールで磨砕助剤
、溶媒を洗浄除去後、2%の希硫酸水溶液中で攪1↑、
精製し、参考例2と同様にして青色結晶を得た。この結
晶は赤外線吸収スペクトルの測定によってもη帯熱金属
フタロシアニンであることが確認された。
Take out from the kneader, wash and remove the grinding aid and solvent with water and methanol, and stir in a 2% dilute sulfuric acid aqueous solution 1↑.
It was purified in the same manner as in Reference Example 2 to obtain blue crystals. This crystal was also confirmed to be an η band thermometal phthalocyanine by measurement of infrared absorption spectrum.

このフタロシアニン粒子の大きさを参考例2と同様に測
定したところ、短軸径は0.13μm、長軸径は0.7
01部m(長軸径/短軸径の比5.38)であった。
When the size of these phthalocyanine particles was measured in the same manner as in Reference Example 2, the short axis diameter was 0.13 μm and the long axis diameter was 0.7 μm.
01 parts m (ratio of major axis diameter/minor axis diameter 5.38).

参考例5 (η′型無金冗フタロシアニンの製造)α型
無金属フタロシアニン100部、フタロシアニン誘導体
Pc−→C0CHユN Hc、 H,、)、、I(PC
は無金属フタロシアニン残基を表す。)15部。
Reference Example 5 (Production of η'-type metal-free redundant phthalocyanine) 100 parts of α-type metal-free phthalocyanine, phthalocyanine derivative Pc-→C0CHYN Hc, H, ), I (PC
represents a metal-free phthalocyanine residue. ) 15 parts.

粉砕食塩300部およびポリエチレングリコール80部
をニーダーに入れ、100℃で8時間ニーディングした
。サンプリングして、X線回折図でη′型(変形τ型)
に転移したことを確認の後、ニーダ−より取り出し、参
考例2と同様にして青色結晶を得た。この結晶は赤外線
吸収スペクトルの測定によってもη′型型金金属フタロ
シアニンあることが確認された。
300 parts of ground salt and 80 parts of polyethylene glycol were placed in a kneader, and kneaded at 100°C for 8 hours. After sampling, the X-ray diffraction pattern shows η′ type (modified τ type)
After confirming that the crystals had transformed into , the crystals were taken out from the kneader, and blue crystals were obtained in the same manner as in Reference Example 2. This crystal was also confirmed to be an η' type gold metal phthalocyanine by measurement of infrared absorption spectrum.

このフタロシアニン粒子の大きさを参考例2と同様に測
定したところ、短軸径は0.13μm、長軸径は0.7
0μm(長軸径/短軸径の比5.38)であった。
When the size of these phthalocyanine particles was measured in the same manner as in Reference Example 2, the short axis diameter was 0.13 μm and the long axis diameter was 0.7 μm.
It was 0 μm (ratio of major axis diameter/minor axis diameter 5.38).

実施例1 アルミニウム蒸着したポリエチレンテレフタレートシー
ト(75μm)のアルミニウム面にポリビニルアルコー
ル(ケン化度86〜89%)10部を混合し、エタノー
ル500部を加えてボールミルで3時間分散した塗液を
ワイヤーバーで塗布し、70℃で3時間加熱乾燥させ、
膜厚0.5μmの下引き層を形成した。
Example 1 10 parts of polyvinyl alcohol (saponification degree 86-89%) was mixed on the aluminum surface of an aluminum-deposited polyethylene terephthalate sheet (75 μm), 500 parts of ethanol was added, and the coating liquid was dispersed in a ball mill for 3 hours using a wire bar. , and heat-dried at 70℃ for 3 hours.
A subbing layer having a thickness of 0.5 μm was formed.

次に参考例1で得られたτ型無金属フタロシアニンを3
部、塩ビー酢ビ共重合体樹脂(ユニオンカーバイド社製
商品名VMCH)3部を、テトロヒドロフラン94部と
ともに、ボールミルで2時間分散した。この分散液を下
引き層上に塗布し、100℃で2時間乾燥させた後、0
.35μmの電荷発生層を形成した。
Next, 3 τ-type metal-free phthalocyanine obtained in Reference Example 1
and 3 parts of vinyl chloride-vinyl acetate copolymer resin (trade name VMCH, manufactured by Union Carbide) were dispersed together with 94 parts of tetrahydrofuran for 2 hours in a ball mill. This dispersion was applied onto the undercoat layer and dried at 100°C for 2 hours.
.. A charge generation layer of 35 μm was formed.

次に電荷発生剤として、1−ベンジル−1,2゜3.4
−テトラヒドロキノリン−6−カルポキシアルデヒドー
1’、1’−ジフェニルヒドラゾン10部、ポリエステ
ル樹脂(東洋紡株式会社製商品名バイロン200)10
部を塩化メチレン100重量部に熔かした液を電荷発生
層上に塗布、乾燥し、15μmの電荷移動層を形成した
Next, as a charge generating agent, 1-benzyl-1,2°3.4
-Tetrahydroquinoline-6-carpoxyaldehyde 1',1'-diphenylhydrazone 10 parts, polyester resin (trade name: Vylon 200, manufactured by Toyobo Co., Ltd.) 10 parts
100 parts by weight of methylene chloride was applied onto the charge generation layer and dried to form a charge transfer layer with a thickness of 15 μm.

上記で作成した電子写真感光体を川口電気製静電複写紙
試験装置5P−428により−5,4K Vでコロナ帯
電し1表面電位および5  luxの白色光を照射して
帯電量が1/2まで減少する時間から白色光半減露光量
感度(EV2)を調べた。また、繰り返し特性の評価は
−5,4KV、 コロナ線速度20m/minの条件で
帯電、2秒間暗所に放置、  5 1LIXで3秒露光
の順で緩り返し2表面電位、残留電位、感度の劣化を測
定した。なお、残留電位は光照射3秒後の電位である。
The electrophotographic photoreceptor prepared above was corona charged at -5.4 KV using an electrostatic copying paper tester 5P-428 manufactured by Kawaguchi Electric, and the amount of charge was reduced to 1/2 by irradiating it with a surface potential of 1 and white light of 5 lux. The white light half-reduction exposure sensitivity (EV2) was investigated from the time it takes for the light to decrease to . In addition, the repetition characteristics were evaluated by charging under the conditions of -5.4 KV and a corona linear velocity of 20 m/min, leaving it in the dark for 2 seconds, and exposing it to 5 1 LIX for 3 seconds. 2 Surface potential, residual potential, and sensitivity. Deterioration was measured. Note that the residual potential is the potential after 3 seconds of light irradiation.

次に、この感光体を、コロナ帯電器、露光部、転写帯電
部、除電露光部およびクリーナーを持つ電子写真方式の
複写機のドラムに張り付けた。この複写機の暗部電位を
−650v、明部電位を一130Vに設定し、5000
枚の繰り返し耐久試験の後2画像を比較し、下記の基準
で5段階評価した。
Next, this photoreceptor was attached to the drum of an electrophotographic copying machine having a corona charger, an exposure section, a transfer charging section, a static eliminating exposure section, and a cleaner. The dark potential of this copier was set to -650V, the light potential to -130V, and 5000V was set.
After the repeated durability test of the sheets, the two images were compared and evaluated in five stages according to the following criteria.

◎・・・非常に良い O・・・良い △・・・普通 ×・・・悪い ××・・・非常に悪い 分光感度は前記静電帯電試験装置を用いて、感光体に−
5,4K Vのコロナ帯電をさせた後、500Wのキセ
ノンランプを光源とし、モノクロメータ−で単色光とし
て照射し、帯電露光時の光減衰を測定することにより得
た。
◎...Very good O...Good△...Normal
After corona charging at 5.4 KV, the sample was irradiated with monochromatic light using a monochromator using a 500 W xenon lamp as a light source, and the light attenuation during charging exposure was measured.

結果を表1に示す。The results are shown in Table 1.

実施例2〜4 参考例3〜5で得られた各結晶型無金属フタロシアニン
を用いて実施例1と同様の操作により電子写真感光体を
□作成し、電子写真特性および画像を評価した。結果を
表1に示す。
Examples 2 to 4 Electrophotographic photoreceptors were prepared using the crystalline metal-free phthalocyanines obtained in Reference Examples 3 to 5 in the same manner as in Example 1, and the electrophotographic properties and images were evaluated. The results are shown in Table 1.

実施例5〜8 参考例2〜5において摩砕助剤の量を下記の様にかえて
各種結晶型の短軸径(S)およびL/S比を有する無金
属フタロシアニン粒子を得た。
Examples 5 to 8 In Reference Examples 2 to 5, the amount of the grinding aid was changed as shown below to obtain metal-free phthalocyanine particles having the minor axis diameter (S) and L/S ratio of various crystal types.

実施例52  25部  τ  0.20μ 6.06
3250部  で’0.21μ 5.774250部 
 η  0.20μ 6.085250部 η’0.2
0μ 6.0上記で得られた各結晶型無金属フタロシア
ニンを用いて実施例1と同様の操作により電子写真感光
体を作成し、電子写真特性および画像を評価した。結果
を表2に示す。
Example 52 25 parts τ 0.20μ 6.06
3250 copies '0.21μ 5.774250 copies
η 0.20μ 6.085250 parts η'0.2
0 μ 6.0 Electrophotographic photoreceptors were prepared using each of the crystalline metal-free phthalocyanines obtained above in the same manner as in Example 1, and the electrophotographic properties and images were evaluated. The results are shown in Table 2.

実施例9〜12 参考例2〜5において摩砕助剤の量を下記の様にかえて
各種結晶型の短軸径(S)およびL/S比を有する無金
属フタロシアニン粒子を得た。
Examples 9 to 12 In Reference Examples 2 to 5, the amount of the grinding aid was changed as shown below to obtain metal-free phthalocyanine particles having various crystal types with short axis diameters (S) and L/S ratios.

実施例92  20部  τ  0.31μ 4.21
03200部  τ’0.30μ 4.3114200
部 η  0.30μ 4.3125200部 η’0
.31μ 4.2上記で得られた各結晶型無金属フタロ
ンアニンを用いて実施例1と同様の操作により電子写真
感光体を作成し、電子写真特性および画像を評価した。
Example 92 20 copies τ 0.31μ 4.21
03200 copies τ'0.30μ 4.3114200
part η 0.30μ 4.3125200 parts η'0
.. 31μ 4.2 Using each of the crystalline metal-free phthalonanine obtained above, electrophotographic photoreceptors were prepared in the same manner as in Example 1, and the electrophotographic properties and images were evaluated.

結果を表3に示す。The results are shown in Table 3.

実施例13〜16 参考例2〜5において摩砕助剤の量を下記の様にかえて
各種結晶型の短軸径(S)およびL/S比を有する無金
属フタロシアニン粒子を得た。
Examples 13 to 16 In Reference Examples 2 to 5, the amount of the grinding aid was changed as shown below to obtain metal-free phthalocyanine particles having various crystal types with short axis diameters (S) and L/S ratios.

表1 表2 参考例 摩砕助剤 結晶型  S    L/S実施例
132   50部  τ  0.13μ 2.814
3500部  で’0.35μ 2.7154500部
  η  0.36μ 2.6165500部  η’
0.36μ 2.6上記で得られた各結晶型無金属フタ
ロシアニンを用いて実施例1と同様の操作により電子写
真感光体を作成し、電子写真特性および画像を評価した
。結果を表4に示す。
Table 1 Table 2 Reference example Grinding aid Crystal type S L/S Example 132 50 parts τ 0.13μ 2.814
3500 parts '0.35μ 2.7154500 parts η 0.36μ 2.6165500 parts η'
0.36μ 2.6 Using each of the crystalline metal-free phthalocyanines obtained above, electrophotographic photoreceptors were prepared in the same manner as in Example 1, and the electrophotographic properties and images were evaluated. The results are shown in Table 4.

比較例1〜4 参考例2〜5において摩砕助剤の量を下記の様にかえて
各種結晶型の短軸径(S)およびL/S比を有する無金
属フタロシアニン粒子を得た。なお、この無金属フタロ
シアニン粒子の長軸径はいずれも1゜5〜2.0μmの
範囲であった。
Comparative Examples 1 to 4 In Reference Examples 2 to 5, the amount of the grinding aid was changed as shown below to obtain metal-free phthalocyanine particles having the minor axis diameter (S) and L/S ratio of various crystal types. The major axis diameter of the metal-free phthalocyanine particles was in the range of 1.5 to 2.0 μm.

比較例12  15部  τ  0,55μ23150
部  τ’0.61μ 34150部  η  0.58μ 45150部  η’0.59μ 上記で得られた各結晶型無金属フタロシアニンを表3 表4 用いて実施例1と同様の操作により電子写真感光体を作
成し、電子写真特性および画像を評(面した。結果を表
5に示す。
Comparative example 12 15 parts τ 0,55μ23150
Parts τ'0.61μ 34150 parts η 0.58μ 45150 parts η'0.59μ Using each crystal type metal-free phthalocyanine obtained above, an electrophotographic photoreceptor was prepared in the same manner as in Example 1. The electrophotographic characteristics and images were evaluated. The results are shown in Table 5.

表5 (発明の効果) 本発明の無金庇フタロシアニン粒子は特定のLZS比を
有し、かつ短軸径を臣めで小さくしたので。
Table 5 (Effects of the Invention) The metal-free phthalocyanine particles of the present invention have a specific LZS ratio and have a relatively small short axis diameter.

均一で平滑な電荷発注層を形成することが可能であり、
これらの結晶型の特性である8 00 nm前後の長波
長光に対する感度を維持したまま、長期にわたる繰り返
し特性が安定で高品位の画像が得られる。持重発明にフ
タロシアニン粒子を用いて得られた電子写真感光体によ
る画像は、数千回の繰り返し使用後においても1階調性
、鮮明性がほとんど低下しないという優れた効果を有す
る。
It is possible to form a uniform and smooth charge ordering layer,
While maintaining sensitivity to long wavelength light around 800 nm, which is a characteristic of these crystal types, high-quality images can be obtained with stable repeat characteristics over a long period of time. The images produced by the electrophotographic photoreceptor using the phthalocyanine particles in the present invention have excellent effects in that the single gradation property and sharpness hardly deteriorate even after repeated use several thousand times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明の無金泥フタロシアニン粒子の長軸径
(L)および短軸径(S)を表す模式図である。 第2図は実施例5のτ型フタロシアニン粒子構造を示す
走査型電子顕微鏡写真である。図中の白線の距離は5μ
mである。
FIG. 1 is a schematic diagram showing the major axis diameter (L) and minor axis diameter (S) of the gold-free phthalocyanine particles of the present invention. FIG. 2 is a scanning electron micrograph showing the structure of the τ-type phthalocyanine particles of Example 5. The distance between the white lines in the diagram is 5μ
It is m.

Claims (1)

【特許請求の範囲】 1、導電性支持体上に、電荷発生物質と、電荷移動物質
とを含む層を形成してなる電子写真感光体において、該
電荷発生物質がτ型、τ′型、η型およびη型から選ば
れる結晶形を有する無金属フタロシアニン粒子であり、
該粒子は、長軸径/短軸径の比が1.5〜10の範囲に
あり、かつ短軸径が0.35μm以下であることを特徴
とする電子写真感光体。 2、無金属フタロシアニン粒子の短軸径が0.25μm
以下である特許請求の範囲第1項記載の電子写真感光体
。 3、無金属フタロシアニン粒子の短軸径が0.15μm
以下である特許請求の範囲第1項記載の電子写真感光体
。 4、長軸径が1.0μm以下である特許請求の範囲第1
項記載の電子写真感光体。
[Scope of Claims] 1. An electrophotographic photoreceptor comprising a layer containing a charge-generating substance and a charge-transfer substance formed on a conductive support, wherein the charge-generating substance is τ-type, τ′-type, metal-free phthalocyanine particles having a crystal form selected from η type and η type,
An electrophotographic photoreceptor characterized in that the particles have a ratio of major axis diameter/minor axis diameter in the range of 1.5 to 10, and a minor axis diameter of 0.35 μm or less. 2. The minor axis diameter of metal-free phthalocyanine particles is 0.25 μm
An electrophotographic photoreceptor according to claim 1, which is as follows. 3. The minor axis diameter of metal-free phthalocyanine particles is 0.15 μm
An electrophotographic photoreceptor according to claim 1, which is as follows. 4. Claim 1 in which the major axis diameter is 1.0 μm or less
The electrophotographic photoreceptor described in .
JP28201786A 1986-11-28 1986-11-28 Electrophotographic sensitive body Granted JPS63136055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28201786A JPS63136055A (en) 1986-11-28 1986-11-28 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28201786A JPS63136055A (en) 1986-11-28 1986-11-28 Electrophotographic sensitive body

Publications (2)

Publication Number Publication Date
JPS63136055A true JPS63136055A (en) 1988-06-08
JPH0560864B2 JPH0560864B2 (en) 1993-09-03

Family

ID=17647072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28201786A Granted JPS63136055A (en) 1986-11-28 1986-11-28 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS63136055A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216570A (en) * 1988-07-04 1990-01-19 Toyo Ink Mfg Co Ltd Electrophotographic sensitive body
JPH0365960A (en) * 1989-08-05 1991-03-20 Matsushita Electric Ind Co Ltd Electrophotographic sensitive body
US5405725A (en) * 1991-10-08 1995-04-11 Fuji Electric Co., Ltd. Photoconductor for electrophotography

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722729A (en) * 1980-07-18 1982-02-05 Hitachi Ltd Electric cleaner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216570A (en) * 1988-07-04 1990-01-19 Toyo Ink Mfg Co Ltd Electrophotographic sensitive body
JPH0365960A (en) * 1989-08-05 1991-03-20 Matsushita Electric Ind Co Ltd Electrophotographic sensitive body
US5405725A (en) * 1991-10-08 1995-04-11 Fuji Electric Co., Ltd. Photoconductor for electrophotography

Also Published As

Publication number Publication date
JPH0560864B2 (en) 1993-09-03

Similar Documents

Publication Publication Date Title
JPH10237347A (en) Crystalline oxotitanyl phthalocyanine and electrophotographic photoreceptor using the same, and image formation using the same
JPH0560863B2 (en)
JPS63136055A (en) Electrophotographic sensitive body
JPH0530263B2 (en)
JP2557096B2 (en) Electrophotographic photoreceptor
JPH01123868A (en) Quasi-noncrystalline titanium phthalocyanine compound, its production and electrophotographic material
JP2599170B2 (en) Electrophotographic photoreceptor
JP2554360B2 (en) Electrophotographic photoreceptor
JPH05100458A (en) Electrophotographic photoconductor
JP2005226013A (en) Chlorogalium phthalocyanine pigment and method for producing the same, electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus
JP4239847B2 (en) Phthalocyanine pigment and method for producing the same, electrophotographic photosensitive member, electrophotographic apparatus, process cartridge, and electrophotographic apparatus
JP3395484B2 (en) Hydroxygallium phthalocyanine crystal, method for producing the same, and electrophotographic photoreceptor using the same
JPH01217360A (en) Image forming method
JPH1160979A (en) Treatment of phthalocyanine pigment and electrophotographic photoreceptor using the same
JPH04182655A (en) Electrophotographic sensitive body, electrophotographic device fitted with same sensitive body and facsimile
JPS6359426B2 (en)
JPH04253065A (en) Electrophotographic sensitive body, electrophotographic apparatus and facsimile using same
JPS62275272A (en) Material for photosemiconductor and electrophotographic sensitive body using same
JPH0477906B2 (en)
JPH04181258A (en) Electrophotographic sensitive body, electrophotographic apparatus, and facsimile using same
JP2001033999A (en) Electrophotographic photoreceptor
JPH09124967A (en) Hydroxy-gallium phthalocyanine crystal, production thereof and electrphotographic photoreceptor made therefrom
JPH11116839A (en) Chlorogalliumphthalocyanine crystal, its production and electrophotographic photoreceptor using the same
JPH10221871A (en) Image forming method
JP2003177559A (en) Electrophotographic photoreceptor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term